Zhaowen Li; Shou Lin
On the weak-open images of metric spaces

Československá Matematická Žurnal, Vol. 54 (2004), No. 2, 393–400

Persistent URL: http://dml.cz/dmlcz/127896

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ON THE WEAK-OPEN IMAGES OF METRIC SPACES

ZHAOWEN LI, Hunan, and SHOU LIN, Fujian

(Received August 7, 2001)

Abstract. In this paper, we give characterizations of certain weak-open images of metric spaces.

Keywords: g-metrizable spaces, weak-bases, weak-open mappings, σ-mappings, π-mappings, cs-mappings

MSC 2000: 54E99, 54C10

1. Introduction

To find internal characterizations of certain images of metric spaces is one of the central problems in General Topology. Recently, S. Xia [4] introduced the concept of weak-open mappings. By using it, certain g-first countable spaces are characterized as images of metric spaces under various weak-open mappings. Papers [6], [8], [9], [10], [11], [20] have done some wonderful work on g-metrizable spaces, but have only investigated internal characterizations of g-metrizable spaces. The present paper establishes the relationships between g-metrizable spaces (spaces with compact-countable weak-bases) and metric spaces by means of weak-open mappings, π-mappings and σ-mappings (weak-open mappings and cs-mappings, respectively).

In this paper, all spaces are regular and T_1, all mappings are continuous and surjective. \mathbb{N} denotes the set of all natural numbers, ω denotes $\mathbb{N} \cup \{0\}$. For a collection \mathcal{P} of subsets of a space X and a mapping $f: X \to Y$, denote $f(\mathcal{P}) = \{f(P): P \in \mathcal{P}\}$.

Definition 1.1. Let \mathcal{P} be a cover of a space X. \mathcal{P} is called compact-countable if for each compact subset K of Y, only countably many members of \mathcal{P} intersect K.

This work is supported by the NNSF of China.
Definition 1.2. Let \(P = \bigcup \{ P_x : x \in X \} \) be a collection of subsets of a space \(X \) satisfying that for each \(x \in X \),
(1) \(P_x \) is a network of \(x \) in \(X \),
(2) if \(U, V \in P_x \), then \(W \subset U \cap V \) for some \(W \in P_x \).

\(P \) is called a weak-base for \(X \) if a subset \(G \) of \(X \) is open in \(X \) if and only if for each \(x \in G \), there exists \(P \in P_x \) such that \(P \subset G \).

A space \(X \) is called a \(g \)-metrizable space if \(X \) has a \(\sigma \)-locally finite weak-base.

Definition 1.3. Let \(f : X \to Y \) be a mapping.
(1) \(f \) is a weak-open mapping if there exists a weak-base \(B = \bigcup \{ B_y : y \in Y \} \) for \(Y \), and for \(y \in Y \) there exists \(x(y) \in f^{-1}(y) \) satisfying condition (\(\ast \)): for each open neighbourhood \(U \) of \(x(y) \), \(B_y \subset f(U) \) for some \(B_y \in B_y \).
(2) \(f \) is a cs-mapping if for each compact subset \(K \) of \(Y \), \(f^{-1}(K) \) is separable in \(X \).
(3) \(f \) is a \(\sigma \)-mapping if there exists a base \(\mathcal{B} \) for \(X \) such that \(f(\mathcal{B}) \) is a \(\sigma \)-locally finite collection of subsets of \(Y \).
(4) \(f \) is a \(\pi \)-mapping if \((X, d) \) is a metric space, and for each \(y \in Y \) and its open neighbourhood \(V \) in \(Y \), \(d(f^{-1}(y), X \setminus f^{-1}(V)) > 0 \).

It is easy to check that a weak-open mapping is a quotient mapping.

2. The weak-open \(\sigma \)-image of a metric space

Lemma 2.1. Suppose \((X, d) \) is a metric space and \(f : X \to Y \) is a quotient mapping. Then \(Y \) is a symmetric space if and only if \(f \) is a \(\pi \)-mapping.

Theorem 2.2. The following are equivalent for a space \(X \):
(1) \(Y \) is a \(g \)-metrizable space.
(2) \(Y \) is a weak-open, \(\pi \), \(\sigma \)-image of a metric space.
(3) \(Y \) is a weak-open \(\sigma \)-image of a metric space.

Proof. (1) \(\Rightarrow \) (2) Suppose \(Y \) is a \(g \)-metrizable space, then \(Y \) has a \(\sigma \)-locally finite weak-base. Let \(\mathcal{P} = \bigcup \{ \mathcal{P}_i : i \in \mathbb{N} \} \) be a \(\sigma \)-locally finite weak-base for \(Y \), where each \(\mathcal{P}_i = \{ P_\alpha : \alpha \in A_i \} \) is locally finite in \(Y \) which is closed under finite intersections and \(Y \in \mathcal{P}_i \subset \mathcal{P}_{i+1} \). For each \(i \in \mathbb{N} \), endow \(A_i \) with discrete topology. Then \(A_i \) is a metric space. Put

\[X = \left\{ \alpha = (\alpha_i) \in \prod_{i \in \mathbb{N}} A_i : \{ P_{\alpha_i} : i \in \mathbb{N} \} \subset \mathcal{P} \text{ forms a network} \right\}, \]

at some point \(x(\alpha) \in Y \).
and endow X with the subspace topology induced from the usual product topology of the collection \(\{ A_i : i \in \mathbb{N} \} \) of metric spaces. Then X is a metric space. Since Y is Hausdorff, $x(\alpha)$ is unique in Y for each $\alpha \in X$. We define $f : X \to Y$ by $f(\alpha) = x(\alpha)$ for each $\alpha \in X$. Because \mathcal{P} is a σ-locally finite weak-base for Y, we conclude that f is surjective. For each $\alpha = (\alpha_i) \in X$, $f(\alpha) = x(\alpha)$. Suppose V is an open neighbourhood of $x(\alpha)$ in Y. Then there exists $n \in \mathbb{N}$ such that $x(\alpha) \in P_{\alpha_n} \subset V$. If we set $W = \{ c \in X : \text{the } n\text{-th coordinate of } c \text{ is } \alpha_n \}$, then W is an open neighbourhood of α in X and $f(W) \subset P_{\alpha_n} \subset V$. Hence f is continuous. We will show that f is a weak-open σ-mapping.

(i) f is a σ-mapping.

For each $n \in \mathbb{N}$ and $\alpha_n \in A_n$, put

$$V(\alpha_1, \ldots, \alpha_n) = \{ \beta \in X : \text{for each } i \leq n, \text{ the } i\text{-th coordinate of } \beta \text{ is } \alpha_i \}.$$

It is easy to check that $\{ V(\alpha_1, \ldots, \alpha_n) : n \in \mathbb{N} \}$ is a locally neighbourhood base of α in X.

Let $\mathcal{B} = \{ V(\alpha_1, \ldots, \alpha_n) : \alpha_i \in A_i \ (i \leq n) \text{ and } n \in \mathbb{N} \}$; then \mathcal{B} is a base for X. To prove that f is a σ-mapping, we only need to check that $f(V(\alpha_1, \ldots, \alpha_n)) = \bigcap_{i \leq n} P_{\alpha_i}$ for each $n \in \mathbb{N}$ and $\alpha_n \in A_n$ because $f(\mathcal{B})$ is σ-locally finite in Y by this result.

For each $n \in \mathbb{N}$, $\alpha_n \in A_n$ and $i \leq n$ we have $f(V(\alpha_1, \ldots, \alpha_n)) \subset P_{\alpha_i}$, hence $f(V(\alpha_1, \ldots, \alpha_n)) \subset \bigcap_{i \leq n} P_{\alpha_i}$. On the other hand, for each $x \in \bigcap_{i \leq n} P_{\alpha_i}$ there is $\beta = (\beta_j) \in X$ such that $f(\beta) = x$. For each $j \in \mathbb{N}$, $P_{\beta_j} \in \mathcal{P}_j \subset \mathcal{P}_{j+n}$, hence there is $\alpha_{j+n} \in A_{j+n}$ such that $P_{\alpha_{j+n}} = P_{\beta_j}$. Set $\alpha = (\alpha_j)$, then $\alpha \in V(\alpha_1, \ldots, \alpha_n)$ and $f(\alpha) = x$. Thus $\bigcap_{i \leq n} P_{\alpha_i} \subset f(V(\alpha_1, \ldots, \alpha_n))$, hence $f(V(\alpha_1, \ldots, \alpha_n)) = \bigcap_{i \leq n} P_{\alpha_i}$.

Therefore, f is a σ-mapping.

(ii) f is a weak-open mapping.

Denote $\mathcal{P}_y = \{ P \in \mathcal{P} : y \in P \}$; then $\mathcal{P} = \bigcup \{ \mathcal{P}_y : y \in Y \}$.

For each $y \in Y$, by is the idea \mathcal{P}, there exists $(\alpha_i) \in \bigcap_{i \in \mathbb{N}} A_i$ such that $\{ P_{\alpha} : i \in \mathbb{N} \} \subset \mathcal{P}$ is a network of y in Y, hence $\alpha = (\alpha_i) \in f^{-1}(y)$.

Suppose G is an open neighbourhood of α in X. Then there exists $j \in \mathbb{N}$ such that $V(\alpha_1, \ldots, \alpha_j) \subset G$. Thus $f(V(\alpha_1, \ldots, \alpha_j)) \subset f(G)$. By (i), $f(V(\alpha_1, \ldots, \alpha_j)) = \bigcap_{i \leq j} P_{\alpha_i}$. So $P_y \subset \bigcap_{i \leq j} P_{\alpha_i}$ for some $P_y \in \mathcal{P}_y$. Hence $P_y \subset f(G)$.

Hence there exists a weak-base \mathcal{P} for Y and $\alpha \in f^{-1}(y)$ satisfying the condition (\ast) from Definition 1.3(1). Therefore f is a weak-open mapping.

(iii) f is a π-mapping.

By (ii), f is a quotient mapping. Since a g-metrizable space is symmetric, f is a π-mapping by Lemma 2.1.
(2) ⇒ (3) is clear.

(3) ⇒ (1). Suppose Y is the image of a metric space X under a weak-open σ-mapping f. Since f is a σ-mapping, there exists a base \mathcal{B} for X such that $f(\mathcal{B})$ is σ-locally finite in Y. And since f is a weak-open mapping, there exists a weak-base $\mathcal{P} = \bigcup \{ \mathcal{P}_y : y \in Y \}$ for Y such that for each $y \in Y$ there exists $x(y) \in f^{-1}(y)$ satisfying the condition (*) from Definition 1.3. For each $y \in Y$, put

$$\mathcal{F}_y = \{ f(B) : x(y) \in B \in \mathcal{B} \}.$$

Obviously, $\mathcal{F} \subset f(\mathcal{B})$, hence \mathcal{F} is σ-locally finite in Y. We will prove that \mathcal{F} is a weak-base for Y.

It is obvious that \mathcal{F} satisfies the condition (1) from Definition 1.2. For each $y \in Y$, suppose $U, V \in \mathcal{F}_y$; then there exist $B_1 \in \mathcal{B}$ and $B_2 \in \mathcal{B}$ such that $x(y) \in B_1 \cap B_2$ and $f(B_1) = U$, $f(B_2) = V$. Since \mathcal{B} is a base for X, there exists $B \in \mathcal{B}$ such that $x(y) \in B \subset B_1 \cap B_2$. Thus $f(B) \in \mathcal{F}_y$ and $f(B) \subset f(B_1 \cap B_2) \subset U \cap V$. Hence \mathcal{F} satisfies the condition (2) from Definition 1.2.

Suppose $G \subset Y$ is open in Y, then $x(y) \in f^{-1}(G)$ for each $y \in G$. Since \mathcal{B} is a base for X, we have $x(y) \in B \subset f^{-1}(G)$ for some $B \in \mathcal{B}$. Thus $f(B) \in \mathcal{F}_y$ and $f(B) \subset G$. On the other hand, suppose that $G \subset Y$ and for $y \in G$ there exists $F \in \mathcal{F}_y$ such that $F \subset G$. Then there exists $B \in \mathcal{B}$ such that $x(y) \in B$ and $F = f(B)$. Since B is an open neighbourhood of $x(y)$, there exists $P_y \in \mathcal{P}_y$ such that $P_y \subset f(B)$. Thus for each $y \in G$ there exists $P_y \in \mathcal{P}_y$ such that $P_y \subset G$. Hence G is open in Y because \mathcal{P} is a weak-base for Y. So \mathcal{F} is a weak-base for Y.

Therefore Y is a g-metrizable space.

\[\square \]

3. The weak-open cs-image of a metric space

Theorem 3.1. A space Y has a compact-countable weak-base if and only if Y is a weak-open cs-image of a metric space.

Proof. Sufficiency. Suppose Y is the image of a metric space X under a weak-open cs-mapping f. Since f is a weak-open mapping, there exists a weak-base $\mathcal{B} = \bigcup \{ \mathcal{B}_y : y \in Y \}$ for Y such that for each $y \in Y$ there exists $x(y) \in f^{-1}(y)$ satisfying the condition (*) from Definition 1.3. Because X is a metric space, X has a σ-locally finite base. Let \mathcal{P} be a σ-locally finite base for X. For each $P \in \mathcal{P}$, put

$$\mathcal{B}_P = \{ B \in \mathcal{B} : B \subset f(P) \},$$

$$B_P = \bigcup \mathcal{B}_P,$$
then \(B_P \subset f(P) \). For each compact subset \(K \) of \(Y \), since \(f \) is a \(cs \)-mapping, \(f^{-1}(K) \) is separable in \(X \). So \(f^{-1}(K) \) is a Lindelöf subspace of \(X \). Because a locally finite collection of a Lindelöf space is countable, \(\{ P \in \mathcal{P} : P \cap f^{-1}(K) \neq \emptyset \} \) is countable. Thus \(f(\mathcal{P}) \) is compact-countable. Hence \(\mathcal{B}^* = \{ B_P : P \in \mathcal{P} \} \) is compact-countable. For each \(y \in Y \), put

\[
\mathcal{B}'_y = \{ B_P \in \mathcal{B}^* : B_y \in \mathcal{B}_P \text{ for some } B_y \in \mathcal{B}_y \},
\]

\[
\mathcal{B}''_y = \left\{ \bigcap \mathcal{U} : \mathcal{U} \text{ is a finite subcollection of } \mathcal{B}'_y \right\},
\]

\[
\mathcal{B}'' = \bigcup \{ \mathcal{B}''_y : y \in Y \},
\]

then \(\mathcal{B}'' \) is compact-countable. We will prove that \(\mathcal{B}'' \) is a weak-base for \(Y \). It is easy to check that \(\mathcal{B}'' \) satisfies the condition (1), (2) from Definition 1.2.

Suppose \(V \) is open in \(Y \) for each \(y \in Y \), since \(\mathcal{P} \) is a base for \(X \), then \(x(y) \in P \subset f^{-1}(V) \) for some \(P \in \mathcal{P} \). Thus there exists \(B_y \in \mathcal{B}_y \) such that \(B_y \subset f(P) \), and so \(B_y \subset \mathcal{B}_P \). Hence \(B_P \in \mathcal{B}'_y \subset \mathcal{B}''_y \) and \(B_P \subset f(P) \subset V \). On the other hand, suppose \(V \subset Y \) is such that for each \(y \in V \), \(B \subset V \) for some \(B \in \mathcal{B}'' \). By the properties of \(\mathcal{B}' \) and \(\mathcal{B}'' \) and the condition (2) from Definition 1.2, there exists \(B_y \in \mathcal{B}_y \) such that \(y \in B_y \subset B \subset V \). Because \(\mathcal{B} = \bigcup \{ \mathcal{B}_y : y \in Y \} \) is a weak-base for \(Y \), \(V \) is open in \(Y \). Therefore \(\mathcal{B}'' \) is a weak-base for \(Y \).

Necessity. Suppose \(\mathcal{P} \) is a compact-countable weak-base for \(Y \). Endow \(\mathcal{P} \) with discrete topology, then \(\mathcal{P} \) is a metric space. Put \(X = \{ (P_n) \in \mathcal{P}^\omega : \{ P_n : n \in \mathbb{N} \} \text{ is a network of some point } y \in Y \} \), and endow \(X \) with the subspace topology induced by the product topology of the usual product space \(\mathcal{P}^\omega \). Then \(X \) is a metric space. Since \(Y \) is Hausdorff, \(y \) is unique in \(Y \) (in fact, it is easy to check that \(\{ y \} = \bigcap_{n \in \mathbb{N}} P_n \)).

We define \(f : X \to Y \) by \(f((P_n)) = y \) for each \((P_n) \in X \). For each \(y \in Y \), since \(\mathcal{P} \) is point-countable in \(Y \), denoting \(\{ P \in \mathcal{P} : y \in P \} \) by \((P_n) \), we have \((P_n) \in X \) and \(f((P_n)) = y \). Thus \(f \) is a surjection. It is obvious that \(f \) is continuous. We will prove that \(f \) is a weak-open cs-mapping.

(i) \(f \) is a weak-open mapping.

For each \(y \in Y \), denote a collection of weak neighbourhoods of \(y \) in \(Y \) by \(\mathcal{P}_y \); then \(\mathcal{P}_y \) is countable. Set \(\mathcal{P}_y = \{ P_n : n \in \mathbb{N} \} \), then \(f((P_n)) = y \) and \((P_n) \in f^{-1}(y) \). For each \(n \in \mathbb{N} \), put

\[
B(P_1, \ldots, P_n) = \{ (P'_n) \in X : P'_i = P_i \text{ for each } i \leq n \}.
\]

It is easy to check that \(\{ B(P_1, \ldots, P_n) : n \in \mathbb{N} \} \) is a locally neighbourhood base of the point \((P_n) \) in \(X \). \(\square \)
Claim. \(f(B(P_1, \ldots, P_n)) = \bigcap_{i \leq n} P_i \) for each \(n \in \mathbb{N} \).

Suppose \((P'_i) \in B(P_1, \ldots, P_n) \), then \(f((P'_i)) = \bigcap_{i \leq n} P'_i \subset \bigcap_{i \leq n} P_i \). Thus \(f(B(P_1, \ldots, P_n)) \subset \bigcap_{i \leq n} P_i \). On the other hand, suppose \(z \in \bigcap_{i \leq n} P_i \) and set \(\mathcal{P}_z = \{ P_{n+j}^n : j \in \mathbb{N} \} \).

Put
\[
P_r^* = \begin{cases}
P_r, & r \leq n, \\
P_r^n, & r > n,
\end{cases}
\]
then \((P_r^*) \in B(P_1, \ldots, P_n) \) and \(f((P_r^*)) = z \). Thus \(\bigcap_{i \leq n} P_i \subset f(B(P_1, \ldots, P_n)) \). Hence
\[
f(B(P_1, \ldots, P_n)) = \bigcap_{i \leq n} P_i.
\]

Because \(\mathcal{P} \) is a weak-base for \(Y \) and \(\{ P_n : n \in \mathbb{N} \} = \mathcal{P}_y \), we obtain \(f(B(P_1, \ldots, P_n)) = \bigcap_{i \leq n} P_i \in \mathcal{P}_y \) for each \(n \in \mathbb{N} \). Suppose \(G \) is a open neighbourhood of the point \((P_n) \) in \(X \); then there exists \(j \in \mathbb{N} \) such that \(B(P_1, \ldots, P_j) \subset G \). So \(f(B(P_1, \ldots, P_j)) \subset f(G) \). By the Claim, \(f(B(P_1, \ldots, P_j)) = \bigcap_{i \leq j} P_i \in \mathcal{P}_y \). Hence there exists a weak-base \(\mathcal{P} \) for \(Y \) and \((P_n) \in f^{-1}(y) \) satisfying the condition (*) from Definition 1.3(1). Therefore \(f \) is a weak-open mapping.

(ii) \(f \) is a cs-mapping.

For each compact subset \(K \) of \(Y \), since \(\mathcal{P} \) is compact-countable, hence \(\{ P \in \mathcal{P} : P \cap K \neq \emptyset \} \) is countable. Thus \(\{ P \in \mathcal{P} : P \cap K \neq \emptyset \}^{\omega} \cap X \) is a hereditarily separable subspace of \(X \). Because \(f^{-1}(K) \subset \{ P \in \mathcal{P} : P \cap K \neq \emptyset \}^{\omega} \cap X \), thus \(f^{-1}(K) \) is separable in \(X \). Hence \(f \) is a cs-mapping.

Remark 3.2. A mapping \(f : X \to Y \) is an \(s \)-mapping (\(ss \)-mapping [16]) if for each \(y \in Y \), \(f^{-1}(y) \) is separable in \(X \) (for each \(y \in Y \), there exists an open neighbourhood \(V \) of \(y \) in \(Y \) such that \(f^{-1}(V) \) is separable in \(X \)). A mapping \(f : X \to Y \) is a 1-sequence-covering mapping [14] if for each \(y \in Y \) there exists \(x \in f^{-1}(y) \) satisfying the following condition: whenever \(\{ y_n \} \) is a sequence in \(Y \) converging to a point \(y \) in \(Y \), there exists a sequence \(\{ x_n \} \) of \(X \) converging to a point \(x \) in \(X \) such that each \(x_n \in f^{-1}(y_n) \). Obviously, if \(X \) is a metric space, then an \(ss \)-mapping \(\Rightarrow \) a cs-mapping \(\Rightarrow \) an \(s \)-mapping. However, we have the following facts.

Example 1. A weak-open \(s \)-image of a metric space is not a weak-open cs-image of a metric space.

Let
\[
S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{ 0 \}, \quad X = [0, 1] \times S,
\]
and let
\[
Y = [0, 1] \times \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}
\]
have the usual Euclidean topology as a subspace of $[0,1] \times S$. Define a typical
neighbourhood of $(t,0)$ in X to be of the form

$$\{(t,0)\} \cup \left(\bigcup_{k \geq n} V(t, 1/k) \right), \quad n \in \mathbb{N},$$

where $V(t, 1/k)$ is a neighbourhood of $(t,1/k)$ in $[0,1] \times \{1/k\}$. Put

$$M = \left(\bigoplus_{n \in \mathbb{N}} [0,1] \times \{1/n\} \right) \oplus \left(\bigoplus_{t \in [0,1]} \{t\} \times S \right)$$

and define f from M onto X such that f is an obvious mapping.

Then f is a compact-covering, quotient, two-to-one mapping from the locally
compact metric space M onto the separable, regular, non-Lindelöf, k-space X (see
Example 2.8.16 of [13] or Example 9.3 of [18]). It is easy to check that f is a
1-sequence-covering mapping. By Theorem 2.5 of [14], X has a point-countable
weak-base. Thus X is a weak-open s-image of a metric space by Theorem 2.5 of [4].

X has no compact-countable k-network. Indeed, suppose \mathcal{P} is a compact-
countable k-network for X. Put

$$\mathcal{F} = \{\{(t,0)\}: t \in [0,1]\} \cup \{P \cap Y: P \in \mathcal{P}\}.$$

Since $[0,1] \times \{0\}$ is a closed discrete subspace of X, \mathcal{F} is a k-network for X. But
Y is a σ-compact subspace of X. Thus $\{P \cap Y: P \in \mathcal{P}\}$ is countable, and so
\mathcal{F} is star-countable. Since a regular k-space with a star-countable k-network is an
\aleph_0-space (see [17]), hence X is a Lindelöf space, a contradiction. Thus X has no
compact-countable k-network. By Lemma 7 of [15], X has no compact-countable
weak-base. Hence X is not a weak-open c-image of a metric space by Theorem 3.1.

Example 2. A weak-open c-image of a metric space is not a weak-open s-image
of a metric space.

Let X be a paracompact space with a point-countable base and not metrizable.
Then X has a compact-countable base, and so X has a compact-countable weak-base. By Theorem 3.1, X is a weak-open c-image of a metric space. But X is not
a 1-sequence-covering s-image of a metric space because X is not a metric space.
Thus X is not a weak-open s-image of a metric space by Proposition 3.3 of [5].
References

Authors’ addresses: Zhaowen Li, Dept. of Math., Changsha University of Science and Technology, Changsha, Hunan 410077, P.R.China, e-mail: Lizhaowen8846@163.com; Shou Lin, Dept. of Math., Ningde Teacher’s college, Ningde, Fujian 352100, P.R.China.