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Dedicated to Ivo Vrkoč on the occasion of his 70th birthday

Abstract. Using unitary dilations we give a very simple proof of the maximal inequality
for a stochastic convolution ∫ t

0
S(t− s)ψ(s) dW (s)

driven by a Wiener process W in a Hilbert space in the case when the semigroup S(t) is of
contraction type.
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ity
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Stochastic convolution integrals and estimates thereof play an important rôle in

the theory of stochastic partial differential equations. We have found it interesting

that one of the basic maximal inequalities, due to L. Tubaro, may be given a very

easy proof, as we will show in this paper.

Let H and Υ0 be real separable Hilbert spaces and (eAt) a C0-semigroup on H .

Let (Ω,F , (Ft),P) be a stochastic basis carrying a Q-Wiener process W in Υ0, with

Q ∈ L (Υ0) a self-adjoint and non-negative operator (not necessarily nuclear). Set

Υ = RngQ1/2 and endow Υ with the norm ‖x‖Υ = ‖Q−1/2x‖Υ0 , Q
−1/2 being the

pseudoinverse. Let us denote, for any Hilbert spaces V and Z, by L (V, Z) and
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J2(V, Z) the spaces of all bounded and all Hilbert-Schmidt operators from V to Z,

respectively, equipped with their standard norms. We shall use Mp to denote the

space of all progressively measurable processes ψ : [0, T ]×Ω −→ J2(Υ,H) such that

E

∫ T

0
‖ψ(s)‖p

J2(Υ,H) ds <∞

(with an obvious modification if p = ∞). For any ψ ∈ M2 we may define the

stochastic convolution integral

WA(t) =
∫ t

0
eA(t−s)ψ(s) dW (s), t ∈ [0, T ].

The properties of the process WA are crucial when regularity of mild solutions to

stochastic evolution equations is studied, see the treatise [6] for a systematic account

of the theory of mild solutions to infinite-dimensional stochastic equations. Unfor-

tunately, the process WA is not a martingale, and standard tools of the martingale

theory, yielding e.g. continuity of trajectories or Lp-estimates like the Burkholder-

Davis-Gundy inequality, are not available. The first maximal inequality for the

process WA (and, consequently, a proof of continuity of paths) is due to P. Kote-

lenez ([10], [11]) who proved that

E sup
0�t�T

∥∥∥∥
∫ t

0
eA(t−s)ψ(s) dW (s)

∥∥∥∥
2

� L2E

∫ T

0
‖ψ(s)‖2J2(Υ,H) ds

holds for a constant L2 < ∞ and every ψ ∈ M2, provided the semigroup (eAt)

is contractive, that is,
∥∥eAt

∥∥
L (H)

� 1 for all t � 0. The proofs in [10], [11] are
rather complicated. Much simpler approach to maximal inequalities, based on the

factorization method proposed by G. Da Prato, S. Kwapień and J. Zabczyk in [4],

appeared in [5] (cf. also [6], § 7.1). It was shown there that for each p > 2 a constant

Lp <∞ may be found (which depends on p, T and on sup
t∈[0,T ]

‖eAt‖L (H)) such that

(1) E sup
0�t�T

∥∥∥∥
∫ t

0
eA(t−s)ψ(s) dW (s)

∥∥∥∥
p

� LpE

∫ T

0
‖ψ(s)‖p

J2(Υ,H) ds

for every ψ ∈ Mp. The factorization method requires no contractivity assumptions

on the semigroup and may be modified to yield, under suitable hypotheses, also

estimates ofWA in norms of interpolation spaces betweenH and Dom(A) (see e.g. [8],
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[12] or [6], § 5.4), to cover the case when ψ /∈ M2 but the semigroup (eAt) is Hilbert-

Schmidt ([6]) or the case of Banach space valued stochastic integrals ([1]). On the

other hand, the factorization method does not work for p = 2 and the estimate (1)

is not necessarily sharp. In fact, it was proved by L. Tubaro in [17] that if (eAt) is

contractive and p ∈ [2,∞[ then

(2) E sup
0�t�T

∥∥∥∥
∫ t

0
eA(t−s)ψ(s) dW (s)

∥∥∥∥
p

� CpE

(∫ T

0
‖ψ(s)‖2J2(Υ,H) ds

)p
2

for all ψ ∈ M2, the constant Cp depending only on p. Later, A. Ichikawa [9] extended

the estimate (2) also to p ∈ ]0, 2[. Let us recall in this connection the relevant part
of the Burkholder-Davis-Gundy inequality: for any p ∈ ]0,∞[ there exists a constant
Cp <∞ such that

(3) E sup
0�t�T

∥∥∥∥
∫ t

0
ϕ(s) dW (s)

∥∥∥∥
p

� CpE

(∫ T

0
‖ϕ(s)‖2J2(Υ,H) ds

)p
2

for all ϕ ∈ M2. Note that the right hand sides in (2) and (3) are of the same

type, moreover, the constants Cp may be taken the same. The proof in [17] is

based on a lucid basic idea of applying the Itô formula to the function ‖·‖p and to a

suitable smooth approximation of the process ψ, but it cannot be called completely

elementary. (A closely related procedure was used recently in [2] to get an analogue

to (2) for Banach space valued stochastic convolutions.)

On the other hand, it has been noted already in [3] that the properties of WA are

rather obvious if (eAt) is a group, since then

WA(t) = eAt

∫ t

0
e−Asψ(s) dW (s) ≡ eAtMt,

where M is a martingale. It is the purpose of this paper to show that an almost

trivial proof of (2) follows from this observation if one takes into account that every

semigroup of contractions on H is a projection of a unitary strongly continuous

group on a superspace of H by Sz.-Nagy’s theorem on unitary dilations ([14], [15],

see e.g. [7], § 7.2, or [16], Theorem I.8.1, for more recent expositions). More precisely:

suppose that (eAt) is a semigroup of contractions on H , then there exist a Hilbert

space H and a unitary C0-group (Ut)t∈� on H such that H embeds isometrically

into H and PUt = eAt on H for all t � 0, P being the orthogonal projection from H
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onto H . Therefore, taking p ∈ ]0,∞[ and ψ ∈ M2 we get

E sup
0�t�T

∥∥∥∥
∫ t

0
eA(t−s)ψ(s) dW (s)

∥∥∥∥
p

H

= E sup
0�t�T

∥∥∥∥
∫ t

0
PUt−sψ(s) dW (s)

∥∥∥∥
p

H

= E sup
0�t�T

∥∥∥∥PUt

∫ t

0
U−sψ(s) dW (s)

∥∥∥∥
p

H

� ‖P‖L (H)E sup
0�t�T

‖Ut‖L (H)

∥∥∥∥
∫ t

0
U−sψ(s) dW (s)

∥∥∥∥
p

H

� E sup
0�t�T

∥∥∥∥
∫ t

0
U−sψ(s) dW (s)

∥∥∥∥
p

H

� CpE

(∫ T

0
‖U−sψ(s)‖2J2(Υ,H) ds

)p
2

� CpE

(∫ T

0
‖U−s‖2L (H)‖ψ(s)‖2J2(Υ,H) ds

)p
2

� CpE

(∫ T

0
‖ψ(s)‖2J2(Υ,H) ds

)p
2

= CpE

(∫ T

0
‖ψ(s)‖2J2(Υ,H) ds

)p
2

,

where we have used (3) and the fact that J2(Υ,H)- and J2(Υ,H)-norms of ψ

coincide, as ψ is L (Υ,H)-valued.

The case of a generalized contraction semigroup satisfying ‖eAt‖L (H) � eµt for

some µ � 0 and all t � 0 may be reduced easily to the case considered above by
passing to the contraction semigroup

(
e−µteAt

)
t�0, as was done also in the quoted

papers.

The very simple argument we have just presented yields the Tubaro theorem:

Theorem. Suppose that (eAt) is a C0-semigroup on H satisfying ‖eAt‖L (H) �
eµt for some µ � 0 and all t � 0. Then for every p ∈ ]0,∞[ there exists a constant
Cp <∞ such that

(4) E sup
0�t�T

∥∥∥∥
∫ t

0
eA(t−s)ψ(s) dW (s)

∥∥∥∥
p

� Cpe
µpT E

(∫ T

0
‖ψ(s)‖2J2(Υ,H) ds

)p
2

for all ψ ∈ M2.
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Remark 1. Obviously, the proof yields also that WA has a modification with

continuous trajectories in H , for the martingale

∫ t

0
U−sψ(s) dW (s), 0 � t � T,

has a modification with paths continuous in H and the mapping � −→ L (H, H),

t �−→ PUt is strongly continuous. Further, by a standard localization proce-

dure Theorem may be extended to progressively measurable processes ψ such that

‖ψ‖J2(Υ,H) ∈ L2([0, T ]) P-almost surely.

Remark 2. The constant Cp in (4) is the same as in the Burkholder-Davis-Gundy

inequality (3), in particular, Cp may be defined by

Cp =

(
4p
p− 1

)p(
p+
1
2

)p
2

for p � 2. Hence C1/p
p = O(p1/2), p→ +∞, and the Zygmund extrapolation theorem

implies that

E exp
(
λ sup
0�t�T

‖WA(t)‖2
)

� K

for some constants K < ∞, λ > 0 and all ψ ∈ M∞ with ess sup ‖ψ‖J2(Υ,H) � 1,
see [13] for details.

Remark 3. In [10], [11] and [9], stochastic convolution integrals driven by general
martingales were studied; the proof based on unitary dilations may be extended to

such integrals. This topic will be treated in a separate paper.
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