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Abstract. In this paper we prove a theorem of Cantor-Bernstein type for orthogonally
σ-complete lattice ordered groups.

Keywords: lattice ordered group, orthogonal σ-completeness, direct factor

MSC 2000 : 06F15, 20F60

Sikorski [6] and Tarski [10] (cf. also Sikorski [7]) proved a theorem of Cantor-

Bernstein type for σ-complete Boolean algebras.
In a modified (but equivalent) form this theorem can be expressed as follows.

(A) Let B1 and B2 be σ-complete Boolean algebras. Suppose that
(i) there exists an element b1 ∈ B1 such that B2 is isomorphic to the interval

[0, b1] of B1;
(ii) there exists an element b2 ∈ B2 such that B1 is isomorphic to the interval

[0, b2] of B2.
Then B1 is isomorphic to B2.

Let us remark that each interval [0, b1] in B1 is isomorphic to a direct factor of
the lattice B1 (since B1 is a bounded distributive lattice and b1 has a complement
in B1); conversely, for each direct factor X of the lattice B1 there exists b1 ∈ B1

such that X is isomorphic to [0, b1].
Hence (i) is equivalent with the condition

(i1) there exists a direct factor of B1 which is isomorphic to B2.
Let G be a lattice ordered group. A nonempty subset A ⊆ G+ is said to be

orthogonal (or disjoint) if a1 ∧a2 = 0 whenever a1 and a2 are distinct elements of A.
If each denumerable orthogonal subset of G has a supremum in G, then G will be

called orthogonally σ-complete.
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In the present paper we prove the following result:

(B) Let G1 and G2 be orthogonally σ-complete lattice ordered groups. Suppose that
(i2) there exists a direct factor of G1 which is isomorph to G2;

(ii2) there exists a direct factor of G2 which is isomorphic to G1.
Then G1 is isomorphic to G2.

By an example we show that the condition of orthogonal σ-completeness cannot
be omitted in (B).

Other results of Cantor-Bernstein type for lattice ordered groups and for MV -
algebras were obtained in [2]–[5] and [9].

1. Direct factors of a lattice ordered group

Let I be a nonempty set and for each i ∈ I let Hi be a lattice ordered group. The
direct product of the indexed system (Hi)i∈I has the usual meaning; we denote it by

H =
∏

i∈I

Hi.

If I = {1, 2, . . . , n}, then we write also H = H1 × H2 × . . . × Hn. For h ∈ H and

i ∈ I , let hi be the component of H in Hi.
Suppose that ψ is an isomorphism of a lattice ordered group G onto H . For each

i ∈ I we put
H0

i = {g ∈ G : ψ(g)j = 0 for each j ∈ I \ {i}}.

Further, for each x ∈ G and each i ∈ I we denote by ϕi(x) the element of H0
i such

that
ψ(ϕi(x))i = ψ(x)i.

Then H0
i is a convex `-subgroup of G and the mapping

ϕ : G→
∏

i∈I

H0
i

defined by
ϕ(x) = (ϕi(x))i∈I

is an isomorphism of G onto
∏
i∈I

H0
i ; it is called an internal direct product decompo-

sition of G. All `-subgroups H0
i of G that can be constructed in this way are called

internal direct factors of G.

Let I(G) be the system of all internal direct factors of G; this system is partially
ordered by the set-theoretical inclusion. The following facts are well-known:
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1.1. I(G) is a Boolean algebra with the greatest element G and the least ele-
ment {0}.
1.2. If G1 ∈ I(G), then I(G1) ⊆ I(G).
For X ⊆ G we denote

Xδ = {g ∈ G : |g| ∧ |x| = 0 for each x ∈ X}.

Then we have
1.3. If G1 ∈ I(G), then Gδ

1 is the complement of G1 in I(G).
The set Xδ is said to be a polar in G. For the basic properties of polars cf. Šik [8].
1.4. Let X be a convex `-subgroup of G. Then the following conditions are

equivalent:
(i) If 0 6 g ∈ G, then the set

Xg = {x ∈ X : 0 6 x 6 g}

has a greatest element.

(ii) X is an internal direct factor of G.
Moreover, if (i) is valid, then the greatest element of the set Xg is the component

of g in the internal direct factor X ; this component will be denoted by g(X). For
x ∈ X we have x(X) = x.

1.5. Lemma. LetG be a lattice ordered group which is orthogonally σ-complete.
Suppose that Gn (n = 1, 2, 3, . . .) are internal direct factors of G such that Gn(1) ∩
Gn(2) = {0} whenever n(1) and n(2) are distinct positive integers. Denote

D =
( ∞⋃

n=1

Gn

)δ

.

Then D is an internal direct factor of G.

���
�
��

. In view of the definition, D is a convex `-subgroup of G. Let 0 6 g ∈ G.
Put gn = g(Gn) for each n ∈ � . Then 0 6 gn 6 g and the system (gn)n∈ � is
orthogonal. Hence there exists x ∈ G such that

x =
∞∨

n=1

gn.

Let xn = x(Gn). Since x > gn, we have xn > gn(Gn) = gn. Further,

xn = xn ∧ x = xn ∧
( ∞∨

m=1

gm

)
=

∞∨

m=1

(xn ∧ gm) = xn ∧ gn,

whence xn 6 gn. Summarizing, xn = gn.

883



We denote y = g − x. Hence 0 6 y 6 g. Let n ∈ � and yn = y(Gn). Thus
0 6 yn 6 y. Since g = y+x, we obtain gn = yn +xn = yn + gn and therefore yn = 0.
In view of 1.4, this yields that y belongs to D. Also, y ∧ x = 0, whence g = y ∨ x.
Let z ∈ D, 0 6 z 6 g. Then z ∧ x = 0, thus

z = z ∧ g = z ∧ (y ∨ x) = z ∧ y.

Then z 6 y. By applying 1.4 we infer that D ∈ I(G). �

1.6. Lemma. Let G, Gn (n ∈ � ) and D be as in 1.5. Then G is an internal
direct product of its convex `-subgroups D and Gn (n ∈ � ).

���
�
��

. In view of 1.5, the symbol g(D) is defined for each g ∈ G. Consider the
mapping ψ of G into

A = D ×
∞∏

i∈I

Gn

such that, for each g ∈ G,

ψ(g)(D) = g(D), ψ(g)(Gn) = g(Gn).

Then ψ is a homomorphism of G into A. Let 0 6= g ∈ G. Hence |g| 6= 0. Thus
either |g|n = |g|(Gn) > 0 for some n ∈ � , or |g| ∈ D; in the latter case we have

|g|(D) = |g| > 0. Therefore ψ(|g|) > 0. This yields that ψ(g) 6= 0 and hence ψ is an
isomorphism of G into A.

Let a ∈ A. Consider the system (y0, y1, y2, . . .) where y0 = a+(D), yn = a+(Gn)
for each n ∈ � . Since G is orthogonally σ-complete, there exists y ∈ G+ such that

y =
∞∨

n=0

yn.

It is easy to verify (by an analogous argument as in the proof of 1.5) that

y(D) = y0, y(Gn) = yn (n = 1, 2, . . .).

Hence ψ(y) = a+. Similarly we can verify that there exists z ∈ G with ψ(z) = a−.
Then ψ(y − z) = a. Thus ψ is an epimorphism.

If d ∈ D, then ψ(g)(D) = 0; similarly, if g ∈ Gn, then ψ(g)(Gn) = gn. This yields
that ψ is an internal direct product decomposition of G. �
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2. Proof of (B)

If G is a lattice ordered group, A,B ∈ I(G) and A ⊆ B, then we denote by B	A
the relative complement of A in the interval [{0}, B] of the Boolean algebra I(G).
Hence we have

B = A× (B 	A)

(meaning that B is an internal direct product of A and B 	A).
For proving (B) we apply Lemma 1.6 and use similar steps as in the well-known

proof of the classical Cantor-Bernstein Theorem of the set theory.

2.1. Lemma. LetG be a lattice ordered group which is orthogonally σ-complete.
Assume that A1, A2 ∈ I(G), A1 ⊇ A2 and that A2 is isomorphic to G. Then A1 is

isomorphic to G as well.

���
�
��

. Let ϕ be an isomorphism of G onto A2. Put A3 = ϕ(A1). Hence A3

is an internal direct factor of A2. Further, we denote A4 = ϕ(A2). Thus A4 is an
internal direct factor of A3. By further analogous steps we construct a sequence

G k A1 k A2 k A3 k A4 k A5 k . . .

of internal direct factors of G (cf. 1.2).

Let the symbol ' denote the relation of isomorphism between lattice ordered
groups. From the construction of the elements of the sequence under consideration

we get

G ' A2, A1 ' A3, A2 ' A4, A3 ' A5, . . .

and, moreover,

G	A1 ' A2 	A3, A1 	A2 ' A3 	A4, A2 	A3 ' A4 	A5, . . .

Denote

G	A1 = G1, A1 	A2 = G2, A2 	 A3 = G3, A3 	A4 = G4, . . .

We obtain

(1) Gn ' Gn+2 for each n ∈ � .

Further, we have
Gn(1) ∩Gn(2) = {0}
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whenever n(1) and n(2) are distinct positive integers. Let D be as in 1.5. According
to 1.6 we obtain
α) G is an internal direct product of its `-subgroups D and Gn (n ∈ � ).
For X ⊆ A1 we put

Xδ1 = {g ∈ A1 : |g| ∧ |x| = 0 for each x ∈ X}.

It is easy to verify that

( ∞⋃

n=2

Gn

)δ1

= D,

Gn ⊆ A1 for n = 2, 3, . . .

Thus by applying 1.6 again we infer

β) A1 is an internal direct product of its convex `-subgroupsD and G2, G3, G4, . . ..
Now, from α), β) and (1) we get the relation G ' A1. �

���
�
��

of (B). LetG1 andG2 be orthogonally σ-complete lattice ordered groups.

Suppose that the conditions (i2) and (ii2) are satisfied. Hence there exists B0 ∈ I(G2)
such that G1 ' B0. Further, there exists A0 ∈ I(G1) such that A0 ' G2. Hence

there is an isomorphism ϕ of B onto A0. Put ϕ(B0) = A1. Then B0 ' A1 and
thus G1 ' A1. Clearly A1 ∈ I(G1) and A1 ⊆ A0. Hence in view of 2.1, G1 ' A0.

Therefore G1 ' G2. �

By means of simple examples we can show that if G is a lattice ordered group

which is orthogonally σ-complete, then
(i) G need not be σ-complete,

(ii) G need not be orthogonally complete.
We conclude this section by remarking that the notion of orthogonal σ-complete-

ness can be applied also for MV -algebras. By using the same steps as above we
can verify that (B) remains valid if instead of lattice ordered groups G1 and G2 we

consider MV -algebras M1 and M2.

3. An example

In this section we show that the assumption of orthogonal σ-completeness cannot

be omitted in (B).
Let G be a lattice ordered group. An element u of G is called a strong unit if for

each g ∈ G there exists a positive integer n such that g 6 nu. An element s of G is
said to be singular if 0 6 s and the interval [0, s] of G is a Boolean algebra.
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The direct product decomposition of a lattice L is defined in the usual way. Sup-

pose that L has a least element 0. Then we can define internal direct factors and
internal direct product decompositions of L analogously as we did for the case of
lattice ordered groups in Section 1 above; we omit the obvious details.

In what follows all direct product decompositions of G and of L are supposed to
be internal. The set of all internal direct factors of L will be denoted by I(L).

3.1. Let G be a lattice ordered group with a strong unit u. Let L be the interval
[0, u] of G. Assume that X belongs to I(L) and that A0 is the convex `-subgroup

of G which is generated by the set X . Then A0 ∈ I(G).

���
�
��

. Suppose that L = X×Y . Then there exists a greatest element x0 in X

and a greatest element y0 in Y ; moreover, u = x0 ∨ y0 and x0 ∧ y0 = 0. From the
last relation we obtain u = x0 + y0. Then A0 is the convex `-subgroup of G which

is generated by x0. Let B0 be the convex `-subgroup of G which is generated by y0.
Then A0 ∩ B0 = {0}, whence A0 +B0 = B0 +A0.

Let g ∈ G. There exists a positive integer n such that

g+ 6 nu = nx0 + ny0 = nx0 ∧ ny0.

Hence

(∗) g+ = g+ ∧ (nx0 ∨ ny0) = (g+ ∧ nx0) ∨ (g+ ∧ ny0) = (g+ ∧ nx0) + (g+ ∧ ny0).

For the element g− we obtain an analogous relation. Therefore G = A0 +B0. Thus

the group G is a direct product of its subgroups A0 and B0.
Let g, g′ ∈ G. There are uniquely determined elements g1, g′1 ∈ A0 and g2, g′2 ∈ B0

such that g = g1 + g2, g′ = g′1 + g′2. If g1 6 g′1 and g2 6 g′2, then g 6 g′. Conversely,
suppose that g 6 g′. Denote g′′ = g′ − g. In view of (∗) there is a positive integer n
such that

g′′ = (g′′ ∧ nx0) + (g′′ ∧ ny0).

Then clearly g′′∧nx0 ∈ (A0)+ and (g′′∧ny0) ∈ (B0)+. Thus g′1−g1 = g′′∧nx0 > 0,
yielding that g′1 > g1. Analogously, g′2 > g2. Summarizing, we obtain for the lattice

ordered group G the relation G = A0 ×B0. �

Let B be a Boolean algebra. We denote by C(B) the system of all elementary
Carathéodory functions on B (cf. [1]). Further, let C0(B) be the convex `-subgroup
of C(B) which is generated by the greatest element of B. From the construction of
C0(B) we conclude:

3.2. Lemma. Let B1 and B2 be Boolean algebras. Then
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(i) the lattice ordered groups C0(B1) and C0(B2) are isomorphic if and only if B1

and B2 are isomorphic;

(ii) for i ∈ {1, 2}, Bi is the set of all singular elements of C0(Bi).

According to [7] (pp. 90 and 193) the hypothesis of σ-completeness is essential
in (A).

This yields that there exist non-isomorphic Boolean algebras B1 and B2 which
satisfy the conditions (i) and (ii) from (A).

Let us construct lattice ordered groups G1 = C0(B1) and G2 = C0(B2). Then in
view of 3.2, G1 is not isomorphic to G2.

Let b1 and b2 be as in (A). Thus the interval [0, b1] of B1 is isomorphic to B2.
Hence according to 3.2, C0([0, b1]) is isomorphic to C0(B2). Further, [0, b0] is a direct
factor of B1, thus in view of 3.1, C0([0, b1]) is a direct factor of G1. Therefore the
condition (i2) is valid for the lattice ordered groups B1 and B2. Similarly, by using

the element b2 we obtain that the condition (ii2) is valid for B1 and B2.
Consequently, without the assumption of orthogonal σ-completeness the assertion

of (B) need not hold.
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