Ke Yun Qin; Yang Xu; Young Bae Jun
Ultra LI-ideals in lattice implication algebras

Czechoslovak Mathematical Journal, Vol. 52 (2002), No. 3, 463–468

Persistent URL: http://dml.cz/dmlcz/127735

Terms of use:

© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ULTRA \textit{LI}-IDEALS IN LATTICE IMPLICATION ALGEBRAS

KEYUN QIN, YANG Xu, Sichuan, and YOUNG BAE JUN, Chinju

(Received April 24, 1999)

Abstract. We define an ultra \textit{LI}-ideal of a lattice implication algebra and give equivalent conditions for an \textit{LI}-ideal to be ultra. We show that every subset of a lattice implication algebra which has the finite additive property can be extended to an ultra \textit{LI}-ideal.

Keywords: lattice implication algebra, (ultra) \textit{LI}-ideal, finite additive property

MSC 2000: 03G10, 06B10, 54E15

INTRODUCTION

In order to research a logical system whose propositional value is given in a lattice, Y. Xu [5] proposed the concept of lattice implication algebras, and discussed some of their properties. Also, in [4], Y. Xu discussed the homomorphisms between lattice implication algebras. Y. Xu and K.Y. Qin [6] introduced the notion of filters in a lattice implication algebra, and investigated their properties. In [1], Y.B. Jun et al. proposed the concept of an \textit{LI}-ideal of a lattice implication algebra and discussed the relationship between filters and \textit{LI}-ideals, and studied how to generate an \textit{LI}-ideal by a set. This paper is devoted to the discussion of ultra \textit{LI}-ideals of lattice implication algebras. We give equivalent conditions for an \textit{LI}-ideal to be ultra. We show that every subset of a lattice implication algebra which has the finite additive property can be extended to an ultra \textit{LI}-ideal.
Preliminaries

By a lattice implication algebra we mean a bounded lattice \((L, \lor, \land, 0, 1)\) with order-reversing involution \(\neg\) and a binary operation \(\rightarrow\) satisfying the following axioms:

\begin{align*}
(I1) & \quad x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z), \\
(I2) & \quad x \rightarrow x = 1, \\
(I3) & \quad x \rightarrow y = y' \rightarrow x', \\
(I4) & \quad x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y, \\
(I5) & \quad (x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x, \\
(L1) & \quad (x \lor y) \rightarrow z = (x \rightarrow z) \land (y \rightarrow z), \\
(L2) & \quad (x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z)
\end{align*}

for all \(x, y, z \in L\).

In the sequel the binary operation \(\rightarrow\) will be denoted by juxtaposition. We can define a partial ordering \(\leq\) on a lattice implication algebra \(L\) by \(x \leq y\) if and only if \(xy = 1\).

In a lattice implication algebra \(L\), the following relations hold (see [5]):

\begin{align*}
(1) & \quad 0x = 1, \quad 1x = x \quad \text{and} \quad x1 = 1, \\
(2) & \quad x' = x0, \\
(3) & \quad xy \leq (yz)(xz), \\
(4) & \quad x \lor y = (xy)y, \\
(5) & \quad x \leq y \quad \text{implies} \quad yz \leq xz \quad \text{and} \quad zx \leq zy.
\end{align*}

In a lattice implication algebra \(L\), if we denote \((xy)'\) by \(x \times y\) and \(x' y\) by \(x + y\), then the following relations are easily proved:

\begin{align*}
(6) & \quad x + y = y + x, \\
(7) & \quad (x + y) + z = x + (y + z), \\
(8) & \quad x + y \geq x \lor y, \\
(9) & \quad x \times y = y \times x, \\
(10) & \quad (x \times y) \times z = x \times (y \times z), \\
(11) & \quad x \times y \leq x \land y.
\end{align*}

A subset \(A\) of a lattice implication algebra \(L\) is called an LI-ideal of \(L\) (see [1]) if it satisfies

\begin{align*}
(LI1) & \quad 0 \in A, \\
(LI2) & \quad (xy)' \in A \quad \text{and} \quad y \in A \quad \text{imply} \quad x \in A \quad \text{for all} \quad x, y \in L.
\end{align*}

An LI-ideal \(A\) of a lattice implication algebra \(L\) is said to be proper if \(A \neq L\).

Theorem 2.1. ([1, Theorem 2.2]) Let \(A\) be an LI-ideal of a lattice implication algebra \(L\) and let \(x \in A\). If \(y \leq x\), then \(y \in A\) for all \(y \in L\).

Let \(A\) be a subset of a lattice implication algebra \(L\). Then the least LI-ideal containing \(A\) is called the LI-ideal generated by \(A\), denoted by \(\langle A \rangle\).
The next statement gives a description of the elements of $\langle A \rangle$.

Theorem 2.2. ([1, Theorem 2.9]) If A is a non-empty subset of a lattice implication algebra L, then

$$\langle A \rangle = \{ x \in L \mid a'_n(...)a'_1x'(...) = 1 \text{ for some } a_1, ..., a_n \in A \}.$$

Ultra LI-ideals

We start by providing a characterization of LI-ideals.

Proposition 3.1. Let A be a subset of a lattice implication algebra L. Then A is an LI-ideal of L if and only if the following implications hold:

- (i) $x \in A$ and $y \leq x$ imply $y \in A$,
- (ii) $x \in A$ and $y \in A$ imply $x + y \in A$.

Proof. If A is an LI-ideal of L, then (i) holds by Theorem 2.1. Let $x, y \in A$. Then

$$((x + y)y)' = ((x'y)y)' = (x' \lor y)' = x \land y' \leq x.$$

It follows from Theorem 2.1 that $((x + y)y)' \in A$ and hence $x + y \in A$ by (LI2). Conversely, let A be a subset of L satisfying the conditions (i) and (ii). Since $0 \leq x$ for all $x \in L$ and hence for all $x \in A$, it follows from (i) that $0 \in A$. Suppose $(xy)' \in A$ and $y \in A$. Then $(xy)' + y \in A$ by (ii), and

$$(xy)' + y = ((xy)'y)'y = (xy)y = x \lor y \geq x.$$

Using (i), we have $x \in A$ which proves (LI2), completing the proof. \hfill \square

Theorem 3.2. If A is a subset of a lattice implication algebra L, then

$$\langle A \rangle = \{ x \in L \mid x \leq a_1 + a_2 + ... + a_n \text{ for some } a_1, ..., a_n \in A \}.$$

Proof. By Theorem 2.2 it is sufficient to show that

$$x \leq a_1 + a_2 + ... + a_n \iff a'_n(...)a'_1x'(...) = 1.$$

We will prove (3.1) by induction on n. If $n = 1$, then

$$x \leq a_1 \iff xa_1 = 1 \iff a'_1x' = 1;$$
hence (3.1) holds for \(n = 1 \). Suppose (3.1) is true for \(n = k \), i.e.,
\[
x \leq a_1 + a_2 + \ldots + a_k \iff a_k'(...) a_k' \ldots = 1.
\]
Then
\[
x \leq a_1 + a_2 + \ldots + a_k + a_{k+1} = a_k' + a_1 + a_2 + \ldots + a_k
\]
\[
\iff x \leq a_k' + a_1 + a_2 + \ldots + a_k = a_k' a_{k+1}
\]
\[
\iff (a_1 + a_2 + \ldots + a_k) a_{k+1} \leq (a_1 + a_2 + \ldots + a_k) a_{k+1}
\]
\[
\iff (a_1 + a_2 + \ldots + a_k) a_{k+1} \leq a_k' a_{k+1}
\]
\[
\iff (a_1 + a_2 + \ldots + a_k) a_{k+1} \leq a_k' a_{k+1}
\]
\[
\iff a_k' (a_{k-1}' \ldots (a_1' a_{k+1}') \ldots) = 1
\]
\[
\iff a_k' (a_k' \ldots (a_1' a_{k+1}') \ldots) = 1,
\]
which shows that (3.1) holds for \(n = k + 1 \). This completes the proof. \(\square \)

Definition 3.3. A subset \(A \) of a lattice implication algebra \(L \) is said to have the finite additive property if \(a_1 + a_2 + \ldots + a_n \neq 1 \) for any finite members \(a_1, a_2, \ldots, a_n \) of \(A \).

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.4. For a subset \(A \) of a lattice implication algebra \(L \), \(\langle A \rangle \) is a proper LI-ideal of \(L \) if and only if \(A \) has the finite additive property.

Definition 3.5. An LI-ideal \(A \) of a lattice implication algebra \(L \) is said to be ultra if for every \(x \in L \), the following equivalence holds:

\[
(3.2) \quad x \in A \iff x' \not\in A.
\]

Theorem 3.6. Let \(A \) be a subset of a lattice implication algebra \(L \). Then \(A \) is an ultra LI-ideal of \(L \) if and only if \(A \) is a maximal proper LI-ideal of \(L \).

Proof. Suppose that \(A \) is an ultra LI-ideal of \(L \). Since \(0 \in A \), we have \(1 = 0' \not\in A \), and hence \(A \) is proper. If \(B \) is an LI-ideal of \(L \) and \(A \nsubseteq B \), then there exists \(x \in L \) such that \(x \in B \) and \(x \not\in A \). By (3.2) we have \(x' \in A \nsubseteq B \), and so \(1 = x + x' \in B \). It follows that \(B = L \) and \(B \) is not proper. Therefore \(A \) is a maximal proper LI-ideal of \(L \).

Conversely, assume that \(A \) is a maximal proper LI-ideal of \(L \). For each \(x \in L \), we claim that (3.2) is true. Assume \(x' \not\in A \) and let \(B = A \cup \{x\} \). Then \(B \) has the finite additive property. In fact, suppose \(y_1, \ldots, y_n \in B \). If \(y_1, \ldots, y_n \in A \), then \(y_1 + \ldots + y_n \neq 1 \) because \(A \) is proper. Now if there exists \(i \leq n \) such that \(y_i = x \), then
\[
y_1 + \ldots + y_n = x + y_1 + \ldots + y_{i-1} + y_{i+1} + \ldots + y_n.
\]
If $y_1 + \ldots + y_n = 1$ then $x'(y_1 + \ldots + y_i-1 + y_i+1 + \ldots + y_n) = 1$, i.e., $x' \leq y_1 + \ldots + y_i-1 + y_i+1 + \ldots + y_n$. Thus $x' \in A$ by Theorem 2.1, a contradiction. This proves that B has the finite additive property. Using Corollary 3.4, (B) is a proper LI-ideal of L. Since $A \subseteq (B)$ and A is a maximal proper LI-ideal, we have $(B) = A$ and hence $x \in (B) = A$. Suppose $x \in A$. If $x' \in A$, then $1 = x + x' \in A$; hence A is not a proper LI-ideal. This is a contradiction. Therefore $x' \notin A$ and the proof is complete. \hfill \square

Theorem 3.7. Let A be a subset of a lattice implication algebra L. If A has the finite additive property, then there exists an ultra LI-ideal B of L containing A.

Proof. Let

$$\Omega = \{B \mid B \text{ is a proper } LI\text{-ideal of } L \text{ containing } A\}.$$

Then $(A) \in \Omega$ and hence $\Omega \neq \emptyset$. Suppose $B_1 \subseteq B_2 \subseteq \ldots$ is a chain of elements of Ω and let $C = \bigcup B_i$. Then (i) $A \subseteq C$, (ii) $1 \notin C$ (because $1 \notin B_i$ for all i), (iii) $0 \in C$, and (iv) if $(xy)', y \in C$ then there exists i such that $(xy)', y \in B_i$ and so $x \in B_i \subseteq C$. This shows that C is a proper LI-ideal of L containing A so that $C \in \Omega$. By Zorn’s lemma, Ω has a maximal element, say D, which is the desired ultra LI-ideal of L. \hfill \square

Since every proper LI-ideal has the finite additive property, we have the following corollary.

Corollary 3.8. Every proper LI-ideal of a lattice implication algebra can be extended to an ultra LI-ideal.

Theorem 3.9. Let A be a proper LI-ideal of a lattice implication algebra L. Then A is ultra if and only if for every $a, b \in L$, whenever $a \times b \in A$ then $a \in A$ or $b \in A$.

Proof. Suppose A is ultra and let $a, b \in L$. If $a \times b \in A$, then $(a \times b)' \notin A$. Since $(a \times b)' = ((ab)')' = ab' = a' + b'$, it follows that $a' \notin A$ or $b' \notin A$ so that $a \in A$ or $b \in A$. Conversely, assume that for every $a, b \in L$, $a \in A$ or $b \in A$ whenever $a \times b \in A$. Then for each $x \in L$, if $x' \notin A$ then $x' \times x = (x'x)' = 1' = 0 \in A$, which implies that $x \in A$. Clearly if $x \in A$, then $x' \notin A$. This completes the proof. \hfill \square

Theorem 3.10. Let $f: L \to M$ be an implication homomorphism of lattice implication algebras satisfying $f(0) = 0$.

(i) If B is an ultra LI-ideal of M, then $f^{-1}(B)$ is an ultra LI-ideal of L.

(ii) If f is an isomorphism and if A is an ultra LI-ideal of L, then $f(A)$ is an ultra LI-ideal of M.

467
Proof. (i) Clearly $0 \in f^{-1}(B)$. Let $x, y \in L$ be such that $(xy)' \in f^{-1}(B)$ and $y \in f^{-1}(B)$. Then $f(y) \in B$ and $(f(x)f(y))' = (f(xy))' = f((xy)') \in B$. Since B is an LI-ideal of M, it follows from (LI2) that $f(x) \in B$ so that $x \in f^{-1}(B)$. Hence $f^{-1}(B)$ is an LI-ideal of L. For each $x \in L$, we have

\[x \in f^{-1}(B) \iff f(x) \in B \iff f(x)' \notin B \iff x' \notin f^{-1}(B). \]

Hence $f^{-1}(B)$ is an ultra LI-ideal of L.

(ii) Note that $0 = f(0) \in f(A)$. Let $x, y \in M$ be such that $(xy)' \in f(A)$ and $y \in f(A)$. Then there exist $u \in L$ and $v \in A$ such that $f(u) = x$ and $f(v) = y$. It follows that

\[f((uv)') = (f(uv))' = (f(u)f(v))' = (xy)' \in f(A) \]

so that $(uv)' \in A$. Using $v \in A$, we know that $u \in A$ and so $x = f(u) \in f(A)$. Thus $f(A)$ is an LI-ideal of M. For each $y \in M$, let $x \in L$ be such that $f(x) = y$. Then

\[y \in f(A) \iff x = f^{-1}(y) \in A \iff x' \notin A \iff y' = (f(x))' = f(x') \notin f(A). \]

Therefore $f(A)$ is an ultra LI-ideal of M. This completes the proof.

\[\Box \]

Acknowledgements

The authors would like to thank the referees for their valuable suggestions.

References

Authors’ addresses: Y. Xu and K. Qin, Department of Applied Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China, e-mail: yxu@center2.swjtu.edu.cn; Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea, e-mail: ybjun@nongae.gsnu.ac.kr.