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Abstract. The signed edge domination number and the signed total edge domination
number of a graph are considered; they are variants of the domination number and the
total domination number. Some upper bounds for them are found in the case of the n-
dimensional cube Qn.
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In this paper we shall treat three numerical invariants of undirected graphs which

concern edge domination. We consider finite undirected graphs without loops and
multiple edges. The vertex set of a graphG is denoted by V (G), its edge set by F (G).
A subset D of E(G) is called edge dominating in G, if each edge of G either is

in D, or is adjacent to an edge of D. (Two edges are adjacent, if they have an end
vertex in common.) The minimum number of edges of an edge dominating set in G

is called the edge domination number [5] of G and is denoted by γ ′(G).
In [7], B. Xu introduced the signed edge domination number of G, as an analogue

of the signed domination number [1]. A similar numerical invariant, the signed total
edge domination number, was introduced in [8].

For each e ∈ F (G) the symbol N(e) denotes the open neighbourhood of e in G,
i.e. the set of all edges which are adjacent to e in G. Further, N [e] = N(e) ∪ {e} is
the closed neighbourhood of e in G.

If f is a mapping of E(G) into a set of numbers and S ⊆ E(G), then f(S) =∑
x∈s

f(x). The number w(f) = f(E(G)) is called the weight of the mapping f .
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Let f : E(G) → {−1, 1}. The mapping f is called a signed edge dominating
function (shortly SEDF) of G, if f(N [e]) > 1 for each e ∈ E(G), and it is called
a signed total edge domination function (shortly STEDF) of G, if f(N(e)) > 1 for
each e ∈ E(G). The minimum weight w(f) of an SEDF (or STEDF) of G is called
the signed edge domination number γ ′s(G) of G (or the signed total edge domination
number γ′st(G) of G, respectively).
In this paper we will study these concepts for the graphs of cubes. The graph

Qn of the n-dimensional cube is the graph whose vertex set consists of all Boolean
vectors of dimension n (i.e. vectors, all of whose coordinates are in {0, 1}) and in
which two vertices are adjacent if and only if they differ in exactly one coordinate
(see e.g. [2], [6])

In a graphQn, for i = 1, . . . , n we denote byMi the set of all edges of Qn which join

vertices differing in the i-th coordinate. Further, M 0
i (or M

1
i ) will denote the subset

ofMi consisting of edges e such that the end vertex of e with the i-th coordinate 0 has
even (or odd, respectively) sum of coordinates. EvidentlyM 0

i ∩M1
i = ∅, M0

i ∪M1
i =

Mi.

We shall find only upper bounds for these numerical invariants which can be done
by showing the corresponding set.

Theorem 1. For each positive integer n the following inequality holds:

γ′(Qn) 6 2n−1.

���	�����
. Evidently, for i = 1, . . . , n the set Mi is an edge dominating set in Qn

and |Mi| = 2n−1.

Note that the size of the edge dominating set in a cube with the minimum cardi-

nality equals the size of the matching of this graph with the minimum cardinality,
denoted by m(Qn). R. Forcade [3] has proved that m(Qn)/|V (Qn)| → 1

3 for n→∞,
where m(Qn) is the same as γ′(Qn). His conjecture that m(Qn) = dn · 2n/(3n− 1)e
was disproved independently by J.-M. Laborde (by means of a computer) and by

I. Havel and M. Křivánek [4] (without a computer, showing that m(Qn) > 24).
For the study of other invariants we introduce some auxiliary concepts and lemmas.

If f is a mapping of E(G) into {−1, 1} and v is a vertex of G, then sl(G, f, v)
denotes the sum of values f(e) for all edges e of G which are incident with v. If
H is an induced subgraph of G, then s(H, f, v) has the same meaning, taking the
restriction of f onto H .

We say that a mapping f : F (G) → {−1, 1} has the property VS1 (or VS2), if for
each v ∈ V (G) we have s(G, f, v) > 1 (or s(G, f, v) > 2, respectively). �
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Lemma 1. If a function f : E(G) → {−1, 1} has the property VS1, then it is a
SEDF. If it has the property VS2, then it is a STEDF.
���	�����

. Let u, v be the end vertices of an edge e. If f has VS1, then f(N [e]) =
s(G, f, u) + s(G, f, v) − f(e) > 1 + 1 − 1 = 1. If f has VS2, then f(N(e)) =
s(G, f, u) + s(G, f, v)− 2f(e) > 2 + 2− 2 = 2 > 1. �

The following two lemmas are evident.

Lemma 2. The equality γ ′s(Q1) = 1 holds. The corresponding SEDF has the
property VS1.

Lemma 3. The equality γ ′st(Q2) = 1 holds. The corresponding STEDF has the
property VS2.

Remark. The cube graph Q1 satisfies Q1
∼= K2 and no STEDF exists in it.

Lemma 4. Let f be SEDF of Qn having the property VS1. Then there exists a
SEDF f̂ of Qnt2 having the property VS1 and w(f̂ ) = 4w(f).
���	�����

. For any i, j from {0, 1} let V (i, j) denote the set of all Boolean vectors
of dimension n+2 whose (n+1)-st coordinates is i and whose (n+2)-nd coordinate
is j. Let G(i, j) be the subgraph of Qn+2 induced by V (i, j). Evidently G(i, j) ∼=
Qn. There exists an isomorphism ϕij of G(i, j) onto Qn such that the image of
(v1, . . . , vn, i, j) in ϕij is (v1, . . . , vn). Let the function f be given on Qn. For each e

belonging to some G(i, j) we put f̂(e) = f(ϕij(e)). If e joins a vertex of G(0, 0) with
a vertex of G(0, 1) or a vertex of G(1, 0) with a vertex of G(1, 1), then f̂(e) = −1.
If e joins a vertex of G(0, 0) with a vertex of G(1, 0) or a vertex of G(0, 1) with a
vertex of G(1, 1), then f(e) = 1. The restriction of f onto G(i, j) for any i, j has the
property VS1; this follows from the construction. In Qn+2 each vertex v of V (i, j) is
incident with two further edges, one of which has the value 1, the order −1, therefore
the sum of values of incident edges is not changed. Hence f̃ has VS1 and it is a SEDF
on Qn+2. Evidently w(f̂ ) = 4w(f), because there are four graphs G(0, 0), G(0, 1),
G(1, 0), G(1, 1). �

Lemma 5. Let f be a STEDF of Qn having the property VS2. Then there exists

a STEDF f̃ of Qn+2 having the property VS2 and w(f̂ ) = 4w(f).
���	�����

is analogous. �

Lemma 6. Let f be a SEDF on Qn having the property VS1. Then there exists
a SEDF f̃ of Qn+2 such that w(f̃) = 2w(f).
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���	�����
. For each i ∈ {0, 1} let V (i) be the set of all Boolean vectors of dimension

n+ 1 which have the (n+ 1)-st coordinate equal to i. Let G(i) be the subgraph of
Qn+1 induced by V (i). There exists an isomorphism ψi of G(i) onto Qn such that
the image of (v1, . . . , vn, i) in ψi is (v1, . . . , vn). Let the function f be given on Qn.

For each e belonging to G(i) for i ∈ {0, 1} we put f̃(e) = f(ψi(e)). In Qn+1 we may
consider the sets M0

n+1 and M
1
n+1. We put f̃(e) = −1 for e ∈ M0

n+1 and f(e) = 1
for e ∈ M1

n+1. If e is an edge joining vertices u, v of V (i) for some i ⊂ {0, 1}, then
in G(i) we have s(G(i), f, u) > 1, s(G(i), f, v) > 1. Without loss of generality we
may suppose that in Qn+1 the vertex u is incident with an edge from M 0

n+1 and the
vertex v is incident with an edge of M 2

n+1. Thus s(Qn+1, f̃ , u) = s(Q(i), f, u) − 1,
s(Qn+1, f, v) = s(G(i), f̃ , v)+1 and f(N [e]) = s(Qn+1, f̃ , u)+s(Qn+1, f̃ , v)− f̃(e) >
0+2−1 = 1. If e is an edge of Qn+1 and e ∈Mn+1 and e joins a vertex u of G(0) with
a vertex v of G(1), then f(N [e]) = s(G(0), f̃ , u)+s(G(1), f̃ , v)+ f̃(e) > 1+1−1 = 1.
Therefore f̃ is a SEDF and evidently w(f̃ ) = 2w(f). �

Lemma 7. Let f be a STEDF on Qn having the property VS2. Then there exists

a STEDF f̃ on Qn+1 such that w(f̃ ) = 2w(f).

���	�����
is analogous. �

Theorem 2. For each positive integer n the following inequality holds:

γ′s(Qn) 6 2n−1.

���	�����
. For all odd positive integers we prove the assertion by induction using

Lemma 2 and Lemma 4. Then we prove it for even positive integers n using Lemma 6.
�

Theorem 3. For each integer n > 2 the following inequality holds:

γ′st(Qn) 6 2n.

���	�����
is analogous. �
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