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Abstract. The rate of growth of the energy integral of a quasiregular mapping f : X → Y
is estimated in terms of a special isoperimetric condition on Y . The estimate leads to new
Phragmén-Lindelöf type theorems.
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1. Introduction

Let D ⊂ C be an unbounded domain and let w = f(z) be a holomorphic function

continuous on the closure D. The Phragmén-Lindelöf principle [16] traditionally
refers to the alternatives of the following type:

α) If Re f(z) � 1 everywhere on ∂D, then either Re f(z) grows with a certain rate

as z →∞, or Re f(z) � 1 for all z ∈ D;

β) If |f(z)| � 1 on ∂D, then either |f(z)| grows with a certain rate as |z| → ∞ or
|f(z)| � 1 for all z ∈ D.

Here the rate of growth of the quantities Re f(z) and |f(z)| depends on the “width”
of the domain D near infinity and, in fact, the “narrower” the domain the higher the
rate of growth.

It is not difficult to prove that these conditions are equivalent to the following
conditions:

α1) If Re f(z) = 1 on ∂D and Re f(z) � 1 in D, then either Re f(z) grows with a
certain rate as z →∞ or f(z) ≡ const;
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β1) If |f(z)| = 1 on ∂D and |f(z)| � 1 in D then either |f(z)| grows with a certain
rate as z →∞ or f(z) ≡ const.
Let D be an unbounded domain in �n and let f = (f1, f2, . . . , fn) : D → �

n be a

quasiregular mapping. We assume that f ∈ C0(D). It seems natural to consider the
Phragmén-Lindelöf alternative under the following assumptions:

a) f1(x)
∣∣
∂D
= 1 and f1(x) � 1 everywhere in D,

b)
p∑

i=1
f2i (x)

∣∣
∂D
= 1 and

p∑
i=1

f2i (x) � 1 on D, 1 < p < n,

c) |f(x)| = 1 on ∂D and |f(x)| � 1 on D.

Several formulations of the Phragmén-Lindelöf theorem under various assumptions

can be found in [14], [17], [2], [6], [12], [13]. However, these results are mainly of
qualitative character. Here we give a new approach to Phragmén-Lindelöf type

theorems for quasiregular mappings, based on isoperimetry, which leads to nearly
sharp results. Our approach can be used to prove Phragmén-Lindelöf type results

for quasiregular mappings of Riemannian manifolds.

Let Y be an n-dimensional noncompact Riemannian C2-manifold with piecewise

smooth boundary ∂Y (possibly empty). A function u ∈ C0(Y )∩W 1
n(Y ) is called a

growth function with Y as a domain of growth if (i) u � 1, (ii) u
∣∣∂Y = 1 if ∂Y �= ∅,

and sup
y∈Y

u(y) = +∞.

We consider a quasiregular mapping f : X → Y , where X is a noncompact
Riemannian C2-manifold, dimX = n and ∂X �= ∅. We assume that f(∂X ) ⊂ ∂Y .

In what follows by the Phragmén-Lindelöf principle, we mean an alternative of the
form: either the function u(f(x)) has a certain rate of growth in X or f(x) ≡ const.
By choosing the domain of growth Y and the growth function u(y) in a special

way we can obtain several formulations of Phragmén-Lindelöf theorems for quasi-

regular mappings. In view of the examples in [14], the best results are obtained
if an n-harmonic function is chosen as a growth function. In the case a) the do-

main of growth is Y = {y = (y1, . . . , yn) ∈ �n : y1 � 0} and as the function of
growth it is natural to choose u(y) = y1 + 1; in the case b) the domain Y is the set

{y = (y1, . . . , yn) ∈ �n :
p∑

i=1
y2i � 1}, 1 < p < n, and u(y) =

( p∑
i=1

y2i

)(n−p)/(2(n−1))
;

in the case c) the domain of growth is Y = {y ∈ �n : |y| > 1} and u(y) = log |y|+1.
Our approach is based on isoperimetric conditions for Y in a certain metric dsu,

defined by the growth function. For manifolds of dimension dimX = dimY = n > 2
there are many different isoperimetry types, which are not equivalent to one another,

see [3].
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2. Quasiregular mappings and PDE’s

LetX be a Riemannian manifold with boundary ∂X (possibly empty). Through-

out the paper, we will assume that the manifold is orientable and of class C2. By
T (X ) we denote the tangent bundle and by Tx(X ) the tangent space at the point

x ∈ X . For each pair of vectors x, y ∈ Tx(X ) the symbol 〈x, y〉 denotes their inner
product.

Below we shall use standard notation for function classes on manifolds. Thus, for
example, the symbol Lp

loc(D) stands for the set of all Lebesgue measurable functions

on an open setD ⊂ X which are locally Lp-integrable. The symbolW 1
p,loc(D) stands

for the set of functions in Lp
loc(D) that have generalized partial derivatives in the

sense of Sobolev of class Lp
loc(D).

If X and Y are Riemannian manifolds of class C2 and F : D → Y , D ⊂ X , is a

mapping, then we shall say that F ∈ Lp
loc(D) if for an arbitrary function ϕ ∈ C0(Y )

we have ϕ◦F ∈ Lp
loc(D). The mapping F is in the classW 1

p,loc(D), if ϕ◦F ∈ W 1
p,loc(D)

for every ϕ ∈ C1(Y ).
Let X and Y be Riemannian manifolds of dimension n. A mapping f : X → Y

of class W 1
n,loc(X ) is called a quasiregular mapping if f satisfies

(1) |f ′(x)|n � KJf(x)

almost everywhere on X . Here f ′(x) : Tx(X ) → Tf(x)(Y ) is the formal derivative
of f(x) and Jf (x) is the Jacobian of f at the point x ∈ X .

The least constant K � 1 in the inequality (1) is called the outer dilatation of f
and denoted by KO(f). If F is quasiregular, then the least constant K � 1, for
which we have

Jf (x) � Kl(f ′(x))n

almost everywhere on X , is called the inner dilatation of the mapping f : X → Y

and denoted by KI(f). Here

l(f ′(x)) = min
|h|=1

|f ′(x)h|.

The quantity

K(f) = max{KO(f), KI(f)}

is called the maximal dilatation of f and if K(f) � K, then the mapping f is called

K-quasiregular.
If f(x) : X → Y is a quasiregular homeomorphism, then the mapping f is called

quasiconformal. In this case the inverse mapping f−1 is also quasiconformal in the
domain f(X ) ⊂ Y and K(f−1) = K(f) ([8], [18]).
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An elementary example of a quasiconformal mapping is a bilipschitz mapping. A

homeomorphism f : X → Y of a class W 1
n, loc(X ) is called a (locally) bilipschitz

mapping if f satisfies almost everywhere on X

1
L

� |f ′(x)| � L, L ≡ const.

Let X be a Riemannian manifold and let

A : T (X )→ T (X )

be a mapping defined a.e. on the tangent bundle T (X ). Suppose that for a.e. x ∈ X

the mapping A is continuous on the fiber Tx, i.e. for a.e. x ∈ X the function A(x, ξ) :

ξ ∈ Tx → Tx is defined and continuous; the mapping x → Ax(X) is measurable for
all measurable vector fields X (see [8]).

Suppose that for a.e. x ∈ X and for all ξ ∈ Tx the following inequalities are valid:

ν1|ξ|n � 〈ξ, A(x, ξ)〉(2)

and

|A(x, ξ)| � ν2|ξ|n−1,(3)

where 0 < ν1 � ν2 < +∞ are constants (see [8]).
We consider the equation

(4) divA(x,∇f) = 0.

Solutions to (4) are understood in the weak sense, that is, solutions are W 1
n,loc-

functions satisfying the integral identity

(5)
∫

X

〈∇θ, A(x,∇f)〉 dvX = 0

for all θ ∈ W 1
n(X ) with compact support in X where dvX is the volume form

on X .

A function f in W 1
n,loc(X ) is a subsolution of (4) in X if

(6) divA(x,∇f) � 0

weakly in X , i.e.

(7)
∫

X

〈∇θ, A(x,∇f)〉 dvX � 0

whenever θ ∈ W 1
n(X ) is nonnegative with compact support in X .
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A basic example of an equation satisfying (2)–(4) is the n-Laplace equation

(8) div(|∇f |n−2∇f) = 0.

3. Exhaustion functions

Let X be a noncompact Riemannian manifold with a boundary ∂X (possibly

empty) and let h : X → (0,+∞) be a locally Lipschitz function. For t ∈ (0,+∞)
we denote by

Bh(t) = {x ∈ X : h(x) < t}, Σh = Σh(t) = {x ∈ X : h(x) = t}

the h-balls and h-spheres, respectively.

We say that a function h is an exhaustion function for the manifold X if the

following tree conditions are satisfied:

(i) for all t ∈ (0,+∞) the h-ball Bh(t) is compact;

(ii) there exists a compact set K ⊂ X such that |∇h(x)| > 0 for a.e. x ∈ X \K;

(iii) for every sequence t1 < t2 < . . . < ∞ with lim
k→∞

tk = +∞, the sequence of
h-balls {Bh(tk)} generates an exhaustion of X , i.e.

Bh(t1) ⊂ Bh(t2) ⊂ . . . ⊂ Bh(tk) ⊂ . . . and
⋃

k

Bh(tk) =X .

The coarea formula or the Kronrod-Federer formula [11], [5, § 3.2] are useful tools
for various estimates involving an exhaustion function.

3.1. Theorem. Let Φ be a nonnegative Borel-measurable function in a domain
D ⊂ X and u a locally Lipschitz function on D. Then

∫

D

Φ(x)|∇u(x)| dvX =
∫ ∞

0
dt

∫

Et

Φ(x) dH

where H is the surface measure on Et = {x ∈ X : |u(x)| = t}.

3.2. Example. Let X = �n be an n-dimensional Euclidean space. We fix an

integer k, 1 � k � n, and set

dk(x) =

( k∑

i=1

(xi)2
)1/2

.
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Now |∇dk(x)| = 1 everywhere in �n \K where K = {x ∈ �n : dk(x) = 0}. We call
the set

Bk(t) = {x ∈ �n : dk(x) < t}

a k-ball and the set

Σk(t) = {x ∈ �n : dk(x) = t}

a k-sphere in �n .

We say that an unbounded domainD ⊂ �
n is k-admissible if for each t > inf

x∈D
dk(x)

the set D ∩Bk(t) is precompact.

It is clear that every unbounded domain D ⊂ �n is n-admissible. In the general

case the domain D is k-admissible if and only if the function dk(x) is an exhaustion
function of D. It is not difficult to see that if a domain D ⊂ �

n is k-admissible, then

it is l-admissible for all k < l < n.

Let A satisfy (2) and (3) and let h : X → (0,∞) be an exhaustion function
satisfying the following conditions:

a1) there exists a compact set K ⊂ X such that h is a solution of (4) in X \K;

a2) for a.e. t1, t2 ∈ (0,∞), t1 < t2,

∫

Σh(t2)

〈 ∇h

|∇h| , A(x,∇h)

〉
dH =

∫

Σh(t1)

〈 ∇h

|∇h| , A(x,∇h)

〉
dH.

Here dH is the element of the (n− 1)-dimensional Hausdorff measure on Σh. Ex-

haustion functions with these properties will be called the special exhaustion func-
tions of X with respect to A. In most cases the mapping A will be the n-Laplace

operator

A(x, h) = |h|n−2h

and then we may omit A from the above definition.

Since the unit vector ν = ∇h/|∇h| is orthogonal to the h-sphere Σh, the condi-

tion a2) means that the flux of the vector field A(x,∇h) through h-spheres Σh(t) is
constant.

Suppose that the function A(x, ξ) is continuously differentiable. If

b1) h ∈ C2(X \K) and satisfies equation (4), and

b2) at every point x ∈ X where ∂X has a tangent plane Tx(∂X ) the condition

〈A(x,∇h(x)), ν〉 = 0

is satisfied where ν is a unit vector of the inner normal to the boundary ∂X , then
h is a special exhaustion function of the manifold X .
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The proof of this statement is simple. Consider the domain

X (t1, t2) = {x ∈ X : t1 < h(x) < t2}, 0 < t1 < t2 < ∞,

with the boundary ∂X (t1, t2). Using the Gauss formula, we have
∫

Σh(t2)

〈 ∇h

|∇h| , A(x,∇h)
〉
dH −

∫

Σh(t1)

〈 ∇h

|∇h| , A(x,∇h)

〉
dH

=
∫

∂X (t1,t2)∪
⋃

i=1,2
Σh(ti)

〈ν, A(x,∇h)〉dH

=
∫

∂X (t1,t2)
〈ν, A(x,∇h)〉dH

=
∫

X (t1,t2)
divA(x,∇h) dvX = 0.

This computation provides the validity of property a2).

3.3. Example. Fix 1 � k < n. Let ∆ be a bounded domain in the plane
x1 = . . . = xk = 0 with a piecewise smooth boundary and let

(9) D = {x = (x1, . . . , xn) ∈ �n : (xk+1, . . . , xn) ∈ ∆} = �n−k ×∆

be the cylinder domain with the base ∆.

The domain D is k-admissible. The k-spheres Σk(t) are orthogonal to the bound-

ary ∂D and therefore 〈∇dk, ν〉 = 0 everywhere on the boundary, where dk is as in
Example 3.2.

Let h = ϕ(dk) where ϕ is a C2-function. We have ∇h = ϕ′∇dk and

n∑

i=1

∂

∂xi

(
|∇h|n−2 ∂h

∂xi

)
=

k∑

i=1

∂

∂xi

(
(ϕ′)n−1

∂dk

∂xi

)

= (n− 1)(ϕ′)n−2ϕ′′ + k − 1
dk
(ϕ′)n−1.

From the equation

(n− 1)ϕ′′ + k − 1
dk

ϕ′ = 0

we conclude that the function

(10) h(x) = (dk(x))(n−k)/(n−1)

satisfies the equation (8) in D \K and thus it is a special exhaustion function of the
domain D.
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3.4. Example. Let (r, θ), where r � 0, θ ∈ �n−1(1), be the spherical coordinates

in �n . Let U ⊂ �
n−1(1), ∂U �= ∅, be an arbitrary domain on the unit sphere �n−1(1).

We fix 0 � r1 < ∞ and consider the domain

(11) D = {(r, θ) ∈ �n : r1 < r < ∞, θ ∈ U}.

As above it is easy to verify that the given domain is n-admissible and the function

(12) h(|x|) = log |x|
r1

is a special exhaustion function of the domain D.

3.5. Example. Fix 1 � n � p. Let x1, x2, . . . , xn be an orthonormal system of
coordinates in �n , 1 � n < p. Let D ⊂ �

n be an unbounded domain with piecewise

smooth boundary and let B be a (p−n)-dimensional compact Riemannian manifold
with or without boundary. We consider the manifoldM = D ×B.

We denote by x ∈ D, b ∈ B, and (x, b) ∈ M the points of the corresponding
manifolds. Let π : D × B → D and η : D × B → B be the natural projections of

the manifold M .

Assume now that the function h is a function on the domain D satisfying the

conditions b1), b2) and the equation (8). We consider the function h∗ = h◦π : M →
(0,∞).
We have

∇h∗ = ∇(h ◦ π) = (∇xh) ◦ π

and

div(|∇h∗|p−2∇h∗) = div(|∇(h ◦ π)|p−2∇(h ◦ π))

= div(|∇xh|p−2 ◦ π(∇xh) ◦ π)

=

( n∑

i=1

∂

∂xi

(
|∇xh|p−2 ∂h

∂xi

))
◦ π.

Because h is a special exhaustion function of D we have

div(|∇h∗|p−2∇h∗) = 0.

Let (x, b) ∈ ∂M be an arbitrary point where the boundary ∂M has a tangent
hyperplane and let ν be a unit normal vector to ∂M .
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If x ∈ ∂D, then ν = ν1 + ν2 where the vector ν1 ∈ �k is orthogonal to ∂D and ν2

is a vector from Tb(B). Thus

〈∇h∗, ν〉 = 〈(∇xh) ◦ π, ν1〉 = 0,

because h is a special exhaustion function on D and satisfies the property b2) on ∂D.

If b ∈ ∂B, then the vector ν is orthogonal to ∂B × �n and

〈∇h∗, ν〉 = 〈(∇xh) ◦ π, ν〉 = 0,

because the vector (∇xh) ◦ π is parallel to �n .

The other requirements for a special exhaustion function for the manifoldM are

easy to verify.

Therefore, the function

(13) h∗ = h∗(x, b) = h ◦ π : M → (0,∞)

is a special exhaustion function on the manifold M = D ×B.

4. Estimates for the energy integral

Let Y be a noncompact Riemannian manifold of dimension n. We denote by dsY

the element of length on Y . Let u be a locally Lipschitz function in Y such that

u � 1 and u �≡ 1.
We assume that u

∣∣
∂Y
= 1 if ∂Y �= ∅ and sup

y∈Y
u(y) = ∞, i.e. u(y) is a growth

function on Y .

We consider the metric ds = dsu = |∇u(y)| dsY . Here ∇u(y) is the gradient of u.
If ∇u(y) is not defined at a point y ∈ Y , then we set |∇u(y)| = 1. For an arbitrary
domain G ⊂ Y we will denote by ∂′G = ∂G \ ∂Y the boundary of G with respect
to Y . Now

Vu,Y (G) =
∫

G

|∇u(y)|n dv

denotes the volume in the metric ds, and

Au,Y (∂
′G) =

∫

∂′G
|∇u(y)|n−1H(dsY )

is the area of ∂′G in the metric ds. Here H(dsY ) refers to the (n− 1)-dimensional
Hausdorff measure on ∂′G.
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We consider isoperimetric profiles of the Riemannian manifold Y with the metric

dsu. An isoperimetric profile of the pair (Y , dsu) is the function

θu,Y : [0, v)→ �+ , v = Vu,Y (Y ),

defined by

θu,Y (τ) = inf{Au,Y (∂′G) : G ⊂ Y a compact domain

with H(∂′G) < ∞, Vu,Y (G) = τ},

i.e. the isoperimetric profile θu,Y is the best function among the functions θ satisfying

(14) θ(Vu,Y ) � Au,Y (∂′G).

In the special case of surfaces in �n this definition goes back to Ahlfors [1, p. 188];
for applications of the isoperimetric method to quasiconformal mappings on mani-

folds see [7], [15].
In general, the isoperimetric profile θu,Y (τ) is difficult to compute. It is also

difficult to estimate the isoperimetric profile in terms of the curvature and other
geometric data. We describe some of these cases below.

4.1. Example. Let Y = �n = {y = (y1, . . . , yn)} be the Euclidean space. We
choose the growth function u(y) = |y| + 1; now |∇u(y)| = 1 here. The classical
isoperimetric inequality says that if G ⊂ �

n is a compact domain with smooth
boundary ∂G, then

cn(Vu,Y (G))
(n−1)/n � Au,Y (∂G)

where
cn = ω

1/n
n−1n

(n−1)/n

and ωn−1 is the (n− 1)-dimensional surface area of the unit sphere �n−1(0, 1).

Hence, we have

(15) θ�n(τ) = cnτ (n−1)/n.

4.2. Example. Let Y be a complete, simply connected, n-dimensional Riemann-
ian manifold with nonpositive sectional curvature. We consider the growth function

u(y) = dist(y, a) + 1 where a ∈ Y is a fixed point. We have |∇u(y)| = 1 for y �= a

and therefore,

Vu,Y (G) = vol(G) and Au,Y (∂G) = area(∂G).
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By [9], [4] for every n there is a constant cn < cn such that

cn(vol(G))
(n−1)/n � area(∂G)

and it follows that

(16) θu,Y (τ) > cnτ (n−1)/n.

4.3. Example. Let Y be a complete, simply connected Riemannian manifold,

dimY = n. Let u(y) = dist(y, a) + 1, a ∈ Y , be a growth function on Y . If the
sectional curvature KY of Y satisfies KY � k < 0, k = const, then

(n− 1)
√
(−k) vol(G) � area(∂G)

([19, p. 504]; [3, 34.2.6]) and thus

(17) θu,Y (τ) � (n− 1)
√
(−k)τ.

The case ∂Y �= ∅ is more complicated. The following proposition is sometimes
helpful in this problem.

Let u = u(y) be a growth function in Y and suppose that u is a locally Lipschitz
subsolution of (4) in Y . We assume that A satisfies (2) and (3) with the structure

constants ν1, ν2.

4.4. Proposition. Let b : M → Y be a bilipschitz mapping of the manifold

M onto the manifold Y . If the domain of growth Y satisfies the isoperimetric

inequality (14) with the function θ, then the function u∗ = u ◦ b is also a growth

function in M with the isoperimetric profile

(18) θu∗,M (t) =
1
kb

θu,Y (t).

Moreover, u∗ is a subsolution of an equation of the type (4), with the structure
constants

(19) ν′1 = ν1/kb, ν′2 = ν2.

Here kb is the maximal dilatation of the mapping b.

�����. We observe first that by [8, Theorem 14.42] the function u∗ is a subso-
lution of some equation of the type (4) with structure constants (19).
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Let G ⊂ M be an arbitrary precompact domain and let G′ = b(G) be its image.

By the definition we have

Vu∗,M (G) =
∫

G

|∇u∗(m)|n dv.

At almost every point m ∈ M of the manifoldM we have ([8, Theorem 14.28])

∇yu(y) = b′(m)∗∇mu∗(m).

Thus

Vu∗,M (G) � kb

∫

G′
|∇u(y)|n dv = kbVu,Y (G′).

Similarly,

Au,Y (∂
′G′) =

∫

∂′G′
|∇u(y)|n−1H(dsY )

�
∫

∂′G
|∇yu(b(m))|n−1|b′(m)|n−1H(dsM )

�
∫

∂′G
|∇u∗(m)|n−1H(dsM )

= Au∗,M (∂′G).

Therefore

θ(Vu∗,M (G)) � θ(kbVu,Y (G
′)) � kbAu,Y (∂

′G′) � kbAu∗,M (∂
′G)

so that the relation (18) indeed holds. �

4.5. Example. We assume that the domain of growth Y ⊂ �n is the half-space

y1 � 0 and u(y) = y1 + 1. In this case inequality (14) is a simple corollary of the
classical isoperimetric inequality in �n , connecting the volume of a domain and the

area of its boundary.

Here, as is easy to see, we have

(20) θ(t) = Lt(n−1)/n,

where L = (ωn−1/2)1/nn(n−1)/n and ωn−1 is the (n− 1)-dimensional surface area of
the unit sphere �n−1(0, 1) ⊂ �

n .

Using the results of Section 4.4, we conclude: Every manifold, which is bilip-
schitz equivalent to a half-space in �n , has a growth function with the property
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of Proposition 4.4, satisfying the isoperimetric inequality (14) with the function

θ(t) = L
kb

t(n−1)/n.

Let X be an n-dimensional Riemannian manifold with a boundary ∂X (possibly
empty). We fix a locally Lipschitz exhaustion function h : X → (0,∞). Let h =

inf
x∈X

h(x).

Let f : X → Y be a quasiregular mapping and let f(∂X ) ⊂ ∂Y . We assume

that the manifold Y satisfies the isoperimetry condition (14) with the function θ.

We first observe that for almost all t ∈ (h,∞) the restriction of the mapping f to
the h-sphere Σh(t) is of the class W 1

n,loc. We fix arbitrarily such a value t ∈ (h,∞)
and denote by B′(t) the image of the h-ball Bh(t) under the mapping y = f(x).

Because the mapping f : X → Y is quasiregular, it is open and discrete. For an
arbitrary y ∈ B

′
(t) we denote by N(y, t) the number of points x ∈ Bh(t) for which

f(x) = y.

Let Σ′(t) = f(Σh(t)).

Using the θ-isoperimetry property of the manifold Y we have

θ

(∫

B′(t)
|∇u(y)|n dv

)
�

∫

∂′B′(t)
|∇u(y)|n−1H(dsY ).

The restriction of the mapping f to Σh(t) has Lusin’s property (N), and because

f(∂X ) ⊂ ∂Y we have ∂′B′(t) ⊂ Σ′(t). Performing a change of variables we have

θ

(∫

B(t)
|∇yu(f(x))|nJf (x)N(f(x), t)−1 dv

)

�
∫

Σh(t)
|∇yu(f(x))|n−1N(f(x), t)−1H(dsX ).

This inequality, condition (1) and Hölder’s inequality yield

θ

(
K−1

∫

Bh(t)
|∇yu(f(x))|n|f ′(x)|nN(f(x), t)−1 dv

)

�
(∫

Σh(t)
N(f(x), t)−1|∇h|n−1H(dsY )

)1/n

×
(∫

Σh(t)
|∇yu(f(x))|n|f ′(x)|nN(f(x), t)−1

H(dsX )
|∇h|

)(n−1)/n

.

We set

J(t) =
∫

Bh(t)
|∇yu(f(x))|n|f ′(x)|nN(f(x), t)−1 dv.
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Using the Kronrod-Federer formula

J(t) =
∫ t

h

dτ
∫

Σh(τ)
|∇yu(f(x))|n|f ′(x)|nN(f(x), t)−1

H(dsY )
|∇h|

we observe that for almost every t ∈ (h,∞)

J ′(t) =
∫

Σh(t)
|∇yu(f(x))|n|f ′(x)|nN(f(x), t)−1

H(dsX )
|∇h| .

Therefore

(21) θn/(n−1)
(

J(t)
K

)
� J ′(t)

(∫

Σh(t)
|∇h|n−1 H(dsX )

N(f(x), t)

)1/(n−1)
.

For an arbitrary t > h we set Nf (t) = inf
x∈Bh(t)

N(f(x), t). The inequality (21) attains

the form

(22) N
1/(n−1)
f (t)θn/(n−1)

(
J(t)
K

)
� J ′(t)

(∫

Σh(t)
|∇h|n−1H(dsX )

)1/(n−1)
.

The following statement characterizes the class of isoperimetric functions θ for which

the mapping f : X → Y is trivial.

4.6. Theorem. Let h be a special exhaustion function on X and assume that

the manifold X satisfies the condition

(23)
∫ ∞

dt

(∫

Σh(t)
|∇h|n−1H(dsX )

)1/(1−n)

=∞.

If the manifold Y is θ-isoperimetric with the function θ(t) satisfying

(24)
∫ ∞

θ(t)n/(1−n) dt < ∞,

then each quasiregular mapping f : X → Y , f(∂X ) ⊂ ∂Y , is a constant.

�����. We will use (22). Observing that Nf (t) � 1 and integrating the
aforementioned differential inequality, for each τ > h+ 1 we get

(25)
∫ τ

h+1
dt

(∫

Σh(t)
|∇h|n−1H(dsX )

)1/(1−n)

�
∫ CJ(τ)

CJ(h+1)
θ(t)n/(1−n) dt,

where C = 1/K.

If J(τ) �≡ 0, then the conditions (23) and (24) lead to a contradiction. Therefore,
J(τ) ≡ 0 and thus f(x) ≡ const. �
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This theorem is a version of Liouville’s theorem for quasiregular mappings

f : X → Y of Riemannian manifolds. A natural choice for the growth function
u is the following.

Let Y be a Riemannian manifold with a non-empty boundary ∂Y . We set u(y) =
�(y, ∂Y ) + 1, where �(y, ∂Y ) is the distance from a point y to the boundary ∂Y .

Then u(y) � 1 and u is a locally Lipschitz function on Y , and also |∇u(y)| = 1
almost everywhere on Y .

If the boundary ∂Y = ∅, then one may fix an arbitrary point y0 ∈ Y and set

u(y) = �(y, y0) + 1.

It is clear that the function u(y) thus constructed has the properties of a growth
function for the manifold Y . In addition, for every subdomainG ⊂ Y with boundary

∂′G = ∂G \ ∂Y with respect to Y we have: Vu,Y (G) is the volume of G in the
standard metric of �n and Au,Y (∂′G) is the (n− 1)-dimensional area.
The isoperimetric inequality (14) now takes the form

(26) θ

(∫

G

dv

)
�

∫

∂′G
H( dsY ).

Thus we get

4.7. Corollary. Let f : X → Y be a quasiregular mapping such that f(∂X ) ⊂
∂Y if ∂X �= ∅. Let h : X → (0,∞) be an exhaustion function X satisfying condi-

tion (23). If the manifold Y satisfies (26), where the function θ has property (24),
then f ≡ const.

From (17), (23) and (24) we have

4.8. Corollary. Let Y be a complete, simply connected, n-dimensional Riemann-
ian manifold with sectional curvature KY � k < 0, k = const. Let f : X → Y be

a quasiregular mapping. If the manifold X satisfies (23), then f ≡ const.

We consider the case in which h : X → (0,∞) is a special exhaustion function
on X . Then the integral

I =
∫

Σh(t)

〈 ∇h

|∇h| , A(m,∇h)

〉
H(dsX )

is independent of t.
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Using structural conditions (2), (3), we note that

〈 ∇h

|∇h| , A(m,∇h)

〉
� ν1|∇h|n−1

and
〈 ∇h

|∇h| , A(m,∇h)

〉
� |A(m,∇h)| � ν2|∇h|n−1.

Hence for every t ∈ (0,∞) we have that

(27)
1
ν2

I �
∫

Σh(t)
|∇h|n−1H(dsX ) �

1
ν1

I.

Condition (23) on the manifold X is fulfilled automatically. Hence we get

4.9. Corollary. Suppose that the manifold X has a special exhaustion function

h : X → (0,∞), and the manifold Y is θ-isoperimetric with a function θ(t) satisfying

the condition (24). Then every quasiregular mapping f : X → Y , f(∂X ) ⊂ ∂Y ,

is a constant.

Relations (21), (25) are sources for Liouville theorems of various types. These
theorems give an estimate for the minimal admissible speed of growth for the energy

integral of a non-trivial quasiregular mapping f : X → Y . Consider the following
example.

Let Y be a manifold bilipschitz equivalent to a half-space in �n . As was shown
in example (4.5), here the isoperimetric function has the form θ(t) = (L/kb)t(n−1)/n,

L is a constant from (20) and kb is the maximal dilatation of the bilipschitz mapping.
Then the integral on the right hand side of inequality (25) is computed and this

inequality takes the form

J(h+ 1) � J(τ) exp

{
−

(
L

kb

)n/(n−1) ∫ τ

h+1
dt

(∫

Σh(t)
|∇h|n−1H(dsX )

)−1/(n−1)}
,

where

J(t) =
∫

Bh(t)
|f ′(x)|n dv

N(f(x), t)

is a special case of the integral from Theorem 4.6.
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If the exhaustion function h of the manifold X is a special exhaustion function

then by virtue of (27) for every τ ′′ > τ ′ � h+ 1 we have

(τ ′′ − τ ′)

(
I

ν1

)1/(1−n)

�
∫ τ ′

τ ′
dt

(∫

Σh(t)
|∇h|n−1H(dsX )

)1/(1−n)

(28)

� (τ ′′ − τ ′)

(
I

ν2

)1/(1−n)

.

Here I is the flux of the vector field A(x,∇h) through h-spheres Σh(t).

Under these assumptions we have from (16)

4.10. Corollary. Let Y be a complete, simply connected, n-dimensional

Riemannian manifold with sectional curvature KY � 0. If the manifold X has

a special exhaustion function, then every quasiregular mapping f : X → Y with

lim
τ→0

J(τ) exp

{
−cn

(
I

ν1

)−1/(n−1)
τ

}
= 0

is a constant.

From (18), (19), (20) we get

4.11. Corollary. If a manifold X has a special exhaustion function h, and a

manifold Y is bilipschitz equivalent to a half-space, then every quasiregular mapping

f : X → Y , f(∂X ) ⊂ ∂Y , with the property

lim inf
τ→∞

J(τ) exp

{
−

(
L

kb

)n(
I

ν1

)−1/(n−1)
τ

}
= 0

is a constant. Here kb is the maximal dilatation of the bilipschitz mapping b.

5. Phragmén-Lindelöf theorem

Let X , Y be noncompact Riemannian manifolds, dimX = dimY = n � 2. Let
f : X → Y be a quasiregular mapping with f(∂X ) ⊂ ∂Y if the boundary ∂X �= ∅.
Let h : X → (0,∞) be an exhaustion function on X and let u(y) � 1 be a growth
function defined on the manifold Y . Suppose that u(y) satisfies the condition (7).

The function u∗(x) = u(f(x)) is a subsolution of some inequality of the form (2),
(3), (6) with structure constants ν′1 = ν1/K, ν′2 = ν2K.
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Fix τ ′′ > τ ′ > h+ 1. We choose an arbitrary locally Lipschitz function

ϕ : (0,∞)→ (0, 1), ϕ(τ) = 1 for τ � τ ′, ϕ(τ) = 0, for τ � τ ′′.

The function u∗(x)−1 is a solution of the differential inequality (6). Since u∗(x)−1 �
0 and (u∗(x) − 1)|∂X = 0, choosing θ(x) = (u∗(x) − 1)ϕn(h(x)), as a test function
in (7) we have

∫

X

ϕn(h)〈∇u∗, A(x,∇u∗)〉dvX

� − n

∫

X

(u∗ − 1)ϕn−1(h)ϕ′(h)〈∇h, A(x,∇u∗)〉dvX

� n

∫

X

|u∗ − 1|ϕn−1(h)|ϕ′(h)| |∇h| |A(x,∇u∗)| dvX

� n

(∫

X

ϕn(h)|A(x,∇u∗)| n
n−1

)(n−1)/n

dvX

(∫

X

|u∗ − 1|n|ϕ′(h)|n|∇h|n
)1/n

dvX .

Using conditions (2), (3) with the aforementioned structure constants ν′1, ν′2, we

obtain
cn
1

∫

X

ϕn(h)|∇u∗|n dvX �
∫

X

|u∗ − 1|n|ϕ′(h)|n|∇h|n dvX ,

where

c1 =
ν′1
nν′2
=

ν1
ν2
(nK2)−1.

The particular choice of the function ϕ yields

cn
1

∫

Bh(τ ′)
|∇u∗|n dvX �

∫

Bh(τ ′′)\Bh(τ ′)
|u∗ − 1|n|ϕ′(h)|n|∇h|n dvX .

Using the maximum principle we obtain

(29) cn
1

∫

Bh(τ ′)
|∇f |n dvX � Mn(τ ′′)

∫

Bh(τ ′′)\Bh(τ ′)
|ϕ′(h(x))|n|∇h|n dvX ,

where
M(τ) = max

Σh(τ)
|u∗(x)− 1|.

We must find the minimum of the integral

I(ϕ) =
∫

Bh(τ ′′)\Bh(τ ′)
|ϕ′(h(x))|n|∇h|n dvX

in the class of admissible functions ϕ.

602



Integrating over the level sets of the function h, we get

I(ϕ) =
∫ τ ′′

τ ′
|ϕ′(t)|n dt

∫

Σh(t)
|∇h|n−1H(dsX ).

Let
α(t) =

∫

Σh(t)
|∇h|n−1H(dsX ).

Because ϕ(τ ′) = 1, ϕ(τ ′′) = 0, we get

1 �
∫ τ ′′

τ ′
|ϕ′(t)| dt �

(∫ τ ′′

τ ′
α(t)|ϕ′(t)|n dt

)1/n(∫ τ ′′

τ ′
α(t)1/(1−n) dt

)(n−1)/n

.

Thus

I(ϕ) �
(∫ τ ′′

τ ′
α(t)1/(1−n) dt

)1−n

.

This inequality reduces to equality for the following special choice of the function ϕ:

ϕ(t) =





1, for t � τ ′

β(t), for τ ′ < t < τ ′′

0, for t � τ ′′

where

β(t) =

∫ τ ′′

t
α(t)1/(1−n) dt

∫ τ ′′

τ ′ α(t)1/(1−n) dt
.

Hence

min
ϕ

I(ϕ) =

(∫ τ ′′

τ ′′
α(t)1/(1−n) dt

)1−n

and we get

(30) cn
1

∫

Bh(τ ′)
|∇u∗|n � Mn(τ ′′)(λ(τ ′′)− λ(τ ′))1−n

where

λ(t) =
∫ t

h+1
dτ

(∫

Σh(τ)
|∇h|n−1H(dsX )

)1/(1−n)

.

We now assume that the minimal multiplicity of the mapping f : X → Y satisfies

Nf (t) � nf � 1 for all t > h where nf is a constant. Integrating (22) we get for
τ ′′ > τ ′ > h+ 1

λ(τ ′′)− λ(τ ′) � K

n
1/(n−1)
f

(
Φ

(
1
K

J(τ ′′)

)
− Φ

(
1
K

J(τ ′)

))
,

603



where

Φ(t) =
∫ t

1
θ(τ)n/(1−n) dτ.

Next we note that it follows from (30) that (y = f(x))

J(t) =
∫

Bh(t)
|∇yu(f(x))|n|f ′(x)|nN(f(x), t)−1 dvX

� 1
nf

∫

Bh(t)
|∇yu(f(x))|n|f ′(x)|n dvX

� 1
nf

∫

Bh(t)
|∇u∗|n dvX

� 1
cn
1nf

Mn(τ ′′)(λ(τ ′′)− λ(τ ′))1−n.

Under the assumption that both integrals (23) and (24) diverge, we arrive at the

main statement of this section.

5.1. Theorem. Let f : X → Y be a quasiregular mapping, f(∂X ) ⊂ ∂Y , and

let the multiplicity Nf(t) � nf for all t > h. Then either M(t) grows so quickly that

(31)
n
1/(n−1)
f

K(f)
� lim inf

t′,t′′→∞
1

λ(t′)
Φ

(
c2M

n(t′′)
(λ(t′′)− λ(t′))n−1

)

or f(x) ≡ const. Here

c2 = c−n
1 n−1f K(f)−1 = nnK2n−1(f)n−1f

(ν2
ν1

)n

.

In the case when the exhaustion function h : X → (0,∞) is a special exhaustion
function, the quantity λ(t) has an estimate (27) in terms of the flux I of the vector
field A(m,∇h) through h-spheres. Here using (28), we can write

(
I

ν1

)1/(1−n)

(t− h− 1) � λ(t), ∀t′′ > t′ � h+ 1,

and for all t′′ > t′ we have

(
I

ν1

)1/(1−n)

(t′′ − t′) � λ(t′′)− λ(t′).

So the relation (31) may be essentially simplified.
Namely, setting t′′ = t′ + 1, we obtain
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5.2. Corollary. If in the conditions of Theorem 5.1 the exhaustion function
h : X → (0,∞) is special, then either f(x) ≡ const, or

(32)

(
Inf

ν1

)1/(n−1)
K(f)−1 � lim inf

t→∞
1
t
Φ(c3Mn(t)),

where c3 = c2ν
−1
1 I.

Suppose that the manifold Y satisfies the assumptions of Theorem 5.1. Fix inte-

gers 1 � k � n � p and consider a domain D ⊂ �
n of the form (9) for k < n, or

of the form (11) for k = n. Let B be a (p − n)-dimensional compact Riemannian

manifold with or without boundary. The function h∗, defined by relation (13), where
h is given respectively by the equalities (10) or (12), is a special exhaustion function

of the manifold X = D ×B.
Under these assumptions, using (32), we have

5.3. Corollary. Let f(x, b) : X → Y be a quasiregular mapping, f(∂X ) ⊂ ∂Y ,

and let the multiplicity Nf (t) � nf for all t > h. Then either f(x) ≡ const, or M(t)

grows so quickly that for k < n and Mk(t) = max
dk(x)=t

u∗(x, b) we have

(33)

(
Inf

ν1

)1/(n−1)
K(f)−1

n− 1
n− k

� lim inf
t→∞

t(k−n)/(n−1)Φ(c3Mn
k (t));

for k = n and Mn(t) = max|x|=t
u∗(x, b) we have

(34)

(
Inf

ν1

)1/(n−1)
K(f)−1 � lim inf

t→∞
1
log t
Φ(c3Mn

n (t)).

To prove the relation (33) it is sufficient to note that if a point (x, b) ∈ Σh(t), then

dk(x) =
n− k

n− 1 t
(n−1)/(n−k).

So setting n−k
n−1 t

(n−1)/(n−k) = τ , we have

lim inf
t→∞

1
t
Φ(c3M

n(t+ 1)) = lim inf
τ→∞

n− k

n− 1 τ
(k−n)/(n−1)Φ(c3M

n
k (τ)).

Sufficiency follows from (32).
In the case (34), denoting log τ

r1
= t, we find

lim inf
t→∞

1
t
Φ(c3Mn(t+ 1)) = lim inf

τ→∞
1
log τ

Φ(c3Mn
n (τ)).
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We note a special case of this theorem when X is an unbounded domain in �n

and the growth domain Y ⊂ �
n is the half-space y1 � 1, u(y) = y1. Using the

notation of Example 4.5 we now have

θ(t) =

(
ωn−1
2

)1/n

n(n−1)/nt(n−1)/n, Φ(t) =
1
n

(
2

ωn−1

)1/(n−1)
log t.

Let

h(x) =

( p∑

i=1

x2i

)1/2
, 1 � p � n, M(t) = max f1(x), x ∈ Σh(t).

Note that |∇h(x)| ≡ 1. Then

λ(t) =
∫ t

h+1
|Σh(τ)|1/(1−n) dτ, |Σh(τ)| = mes

n−1
Σh(τ).

In the case when X is a cone in �n with its vertex at x = 0, choosing p = n,
τ ′′ = 2τ ′, we arrive at

5.4. Corollary. If f = (f1, . . . , fn) : X → �
n is a quasiregular mapping with

a multiplicity Nf (t) � nf for all t > h and f1(x)
∣∣
∂X

� 1 then either f1(x) � 1
everywhere in X or

(35) lim inf
t→∞

logM(t)
log t

�
(

ωn−1
2

)1/(n−1) n
1/(n−1)
f

K(f)|Σh(1)|1/(n−1)

If X is a half-cylinder ∆×�1+ in �n where ∆ is a bounded domain in the hyper-
plane x1 = 0, setting p = 1, τ ′′ = τ ′ + 1 we get

5.5. Corollary. If f = (f1, . . . , fn) : X → �n is a quasiregular mapping with a

multiplicity Nf (t) � nf for all t > h and f1(x)
∣∣
∂X

� 1, then either f1(x) � 1 in X

or

(36) lim inf
t→∞

logM(t)
t

�
(

ωn−1
2

)1/(n−1) n
1/(n−1)
f

K(f)|∆|1/(n−1) .

5.6. Remark. In the case of holomorphic functions, KO = 1 and the rela-

tions (35), (36) are sharp. Observe that the minimal multiplicity contributes to
the growth of the quantity M(t). The least growth of M(t) is attained for univa-

lent functions f : X → �2 mapping the domain X conformally onto the half-plane
y1 > 1.
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It is a very interesting question to study equality in (35) and (36) for quasiregular

maps f : X → �
n , n > 2. Does there exist a general principle to the effect that the

least growth in the Phragmén-Lindelöf alternative for quasiregular maps is attained
by univalent mappings? In general, does the following assertion hold?

Problem. Let X ⊂ �n be a simply connected domain, let u(y) be a growth

function in Y and let fi : X → Y , fi(∂X ) ⊂ ∂Y , i = 1, 2, be a quasiregular map
with equal inner and outer dilatation. Then if f1 is univalent and f2 is not univalent,

we have

lim inf
x→∞

u(f2(x))
u(f1(x))

> 1.
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