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Abstract. We characterize lattices with a complemented tolerance lattice. As an appli-
cation of our results we give a characterization of bounded weakly atomic modular lattices
with a Boolean tolerance lattice.

Keywords: tolerance simple and tolerance-trivial lattices, locally order-polynomially com-
plete lattices

MSC 2000 : 06B05, 06C05

1. Introduction

A lattice with 0 and 1 is called bounded. A tolerance T of a lattice L is a

binary relation T ⊆ L2 which is reflexive, symmetric and compatible with the lattice
operations ∧ and ∨. The tolerances of a lattice L form an algebraic lattice denoted

by TolL. As usual, Con L denotes the congruence lattice of L. Clearly, ConL ⊆
TolL. If Tol L = Con L, then the lattice L is called tolerance-trivial [2]. L is called

tolerance simple if it has only the trivial tolerances, namely the identity relation ∆
and the all relation ∇. L is called tolerance-boolean if Tol L is a Boolean lattice.
It is known [21] that a lattice L has a Boolean congruence lattice if and only if

it is a discrete subdirect product of simple lattices (i.e. the components of arbitrary

two elements of L are identical except for a finite number of components). In this
paper we prove the following
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Main Theorem. (i) TolL is complemented if and only if the lattice L is tolerance-

trivial and it is a discrete subdirect product of tolerance simple lattices.

(ii) The tolerance lattice of a bounded lattice L is complemented if and only if L

is a finite direct product of tolerance simple lattices.

The proof of Main Theorem is contained in Section 2. As an application of this
theorem, in Section 3 we also show that a bounded weakly atomic modular lattice L

is tolerance-boolean if and only if L is a complemented lattice of finite height.

2. Proof of the main results

Let L be an arbitrary lattice. According to H.-J. Bandelt’s result [1], Tol L is a
pseudocomplemented and 0-modular lattice. A lattice L with 0 is called pseudocom-
plemented if for every element x ∈ L, there exists an x∗ ∈ L such that for any y ∈ L,
y∧x = 0⇔ y 6 x∗. L is said to be 0-modular if for any a, b ∈ L, the relations a 6 c

and b∧ c = 0 imply (a∨ b)∧ c = a (see [19]). It is well-known that for any T ∈ Tol L
its transitive closure T̃ is a congruence. In addition we prove

Proposition 2.1. For any T ∈ Tol L its pseudocomplement T ∗ is a congruence.

������� �
. We claim that T ∗ = T̃ ∗. Since T ∗ 6 T̃ ∗, we have to prove only T̃ ∗ 6 T ∗,

that is T̃ ∗ ∧ T = ∆.
On the contrary, assume that T̃ ∗ ∧ T 6= ∆. Then there exist a, b ∈ L such that

a < b and (a, b) ∈ T̃ ∗ ∧ T . Thus we have (a, b) ∈ T and, by the definition of the
transitive closure, there exists a finite chain a = z0 6 z1 6 . . . 6 zn = b in L

such that for each 1 6 i 6 n, (zi−1, zi) ∈ T ∗ holds. Now a 6 zi−1 6 zi 6 b gives
(zi−1, zi) ∈ T ∧T ∗ = ∆, i.e. zi−1 = zi for all 1 6 i 6 n. Hence we get a = b, contrary

to our assumption. �

To make our proofs self-consistent we need some additional notions. Let L =
∏
i∈I

Li

be the direct product of lattices Li, i ∈ I and let xi denote the i-th component
(coordinate) of an x ∈ L. The identity and the all relation on Li are denoted by ∆i

and ∇i, respectively. A tolerance ϕ ∈ TolL is called the product of the tolerances
ϕi ∈ Tol Li if (a, b) ∈ ϕ ⇔ (ai, bi) ∈ ϕi for all i ∈ I (where a, b ∈ L). We write

ϕ =
∏
i∈I

ϕi or ϕ = ϕ1 × . . .× ϕn (when I = {1, . . . , n}).

Remark 2.2. The class of lattices has directly decomposable tolerances (see

e.g. [3]), that is L ∼=
n∏

i=1

Li implies Tol L ∼=
n∏

i=1

Tol Li.
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of Main Theorem. (i) Let L be an arbitrary lattice and assume that

TolL is complemented. First, we show that Tol L = ConL.
Take any T ∈ Tol L. Denoting the complement of T by T , we prove (T )∗ = T . As

T ∧ T = ∆ implies T 6 (T )∗, and since T ∧ (T )∗ = ∆ and TolL is 0-modular, we
obtain (T )∗ = (T ∨ T ) ∧ (T )∗ = T . Now Proposition 2.1 gives that T ∈ ConL and
this proves TolL = Con L.

As now Con L is also complemented and so it is a Boolean lattice, in view of [21],
L is a discrete subdirect product of some simple lattices Li, i ∈ I . Since Tol L =
ConL and since any Li is a homomorphic image of L, we deduce that any Li must
be tolerance simple: Indeed, if a tolerance T ∈ TolLi \Con Li existed, then, in view

of [4] Theorem 7, there would exist also a tolerance T ′ ∈ Tol L \ ConL, contrary to
our assumption. Therefore we get TolLi = ConLi = {∆i,∇i}, i ∈ I and hence L is

a discrete subdirect product of tolerance simple lattices.
Conversely, assume that L is tolerance-trivial and it is a discrete subdirect prod-

uct of tolerance simple lattices Li, i ∈ I . Since each Li is (congruence) simple
as well, ConL is a Boolean lattice according to [21]. As TolL = Con L, TolL is
complemented.
(ii) Let L be a bounded lattice and assume that TolL is complemented. Then, in

view of the above (i), L is tolerance-trivial and ConL is a Boolean lattice. More-
over, since any congruence-boolean bounded lattice has a finite congruence lattice

(see e.g. [5]), ConL is finite. As by [14] any tolerance-trivial algebra is congruence
permutable, L is also congruence permutable. On the other hand, [6] Theorem 3.1

implies that any bounded lattice with a finite Boolean congruence lattice and per-
mutable congruences is a finite direct product of simple lattices. (See also [11],

Theorem 6 (iii).) Hence we obtain L =
n∏

i=1

Li with n ∈ ! and all Li congruence

simple. As L is tolerance-trivial, we can repeat the argument in the “if” part of
the proof of assertion (i) providing that all the lattices Li, 1 6 i 6 n are tolerance

simple.

Conversely, assume that L =
n∏

i=1

Li with all Li tolerance simple. Then, in view

of Remark 2.3, we have TolL =
n∏

i=1

TolLi. Therefore Tol L, as a direct product of

two-element chains, is complemented. �

A bounded lattice L is called semicomplemented if for any x ∈ L, x 6= 1 there
exists a y ∈ L such that x∧ y = 0 and y 6= 0. In view of [20], any semicomplemented
lattice which is pseudocomplemented is complemented, too. It is also known that
any tolerance simple lattice L is locally order-polynomially complete (see e.g. [15]),

i.e. every order-preserving function f : Ln → L is a local polynomial of L. Hence we
obtain
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Corollary 2.3. If L is a bounded lattice, then Tol L is semicomplemented if and
only if L is a finite direct product of locally order-polynomially complete lattices.

Remark 2.4. (i) Notice that, implicit in the proof of Main Theorem (ii) is the
following assertion: If L is a bounded lattice and TolL is complemented, then Tol L
is finite.

(ii) We also note that the statement (i) of our Main Theorem is a generalization
of the results of [12] and [13].

Since any simple distributive lattice is a two-element Boolean lattice we obtain
the following

Corollary 2.5. The tolerance lattice of a bounded distributive lattice L is semi-

complemented if and only if L is a finite Boolean lattice.

3. Application to weakly atomic modular lattices

Let u < v be elements of a lattice L. If u is covered by v (i.e. when there is
no z ∈ L with u < z < v), then we write u ≺ v. L is called weakly atomic if for

any a, b ∈ L, a < b there exist c, d ∈ L such that a 6 c ≺ d 6 b. A congruence
θ ∈ ConL is called separable [7] if for any a, b ∈ L, a < b, there exists a chain

a = z0 6 z1 6 . . . 6 zn = b such that for each i = 1, . . . , n either (zi−1, zi) ∈ θ holds
or there are no elements r, s ∈ L satisfying zi−1 6 r < s 6 zi and (r, s) ∈ θ.

Now we are able to formulate the second main result of this paper:

Theorem 3.1. Let L be a bounded weakly atomic modular lattice. Then the

following statements are equivalent:

(i) L is tolerance-trivial and every congruence of L is definable.

(ii) TolL is a Boolean lattice.
(iii) L is a finite direct product of tolerance simple lattices.

(iv) L is complemented and has a finite height.
������� �

. (i) ⇒ (ii). By the Grätzer-Schmidt well-known theorem [8] the congru-
ence lattice of a lattice L is Boolean if and only if L is weakly modular and every
congruence of it is definable. Since any modular lattice is also weakly modular,

(i) implies that the lattice TolL = Con L is Boolean.
(ii) ⇒ (iii). If Tol L is a Boolean lattice, then it is complemented as well, and

hence by applying Main Theorem (ii) we obtain (iii).

(iii) ⇒ (iv). Assume that L =
n∏

i=1

Li with all Li tolerance simple. Then each Li,

as a direct factor of the bounded lattice L, is isomorphic to a principal ideal of L.
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Therefore each Li is also a bounded and weakly atomic modular lattice. Since, in view

of [5] Theorem 4.2, any weakly atomic modular lattice with a Boolean congruence
lattice is locally finite and since each ConLi is a two-element Boolean lattice, we
conclude that every Li is locally finite. As each Li is bounded and modular, by

the Jordan-Dedekind chain condition it has a finite height. On the other hand, any
tolerance simple modular lattice with a finite height is complemented, according

to [17]. (See also [16].) Therefore all the lattices Li, 1 6 i 6 n, are complemented
and have finite height, and hence their finite direct product L is also complemented

and has a finite height.

(iv) ⇒ (i). Since any complemented modular lattice is relatively complemented,
we can now apply [4] Theorem 5 which asserts that any relatively complemented

lattice is tolerance-trivial. As all congruences of a lattice with a finite height are
definable (since every chain of it is finite), we get (i), and our proof is completed. �

Since every direct factor of a lattice with a finite height has also a finite height

and since, according to [17], a modular lattice with a finite height is tolerance simple
if and only if it is a (finite dimensional) irreducible projective geometry, we deduce

Corollary 3.2. A bounded weakly atomic modular lattice is tolerance-boolean
if and only if it is a finite direct product of finite dimensional irreducible projective

geometries.

As any lattice with a finite height is bounded, weakly atomic, and each congruence
of it is definable, by applying Theorem 3.1 we obtain

Corollary 3.3. For any modular lattice of finite height the following statements
are equivalent1:

(i) L is tolerance-trivial.

(ii) L is a finite direct product of tolerance simple lattices.

(iii) L is complemented.
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