
Czechoslovak Mathematical Journal

Ján Jakubík
Distinguished completion of a direct product of lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 3, 661–671

Persistent URL: http://dml.cz/dmlcz/127676

Terms of use:
© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127676
http://dml.cz


Czechoslovak Mathematical Journal, 51 (126) (2001), 661–671

DISTINGUISHED COMPLETION OF A DIRECT PRODUCT

OF LATTICE ORDERED GROUPS

Ján Jakubík, Košice
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Abstract. The distinguished completion E(G) of a lattice ordered group G was inves-
tigated by Ball [1], [2], [3]. An analogous notion for MV -algebras was dealt with by the
author [7].
In the present paper we prove that if a lattice ordered group G is a direct product of

lattice ordered groups Gi (i ∈ I), then E(G) is a direct product of the lattice ordered
groups E(Gi).
From this we obtain a generalization of a result of Ball [3].
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1. Preliminaries

For lattice ordered groups we apply the notation as in Conrad [4]. We recall the
following basic definitions (cf. [3]).

1.1. Definition. Let G and H be lattice ordered groups such that H is an
extension of G. Suppose that

(i) G is a dense �-subgroup of H ;

(ii) if h1, h2 ∈ H and h1 < h2, then there are g1, g2 ∈ G such that g1 < g2 and the
interval [g1, g2] of H is projective to a subinterval of [h1, h2] in H .

Under these conditions H is said to be a distinguished extension of G.
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1.2. Definition. A lattice ordered group G is called distinguished if it has no
proper distinguished extension.

1.3. Definition. Let G and H be lattice ordered groups such that
(i) H is a distinguished extension of G;

(ii) the lattice ordered group H is distinguished.

Then H is said to be a distinguished completion of G.

In [3] it was proved that each lattice ordered group G possesses a distinguished
completion which is determined uniquely up to isomorphisms leaving all elements

of G fixed.

2. The lattice ordered group E(G)

We recall some notation and results from [3] which we shall apply below.

First, let G be a distributive lattice and let IntG be the set of all intervals in G.
For [a, b] and [c, d] in IntG we write

[a, b] ∼ [c, d]

if the intervals [a, b] and [c, d] are projective. Further, we put

[a, b] � [c, d]

if [a, b] is projective to a subinterval of [c, d]. We denote

〈a, b〉 = {[a1, b1] ∈ IntG : [a1, b1] ∼ [a, b]},
S(G) = {〈a, b〉 : [a, b] ∈ IntG}.

We also set 〈a, b〉 � 〈c, d〉 if [a, b] � [c, d]. Then � is a correctly defined relation
of partial order on S(G) and with respect to this relation, S(G) turns out to be a

meet-semilattice with the least element 〈g, g〉, where g is an arbitrary element of G.
We denote 〈g, g〉 = 0. We put

〈a, b〉⊥ = {〈c, d〉 ∈ S(G) : 〈a, b〉 ∧ 〈c, d〉 = 0}.

For X ⊆ S(G) we denote

X⊥ =
⋂
{〈c, d〉⊥ : 〈c, d〉 ∈ X}.
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Let B(G) be the system

{∅ �= X ⊆ S(G) : X = X⊥⊥};

this system is partially ordered by the set-theoretical inclusion. Then B(G) is a
Boolean algebra such that

∧

i∈I

Xi =
⋂

i∈I

Xi,

∨

i∈I

Xi =

(⋃

i∈I

Xi

)⊥⊥
.

Further, for X ∈ B(G), X⊥ is the complement of X in B(G).
For each g ∈ G we put

ϕ(g) = {〈a, b〉 ∈ S(G) : g ∨ a = g ∨ b}.

Then ϕ is an isomorphism of the lattice G into B(G). If g and ϕ(g) are identified,
then G can be viewed as a sublattice of B(G).

Now suppose that G is a lattice ordered group; we use the notation as above. Let
g ∈ G, 〈a, b〉 ∈ S(G) and X ⊆ S(G). We put

〈a, b〉+ g = 〈a+ g, b+ g〉 ,
X + g = {〈a, b〉+ g : 〈a, b〉 ∈ X};

the meanings of g + 〈a, b〉 and g +X are analogous. Further, we set

X ′ = {u+ 〈a, b〉+ v : 〈a, b〉 ∈ X and u, v ∈ G−}⊥⊥.

2.1. Definition. We denote by E(G) the system of all ∅ �= X ⊆ S(G) such that

(i) X ′ = X ;
(ii) for each g ∈ G with g > 0, g +X �= X �= X + g.
This system is partially ordered by the set-theoretical inclusion.

2.2. Definition. For 〈a, b〉 and 〈c, d〉 in S(G) we put

〈a, b〉+ 〈c, d〉 = 〈(a+ d) ∨ (b+ c), b+ d〉 .

Further, for X1 and X2 in E(G) we set

X1 +X2 = {〈s1, t1〉+ 〈s2, t2〉 : 〈si, ti〉 ∈ Xi (i = 1, 2)}.

2.3. Theorem (cf. [3]). E(G) is a lattice ordered group. Moreover, it is a distin-
guished completion of G.
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3. Direct product decompositions (finite case)

Let I be a nonempty set and for each i ∈ I let Gi be a lattice ordered group. The
direct product ∏

i∈I

Gi

is defined in the usual way. If G =
∏
i∈I

Gi and g ∈ G, then the component of G in Gi

will be denoted by gi.

Let i(0) ∈ I and x ∈ Gi(0). Then the element x is identified with the element

g ∈ G such that

gi =

{
x for i = i(0),

0 for i �= i(0).

This means that all direct product decompositions we are dealing with are internal

(in the sense of [5]). Hence under this convention, each Gi is an �-subgroup of G.

In the present section we deal with the case when the set I is finite, i.e.,

G = G1 ×G2 × . . .×Gn.

We start with the assumption that

(1) G = A×B.

For g ∈ G we denote by gA or gB the component of g in A or in B, respectively.

The following lemma is a consequence of the fact that the lattice G is distributive;

we omit the proof.

3.1. Lemma. Let [a, b] and [c, d] be intervals in G. Put

u1 = a ∧ c, v1 = b ∧ d, u2 = a ∨ c, v2 = b ∨ d.

Then the following conditions are equivalent:

(i) [a, b] and [c, d] are projective.

(ii) The relations

a ∧ v1 = u1 = c ∧ v1, a ∨ v1 = b, c ∨ v1 = d,
b ∧ u2 = a, d ∧ u2 = c, b ∨ u2 = v2 = d ∨ u2

are valid.
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Since the lattice operations in a direct product are performed componentwise,

from 3.1 we conclude

3.2. Lemma. Let [a, b] and [c, d] be intervals in G. Then the following conditions
are equivalent:

(i) [a, b] ∼ [c, d].
(ii) [aA, bA] ∼ [cA, dA] and [aB , bB] ∼ [cB, dB].

Let S(G) be as above; also, let the relation � in S(G) be as in Section 2. The
symbols S(A) and S(B) are defined analogously.
For each 〈a, b〉 ∈ S(G) we put

ϕ1(〈a, b〉) = (〈aA, bA〉 , 〈aB, bB〉).

3.3. Lemma. ϕ1 is an isomorphism of the partially ordered set S(G) onto S(A)×
S(B).

�����. This is a consequence of the relation (1) and of 3.2. �

For each nonempty subset X of S(G) we put

ϕ2(X) = (X
A, XB),

where

XA = {〈aA, bA〉 : 〈a, b〉 ∈ X},
XB = {〈aB, bB〉 : 〈a, b〉 ∈ X}.

Then for each g ∈ G we have

(2) ϕ2(g +X) = (gA +XA, gB +XB),

and similarly for ϕ2(X + g).

Further, from 3.3 we obtain by a simple calculation that the implication

(3) ϕ2(X1) = ϕ2(X2)⇒ X1 = X2

is valid.

3.4. Lemma. Let ∅ �= X ⊆ S(G). Then

ϕ2(X⊥) = ((XA)⊥, (XB)⊥).

�����. This follows from 3.2 and 3.3. �
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Since the group operation in G is performed componentwise, from 3.4 we obtain

3.5. Lemma. Let ∅ �= X ⊆ S(G). Then the following conditions are equivalent:
(i) X ′ = X .

(ii) (XA)′ = XA and (XB)′ = XB.

In fact, the first equation in (ii) is taken with respect to the lattice ordered groupA,
and similarly, the second with respect to B.

3.6. Lemma. Let X be as in 3.5. Then the following conditions are equivalent:
(i) For each g ∈ G with 0 < g we have g +X �= X �= X + g.
(ii) If 0 < a ∈ A and 0 < b ∈ B, then

a+XA �= XA �= XA + a, b+XB �= XB �= XB + b.

�����. Suppose that (i) holds. Let a ∈ A, a > 0. In view of the above
convention we have a ∈ G and aA = a, aB = 0. Thus in view of (2)

ϕ2(a+X) = (a+XA, XB).

According to (i), a+X �= X . If a+XA = XA, then we would have

ϕ2(a+X) = ϕ2(X),

whence in view of (3), a + X = X , which is a contradiction. Thus a + X �= X .

Similarly we obtain the other relations from (ii).
Conversely, suppose that (ii) is valid. Let 0 < g ∈ G. Then gA � 0, gB � 0 and

either gA > 0 or gB > 0. E.g., let gA > 0. Hence gA +XA �= XA. Thus (2) holds.
If g +X = X , then ϕ2(g + X) = (XA, XB), whence gA + xA = XA, which is a

contradiction. Therefore g +X �= X . Analogously we obtain X + g �= X . �

From 3.5 and 3.6 we conclude

3.7. Lemma. Let ∅ �= X ⊆ S(G).

(i) If X ∈ E(G), then XA ∈ E(A) and XB ∈ E(B).
(ii) If XA ∈ E(A) and XB ∈ E(B), then X ∈ E(G).

From 3.3 we infer that for each P ⊆ S(A) and each Q ⊆ S(B) there exists a
uniquely determined X ⊆ S(G) such that

ϕ2(X) = (P,Q).
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Thus if we restrict ourselves, by the application of ϕ2, to elements of E(G) only, then

from 3.7 we obtain

3.8. Lemma. ϕ2 is a one-to-one mapping of the set E(G) onto E(A)× E(B).

In view of 2.2 we have an operation + on S(G), and similarly on S(A) and on S(B).
From this definition and from 3.3 we obtain that ϕ2 is an isomorphism with respect

to the operation + (where ϕ2 is taken as in 3.8).
Finally, 3.3 and 3.8 yield also that ϕ2 is an isomorphism of the partially ordered

set E(G) onto E(A)× E(B).
Summarizing, we have

3.9. Lemma. Let (1) be valid. Then the lattice ordered group E(G) is isomorphic
to the direct product E(A) × E(B).

By the obvious induction we obtain

3.10. Proposition. Let G be a lattice ordered group which is isomorphic to the
direct product G1 ×G2 × . . .×Gn. Then E(G) is isomorphic to the direct product
E(G1)× E(G2)× . . .× E(Gn).

Hence, up to isomorphisms, we can write

E(G) = E(G1)× E(G2)× ...× E(Gn).

4. Direct product decompositions (infinite case)

Now let us suppose that we have a direct product decomposition

(1) G =
∏

i∈I

Gi,

where the set I can be infinite. Then for each fixed i(0) ∈ I there exists a direct
product decomposition

G = Gi(0) ×G′
i(0),

where

G′
i(0) =

∏
Gi (i ∈ I \ {i(0)}.

Thus in view of 3.10 we can write

(2) E(G) = E(Gi(0))× E(G′
i(0)).
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In fact, the relation (2) is meant in the sense that E(G) has a direct product

decomposition of the form E(G) = H1 × H2, where H1 is isomorphic to E(Gi(0))
and H2 is isomorphic to E(G′

i(0)). We prefer the simpler formulation from (2), and
analogously at similar places below. Cf. also the convention introduced in Section 3.

Moreover, if i(1) and i(2) are distinct elements of I, then there exists a direct
product decomposition

G = Gi(1) ×Gi(2) × C,

where
C =

∏
Gi (i ∈ I \ {i(1), i(2)}.

Hence
E(G) = E(Gi(1))× E(Gi(2))× E(C).

This yields that the relation

(3) E(Gi(1)) ∩ E(Gi(2)) = {0}

is valid whenever i(1) and i(2) are distinct elements of I.

We apply the following result which is a consequence of the facts expressed in the
diagram on p. 143 of [2].

4.1. Proposition (cf. [2]). For each lattice ordered group G, E(G) is laterally
complete.

4.2. Lemma.
⋂
i∈I

E(G′
i) = {0}.

�����. By way of contradiction suppose that

⋂

i∈I

E(G′
i) = G

0 �= {0}.

Then there exists 0 < g0 ∈ G0. Each E(G′
i) is a convex �-subgroup of E(G), whence

G0 is a convex �-subgroup of E(G) as well. Further, G is a dense �-subgroup of

E(G), thus there is 0 < g ∈ G with g � g0. We obtain g ∈ G0, hence g ∈ G′
i for each

i ∈ I. This yields that gi = 0 for each i ∈ I. But then, in view of (1), we get g = 0,
which is a contradiction. �

4.3. Lemma. Let H be a laterally complete lattice ordered group. Let I be a
nonempty set and for each i ∈ I let

H = Hi ×H ′
i

668



where

a) Hi(1) ∩Hi(2) = {0} whenever i(1) and i(2) are distinct elements of I;
b)

⋂
i∈I

H ′
i = {0}.

Then H =
∏
i∈I

Hi.

�����. Put
∏
i∈I

Hi = H∗. Consider the mapping ψ : H → H∗ such that ψ(h) =

(. . . , hi, . . .)i∈I , where hi is the component of h in Hi. Then ψ is a homomorphism
of H into H∗. Let h ∈ H be such that ψ(h) = 0. Then hi = 0 for each i ∈ I, whence

h ∈
⋂

i∈I

H ′
i,

and thus, according to b), h = 0. Therefore ψ is an isomorphism of H into H∗.

Let 0 � h∗ ∈ H∗ and let h∗i denote the component of h
∗ in Hi. If i(1) and i(2)

are distinct elements of I, then in view of a) we have

h∗i(1) ∧ h∗i(2) = 0.

Thus (hi)∗i∈I is an orthogonal indexed system of elements of H . Since H is laterally
complete, there exists h ∈ H with

h =
∨

i∈I

h∗i .

For each i ∈ I there is also h′ ∈ H with

h′ =
∨
h∗j (j ∈ I \ {i}).

Thus we have

h = h∗i ∨ h′.

If 0 � x ∈ Hi and j ∈ I \ {i}, then x ∧ h∗j = 0 and hence (in view of the infinite
distributivity of H) x ∧ h′ = 0; therefore h′i = 0. Clearly (h∗i )i = h∗i , thus

hi = (h∗i )i ∨ h′i = h∗i .

Hence h = h∗ and therefore (H∗)+ ⊆ ψ(H). This obviously implies that H∗ ⊆ ψ(H).
Then ψ(H) = H∗, which completes the proof. �
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4.4. Proposition. Let (1) be valid. Then

E(G) =
∏

i∈I

E(Gi).

�����. This is a consequence of 4.1, 4.2 and 4.3. (Again, the above equality is

meant in the sense of an isomorphism.) �

For a lattice ordered group G let G∧ be the Dedekind completion of G. If G is

linearly ordered, then G∧ is linearly ordered as well.

4.5. Proposition (cf. Ball [3], 4.4). Let G be a linearly ordered group. Then
E(G) = G∧.

The following result extends Proposition 4.5.

4.6. Proposition. Let (1) be valid. Suppose that each Gi is a linearly ordered

group. Then

E(G) =
∏

i∈I

Gi
∧.

�����. In view of 4.5, for each i ∈ I we have E(G1) = Gi
∧. Now it suffices to

apply 4.4. �

The following result was proved in [5] under the assumption that G is abelian, but

the proof remains valid also without this assumption.

4.7. Proposition (cf. [5], Theorem 2.7). Let (1) be valid. Then

G∧ =
∏

i∈I

Gi
∧.

4.8. Proposition. Let (1) be valid. Suppose that all Gi are linearly ordered.

Then E(G) = G∧.

�����. This is a consequence of 4.6 and 4.7. �

4.9. Proposition. Let H be a distinguished lattice ordered group. Suppose that

(4) H =
∏

i∈I

Hi.

Then all Hi are distinguished.

670



�����. In view of 4.4 we have

(5) H =
∏

i∈I

E(Hi),

since E(H) = H . If i(1) and i(2) are distinct elements of I, then from (5) we infer

E(Hi(1)) ∩ E(Hi(2)) = {0}.

Because E(Hi(1)) is a direct factor of H , the relation (4) yields

(6) E(Hi(1)) =
∏

i∈I

(Hi ∩ E(Hi(1)).

If i �= i(1), then Hi ∩ E(Hi(1)) = {0}, whence in view of (6)

E(Hi(1)) = Hi(1) ∩ E(Hi(1)) = Hi(1).

Therefore Hi(1) is distinguished. �
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