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Abstract. In this paper, we are mainly concerned with characterizing matrices that map
every bounded sequence into one whose Banach core is a subset of the statistical core of
the original sequence.
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1. Introduction

If T = (tnk) is an infinite matrix with real entries, and if x = (xk) is a sequence of
real numbers, then Tx denotes the transformed sequence whose n-th term is given by

(Tx)n =
∞∑

k=1

tnkxk . In order to investigate the effect of such transformations upon

the derived set, Knopp [14] introduced the idea of the core (K-core) of a sequence
and proved the well-known Core Theorem. That theorem asserts that K-core{Tx} ⊆
K-core{x}, whenever Tx exists for the nonnegative regular matrix T . Some variants
of the Core Theorem may be found in [4], [19], [23], [26].

Considering the method of almost convergence Loone [17] and Das [4] introduced
the Banach core (B-core) of a bounded sequence and proved some analogues of the
assertions for the K-core (see also [12], [23], [26], [27]).
In [10], [11], the notion of statistical core of a sequence is introduced and a statis-

tical core theorem is proved.
Section 2 of the present paper presents a result which is complementary to [17]

and [23], while Section 3 deals with characterizing matrices that map every bounded
sequence into one whose B-core is a subset of the statistical core of the original
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sequence. Before proceeding further we recall some notation and terminology. By l∞

and c we denote the spaces of all bounded and convergent real sequences, respectively.

Let T = (tnk) be an infinite matrix, and let X and Y be two sequence spaces. If

Tx exists for each x ∈ X and Tx ∈ Y then we say that T maps X into Y . The set of
matrices that map X into Y is denoted by (X, Y ). The set of matrices that map X

into Y and leave the limit or sum invariant is denoted by (X, Y ; p).
For example, if T ∈ (c, c; p), then lim Tx = lim x for every x ∈ c. In this case T

is called regular (see [3], [24]). If it is regular and satisfies lim
n

∑
k

|tnk − tn,k+1| = 0,

then T is called strongly regular [24].

2. B-core and absolute equivalence

This section is complementary to [23] and [17]. It is well-known [18], [24] that the
functional

q(x) = inf
n1,n2,...,nr

lim sup
k

1
r

r∑

i=1

xk+ni

is sublinear on l∞. We also consider the following functionals on l∞:

L(x) = lim sup xn,

l∗(x) = lim inf
n

sup
i

1
n + 1

i+n∑

r=i

xr,

L∗(x) = lim sup
n

sup
i

1
n + 1

i+n∑

r=i

xr.

It follows from the Corollary to Theorem 1 of [5] that q(x) = L∗(x). If q(x) =
−q(−x) = s, then x is called almost convergent to s [18], and in this case we write

F - lim x = s. By F we denote the set of all almost convergent sequences.

The Banach core (B-core) of a bounded sequence x is defined to be the closed
interval [−q(−x), q(x)] (see Loone [17], Das [4]). Since q(x) 6 L(x) for every x ∈ l∞,
it follows that B-core{x} ⊆ K-core{x} where K-core{x} is the Knopp core and it is
given by K-core{x} = [lim inf x, lim sup x]. It is shown in [23], [17] that

K-core{Ax} ⊆ B-core{x} (for every x ∈ l∞)

if and only if A is strongly regular and lim
n

∑
k

|ank| = 1.

Now we have the following
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Theorem 1. Let x ∈ l∞ and let A be a strongly regular matrix. Then

K-core{Ax} ⊆ B-core{x} if and only if A is absolutely equivalent to a non-negative
strongly regular matrix B for all bounded sequences.
���������

. Sufficiency. Since A is absolutely equivalent to a nonnegative strongly

regular matrix B, we have

(1) lim
n
{(Ax)n − (Bx)n} = 0 (for every x ∈ l∞).

Now Theorem 6.5.I of Cooke [3] implies that

(2) K-core{Ax} ⊆ K-core{x}, (for every x ∈ l∞).

Since B is a non-negative strongly regular matrix, it follows from Theorem 3 of [23]
that, for every x ∈ l∞,

(3) K-core{Bx} ⊆ B-core{x}.

Since (1) holds, Theorem 6.3.II of Cooke [3] implies that

(4) K-core{Ax} = K-core{Bx}.

Now (3) and (4) imply K-core{Ax} ⊆ B-core{x}.
Necessity. Let x ∈ l∞ and let A be a strongly regular matrix. By hypothesis,

(5) K-core{Ax} ⊆ B-core{x} ⊆ K-core{x}.

Now, there is a non-negative regular matrix B such that A and B are absolutely
equivalent on l∞ (see Theorem 6.5.I of [3]). So, by Theorem 5.4.I of Cooke [3], we

have

(6) lim
n

∑

k

|bnk − ank| = 0.

It remains to show that

(7) lim
n

∑

k

|bnk − bn,k+1| = 0.

To see this, we first write

∑

k

|bnk − bn,k+1| 6
∑

k

|bnk − ank|+
∑

k

|an,k+1 − bn,k+1|+
∑

k

|ank − an,k+1|

= c1
n + c2

n + c3
n, say.
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By (6), c1
n → 0 (n →∞). By the strong regularity of A, c3

n → 0 (n →∞), and by
the absolute equivalence

c2
n =

∑

k

|an,k+1 − bn,k+1| 6
∑

k

|ank − bnk| → 0 (n →∞),

hence (7) holds. This proves the theorem. �

3. Statistical and Banach cores

If K ⊆ � then let Kn := {k ∈ K : k 6 n}; and |Kn| will denote the cardinality
of Kn. The natural density [22] of K is given by δ(K) := lim

n
n−1|Kn|, if it exists.

In [9] a statistical cluster point of a sequence x is defined as a number γ such

that for every ε > 0 the set {k ∈ � : |xk − γ| < ε} does not have density zero.
In [10] the sequence x is defined to be statistically bounded if x has a bounded

subsequence of density one; and the statistical core of such an x of real values is the
closed interval [st-lim inf x, st-lim sup x], where st-lim inf x and st-lim sup x are the

least and greatest statistical cluster points of x (see [6], [10], [11], [16]). Recall [10]
that, for a sequence x the number β is the st-lim supx if and only if for every ε > 0,

δ{k : xk > β − ε} 6= 0 and δ{k : xk > β + ε} = 0.

The dual statement for st-lim inf x is as follows: The number α is the st-lim inf x if

and only if for every ε > 0,

δ{k : xk < α + ε} 6= 0 and δ{k : xk < α− ε} = 0.

A statistically bounded sequence x is statistically convergent if and only if
st-lim sup x = st-lim inf x [10]. Some results on statistical convergence may be

found in [2], [8], [9], [10], [20], [21], [25].
In this section we are mainly concerned with characterizing matrices that map

every bounded sequence into one whose B-core is a subset of the statistical core of
the original sequence. The final result follows a result of Choudhary [1] in giving

conditions on matrices T and H so that the Banach core of Tx is contained in the
statistical core of Hx.

We note that statistical convergence and almost convergence are incomparable [21].
By st(b) we denote the set of all bounded statistically convergent sequences. It

follows from Theorem 4.1 of [15] that T ∈ (st(b), F ; p) if and only if T ∈ (c, F ; p) and
T [K] ∈ (l∞, F ) for every K of density zero where T [K] = (dnk) is given by dnk = tnk

if k ∈ K and dnk = 0 otherwise.
By [13] and [7], this is equivalent to the following

68



Proposition 2. T ∈ (st(b), F ; p) if and only if
(i) sup

n

∑
k

|tnk| < ∞,
(ii) F - lim tnk = 0 for every k,

(iii) F - lim
n

∑
k

tnk = 1, and

(iv) lim
r

∑
k∈K

∣∣∣ 1
r+1

r∑
i=1

tn+i,k

∣∣∣ = 0, uniformly in n for every K of density zero.

Now we have

Theorem 3. Let T : l∞ → l∞ and β(x) := st-lim sup x. Then

(8) L∗(Tx) 6 β(x) (for every x ∈ l∞),

if and only if

(a) T ∈ (st(b), F ; p),

(b) lim
r

∞∑
k=1

∣∣∣ 1
r+1

r∑
i=1

tn+i,k

∣∣∣ = 1, uniformly in n.

���������
. Assume (8) holds and x ∈ l∞. Then Tx ∈ l∞; and also we have

−β(−x) 6 −L∗(−Tx) 6 L∗(Tx) 6 β(x).

If x ∈ st(b), then β(x) = −β(−x), hence T maps st(b) into F and F - lim Tx =
st-lim x, which proves (a). To prove (b), we first observe that Proposition 2 implies
the conditions of Lemma 2 of [4]. Hence, from that Lemma, there is a bounded

sequence x such that ‖x‖∞ := sup
k
|xk| 6 1 and

(9) lim sup
n

sup
i

∑

k

bnk(i)xk = lim sup
n

sup
i

∑

k

|bnk(i)|

where bnk(i) = 1
n+1

i+n∑
r=i

trk.

Hence, by Proposition 2,

1 = lim inf
n

sup
i

∑

k

bnk(i) 6 lim inf
n

sup
i

∑

k

|bnk(i)|

6 lim sup
n

sup
i

∑

k

|bnk(i)|

= lim sup
n

sup
i

∑

k

bnk(i)xk, by (9)

6 β(x), by hypothesis

6 ‖x‖∞ 6 1

from which we get (b).
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Conversely assume (a) and (b) hold, and let x ∈ l∞. Then Tx ∈ l∞ and β(x)
is finite. Given ε > 0, let E := {k : xk > β(x) + ε}. Hence δ(E) = 0, and if
k /∈ E then xk 6 β(x) + ε. For any real number z we write z+ := max{z, 0} and
z− := max{−z, 0}, whence

|z| = z+ + z−, z = z+ − z−, |z| − z = 2z−.

Letting

brk(i) :=
1

r + 1

i+r∑

n=i

tnk,

(brk(i))+ :=
1

r + 1

i+r∑

n=i

t+nk,

(brk(i))− :=
1

r + 1

i+r∑

n=i

t−nk,

then for a fixed positive integer m we write

1
r + 1

i+r∑

n=i

(Tx)n =
∑

k<m

brk(i)xk +
∑

k>m
k∈E

(brk(i))+xk

+
∑

k>m
k/∈E

(brk(i))+xk −
∑

k>m

(brk(i))−xk

6 ‖x‖∞
∑

k<m

|brk(i)|+ (β(x) + ε)
∑

k>m

|brk(i)|

+ ‖x‖∞
∑

k>m

|brk(i)|+ ‖x‖∞
∑

k>m

(|brk(i)| − brk(i)).

On applying the operator lim sup
r

sup
i
and considering Proposition 2, we get

L∗(Tx) 6 β(x) + ε.

Since ε is arbitrary we conclude that (8) holds, whence the result. �

Similarly we could get α(x) 6 l∗(Tx), and hence we have the following result.

Theorem 4. If T : l∞ → l∞, then

B-core{Tx} ⊆ st-core{x} for every x ∈ l∞

if and only if conditions (a) and (b) of Theorem 3 hold.
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Theorem 5. Let H be a triangular matrix with non-zero diagonal entries, and

denote its triangular inverse by H−1. For an arbitrary matrix T , in order that,

whenever Hx ∈ l∞, Tx should exist and be bounded and satisfy

(10) B-core{Tx} ⊆ st-core{Hx},

it is necessary and sufficient that

(i) C := TH−1 exists;

(ii) C ∈ (st(b), f ; p);

(iii) lim
r

∞∑
k=1

∣∣∣ 1
r+1

r∑
i=1

cn+i,k

∣∣∣ = 1;

(iv) for any fixed n,

lim
ν

ν∑

k=0

∣∣∣∣
∞∑

j=ν+1

tnjh
−1
jk

∣∣∣∣ = 0.

���������
. Necessity. If (Tx)n exists for each n whenever Hx ∈ l∞, then by

Lemma 2 of Choudhary [1], (i) and (iv) hold. By the same Lemma, we also have

Tx = Cy where y = Hx. By hypothesis Tx ∈ l∞ hence Cy ∈ l∞. Now (10) implies
that B-core{Cy} ⊆ st-core{y}. By Theorem 4, we get (ii) and (iii).
Sufficiency. Conditions (i)–(iv) imply the conditions of Lemma 2 of Choudhary [1];

so, it follows from that Lemma that Cy ∈ l∞, and hence Tx ∈ l∞. Now Theorem 4
yields that B-core{Cy} ⊆ st-core{y}, and since y = Hx and Cy = Tx, we have
B-core{Tx} ⊆ st-core{Hx}, whence the result. �
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