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Abstract. It is proved that a radical class σ of lattice-ordered groups has exactly one
cover if and only if it is an intersection of some σ-complement radical class and the big
atom over σ.
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Let g and S be the classes of all �-groups and of all radical classes of �-groups,

respectively. Let σ, τ ∈ S. If σ < τ and there does not exist any � ∈ S such that
σ < � < τ , then we say that τ is an atom over σ or that τ covers σ. Denote by
A(σ) the class of all atoms over σ. For σ ∈ S, G ∈ g, the symbol σ(G) stands for

the largest convex �-subgroup of G which belongs to σ. Denote by T (G) the least
radical class containing G. Write R(G) = {σ(G) | σ ∈ S} (see [2]).
Let G ∈ g. Let α be an infinite cardinal and ω(α) be the least ordinal having

cardinality α. For any i ∈ ω(α), set Gi = Z, the additive group of integers under
the usual order. Write G(α) = (�⊗Gi) �⊗ G for the lexico-product of these Gi and
G, i ∈ ω(α), with order from left to right. Both G(α) and T (G(α)) are called the

regular atoms over G or T (G) (cf. [1], [3]).

Let σ ∈ S. Suppose A(σ) �= ∅. Put ε(σ, 1) = supA(σ) and for any ordinal α,
define inductively

ε(σ, α) =

{
supA(ε(σ, α − 1)) when α is nonlimit,
∨

β<α ε(σ, β) when α is limit.
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Form Z(σ) =
∨

α ε(σ, α), where α runs over all ordinals. Call Z(σ) the big atom

over σ (cf. [1], [3]).

In 1977, J. Jakubík raised the following question of unique covering of radical

classes: whether there exists α ∈ S such that A(σ) is a one-element class.

The first author of the present paper answered “yes” in [3] and gave several suf-
ficient and necessary conditions for a radical class to have a unique covering under

the condition “non-superatom”, i.e. “not containing A0 = supA(0)”. In this short
note, we prove a theorem for all radical classes having a unique covering by using

the notion of σ-homogenity. Recall that an �-group G is called homogeneous if T (G)
is an atom.

Definition 1. An �-group G is called quasi-homogeneous if there exists a largest
radical class which does not contain G. If it is the case, then denote this radical class

by T G and call it the quasi-complement radical class of G or T (G).

Let σ ∈ S. Recall that the complement radical class of σ, denoted by σ′, is the
largest radical class meeting σ in 0.

In the sequel, the appearence of T G always suggests that G be q.h. A homogeneous

�-group G is clearly q.h. and T G coincides with T (G)′ in this case (cf. [3] for detail).
The �-group {0} is trivialy non-q.h. The cardinal sum of Z and Q (the rationals with

the usual order and the usual addition) provides a non-trivial example of non-q.h.
�-group.

Definition 2. Let σ ∈ S. An �-group G is called σ-homogeneous of σ(G) is
maximal in R(G) \ {G}. In this case, call σG = sup{τ ∈ S | τ(G) � σ(G)} the
associated σ-complement radical class of G or σ-complement of G for short.

Remark.
1. If G is σ-homogeneous, then G ∈ g \ σ.

2. If G is homogeneous, then for each σ ∈ S with G ∈ g \ σ, G is σ-homogeneous
and σG = T G.

3. If G is an σ-homogeneous �-group, then A(σ) �= ∅ (since σ ∨ T (G) ∈ A(σ)).

4. If G is quasi-homogeneous, then there is some σ ∈ S such that G is σ-
homogeneous, this is guaranteed by the following proposition.

Proposition 1. Let 0 �= G ∈ g. G is quasi-homogeneous if and only if R(G)\{G}
possesses a largest element.

�����. To show the condition is necessary, let H ∈ R(G) \ {G}. Then T (H) <

T (G) (otherwise, H = T (H)(G) = T (G)(G) = G, a contradiction). Thus T (H) <

T G and H � T G(G). This asserts that T G(G) is the largest element in R(G) \ {G}.
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Conversely, let H be the largest element in R(G) \ {G}. Put τ =
∨

σ∈C σ, where

C is the collection of all radical classes which do not contain G. Then τ(G) =∨
σ∈C σ(G) �

∨
σ∈C σ(H) = H �= G. Hence G ∈ g \ τ . Therefore τ = T G. �

Proposition 2. Let G ∈ g, σ ∈ S. Then G is σ-homogeneous if and only if

σ ∨ T (G) ∈ A(σ). Therefore A(σ) = {σ ∨ T (G) | G is σ-homogeneous}.

�����. We have that σ∨T (G) covers σ if and only if T (G) covers T (σ(G)) if and
only if σ(G) is a maximal element in R(G) \ {G} if and only if G is σ-homogeneous.

�

Corollary. A(σ) = ∅ if and only if there is no σ-homogeneous �-group.

Proposition 3. Let G be σ-homogeneous, then the σ-complement of G has

exactly one cover.

�����. Firstly, σG(G) = (
∨

τ(G)�σ(G) τ)(G) =
∨

τ(G) � σ(G). Since σG �
σ, we infer that σG(G) = σ(G). Hence the projectivity of [σG, T (G) ∨ σG] and

[T (σ(G)), T (G)] implies that T (G) ∨ σG covers σG. On the other hand, if (T (H) ∨
σG) ∈ A(σG) and T (H) ∨ σG �= T (G) ∨ σG, then

σG = (T (H) ∨ σG) ∧ (T (G) ∨ σG) = σG ∨ (T (H) ∧ T (G)).

Hence
σ(G) = σG(G) � (T (H) ∧ T (G))(G) = T (H)(G).

Thus T (H) � σG, a contradiction. Therefore A(σG) is a one-element class. �

Corollary 1. T G has exactly one cover.

Corollary 2. Each regular atom G(α) over a nonzero �-group G is q.h. and has

exactly one cover. Moreover, T G(α) � A0 and is therefore a superatom which is not

a polar (cf. [3]).

Theorem 4. Let σ ∈ S. Then A(σ) is a one-element class if and only if there is

a σ-homogeneous �-group G such that σ = σG ∧ Z(σ).

�����. For the sufficiency, suppose that σ = σG ∧ Z(σ), where G is a

σ-homogeneous �-group. We then have σ ∨ T (G) covers σ. If there exists some
H ∈ g with σ ∨ T (H) ∈ A(σ) and σ ∨ T (H) �= σ ∨ T (G), then, since T (H)(G) �= G,

only two cases may occur: either T (H)(G) � σ(G) or T (H)(G) is not comparable
with σ(G). For the former, we have T (H) � σG and T (H) � σG ∧ Z(σ) = σ, which
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contradicts T (H) ∈ A(σ). For the latter, we have T (H)(G) ∨ σ(G) = G, therefore

T (H)∨T (σ(G)) � T (G). Thus σ ∨T (H) = σ ∨T (σ(G))∨ T (H) � σ∨ T (G). Hence
σ ∨ T (H) = σ ∨ T (G), which is not the case. So σ is uniquely covered by σ ∨ T (G).
To show the condition is also necessary, let A(σ) be a one-element class with the

unique element �. Then, from Proposition 2, we have a σ-homogeneous �-group G

with � = σ ∨ T (G). Clearly, σ � σG ∧ Z(σ). Now, let H ∈ g \ σ, then either

H ∈ g \σG or H ∈ σG. The first case implies that H ∈ g \σG∧Z(σ). For the second
case, we infer that G ∈ g \ T (H) and T (H)(G) � σG(G) = σ(G), then σ ∨ T (H) is

not comparable with �. This implies that σ ∨ T (H) is not contained in Z(σ), since
� is the unique atom over σ, thus H ∈ g \ Z(σ) and H ∈ g \ σG ∧ Z(σ), therefore

σ = σG ∧ Z(σ). This finishes the proof. �

Remark. In general, σG ∧ Z(σ) �= σG. For instance, let G = Z ⊕ Q, σ = T (Q),
then σG = T Z �= σ = σG ∧ Z(σ).
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