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NATURAL T -FUNCTIONS ON THE COTANGENT BUNDLE

OF A WEIL BUNDLE
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, Brno
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Abstract. A natural T -function on a natural bundle F is a natural operator transforming
vector fields on a manifold M into functions on FM . For any Weil algebra A satisfying
dimM > width(A) + 1 we determine all natural T -functions on T ∗TAM , the cotangent
bundle to a Weil bundle T AM .
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1.

The aim of this paper is the classification of all natural T -functions defined on the

cotangent bundle to a Weil bundle T ∗TA for any Weil algebra A. The starting point
is a general result by Kolář, [4], [5], determining all natural operators T → TTA

transforming vector fields on manifolds to vector fields on a Weil bundle TA. We
also follow the similar classification results of Mikulski, [7] and [8]. Natural operators

lifting vector fields to cotangent bundle structures were studied in [9] and also in [3]
and [12], where some partial results of our general problem are solved. We follow the

basic terminology from [5].

We start from the concept of a natural T -function. For a natural bundle F ,
a natural T -function f is a natural operator fM transforming vector fields on a

manifold M to functions on FM . The naturality condition reads as follows. For a
local diffeomorphism ϕ : M → N between manifolds M , N and for vector fields X

The author was supported by the grants No. 201/99/0296 and No. 201/99/D007 of
the Grant Agency of the Czech Republic and partially supported by the research
project MSM 261100007, Czech Republic.
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on M and Y on N satisfying Tϕ ◦X = Y ◦ϕ, the equality fNY ◦Fϕ = fMX holds.

An absolute natural operator of this kind, i.e. independent of the vector field, is
called a natural function on F .
There is a related problem of the classification of all natural operators lifting

vector fields on m-dimensional manifolds to T ∗TA. The solution of the second
problem is given by the solution of the first one as follows [13]. Natural opera-

tors AM : TM → TT ∗TAM are in the canonical bijection with natural T -functions
gM : T ∗T ∗TAM → � linear on fibers of T ∗(T ∗TAM) → T ∗TAM . Using natural

equivalences s : TT ∗ → T ∗T by Modugno-Stefani, [10] and t : TT ∗ → T ∗T ∗ by
Kolář-Radziszewski, [6], we obtain the identification of gM with natural T -functions

fM : T ∗TTAM → � given by fM = gM ◦ tT AM ◦ s−1
T AM

. Thus we investigate natural
T -functions defined on T ∗T � ⊗AM to determine all natural operators T → TT ∗TA,

where  denotes the algebra of dual numbers.
We recall the general result of Kolář, [4], [5]. For a Weil algebra A, the Lie

group AutA of all algebra automorphisms of A has a Lie algebra AutA identified
with DerA, the algebra of derivations of A. Thus every D ∈ DerA determines a one
parameter subgroup d(t) and a vector field DM on TAM tangent to (d(t))M . Hence
we have an absolute natural operator λD : TM → TTAM defined by λDX = DM

for any vector field X onM . For a natural bundle F , let F denote the corresponding
flow operator, [5]. Further, let LM : A×TTAM → TTAM denote the natural affinor

of Koszul, [4], [5]. Then the result of Kolář reads

All natural operators T → TTA are of the form L(c)T A + λD

for some c ∈ A and D ∈ DerA.

Let ξ : M → TM be a vector field. Kolář in [3] defined an operation ˜ transforming
a vector field on a manifoldM into a function on T ∗M by ξ̃(ω) = 〈ξ(p(ω)), ω〉, where
p is the cotangent bundle projection and ω ∈ T ∗M . One can immediately verify

that for a natural bundle F and a natural operator AM : TM → TFM we have a
natural T -function ÃM : T ∗FM → � defined by ÃM (X) =

�
AMX for any vector

field X : M → TM .

2.

In this section, we find all natural T -functions fM : T ∗TAM → � for any mani-
fold M for m = dimM > width(A) + 1. For some Weil algebras A, [13], all natural
T -functions in question are of the form

h(
�
L(c)T A, λ̃D)) c ∈ C, D ∈ D
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where C is a basis of A, D is a basis of DerA and h is any smooth function

� dim A+dimDerA → � . Let  r
k denote the algebra of jets J

r
0 ( � k , � ). It can be

also considered as the algebra of polynomials of variables τ1, . . . , τk. By [5], any Weil
algebra A is obtained as the factor of  r

k by an ideal I , i.e. A =  r
k/I .

The contravariant approach to the definition of a Weil bundle by Morimoto sets

MA = Hom(C∞(M, � ), A) and was studied by many authors, e.g. Muriel, Munoz,
Rodriguez, Alonso [1], [11]. The covariant approach (Kolář, [3], [5]) defines TAM as
the space of A-velocities. Let ϕ, ψ : � k →M , ϕ(0) = ψ(0). Then ϕ and ψ are said to
be I-equivalent iff for any germx f , f : M → � the inclusion germ(f ◦ϕ− f ◦ψ) ∈ I
holds. Classes of such an equivalence jAϕ are said to be A-velocities. For a smooth

map g : M → N define TAg(jAϕ) = jA(g ◦ ϕ). Since TA preserves products, we
have TA � = A, TA � m = Am. The identification F : MA → TAM between those

two approaches to the definition of a Weil bundle is given by

(1) F (jAϕ)(f) = jA(f ◦ ϕ) for any f ∈ C∞(M, � ).

We are going to construct natural T -functions defined on T ∗TA from natural op-

erators T → TT r
k , since there are some additional ones on T

∗TA, which cannot be
constructed from natural operators T → TTA.

Let p :  r
k → A be the projection Weil algebra homomorphism inducing the nat-

ural transformation p̃M : T r
kM → TAM . There is a linear map ι : A →  r

k such

that p ◦ ι = idA. By means of ι we construct an embedding TAM → T r
kM .

Consider any jAϕ ∈ TAM as an element of Hom(C∞(M, � ), A). Then domains
of jAϕ ∈ TA

x0
M can be replaced by Jr

x0
(M, � ). Indeed, for any f ∈ C∞(M, � ),

jAϕ(f) = jA(f ◦ ϕ) = [germx0
f ◦ germ0 ϕ]I , where x0 = ϕ(0), 0 ∈ � k . Since any

ideal I in the algebra E(k) of finite codimension contains the rth power of the max-
imal ideal of E(k), the last expression can be replaced by [jr

0(f ◦ ϕ)]J = jAϕ(jr
x0
f),

where J is an ideal of  r
k corresponding to I .

Further, any element jr
x0
f ∈ Jr

x0
(M, � ) can be decomposed into f(x0) +

jr
x0

(t−1
f(x0) ◦ f) = f(x0) + jr

x0
f̃ , where ty : � → � denotes in general a transla-

tion mapping 0 into y. The second expression is an element of the bundle of
covelocities of type (1, r), namely an element of (T r∗)x0M = (T r∗

1 )x0M , the bundle
of covelocities of type (k, r) being defined as T r∗

k M = Jr(M, � k )0, [5].
Select any minimal set of generators Bx0 of the algebra T

r∗
x0
M . For any jr

x0
f̃ ∈ Bx0

define ι̃x0 : TA
x0
M → (T r

k )x0M by (ι̃x0(jAϕ))(jr
x0
f̃) = ι̃((jAϕ)(jr

x0
f̃)). In the second

step, ι̃ can be extended to a homomorphism Jr
x0

(M, � ) →  r
k .

We extend the map ι̃x0 to ι̃ : TAM → T r
kM . For a general Weil algebra B

we show that any element jBϕ ∈ TB
x M corresponds bijectively to some element

jBϕ0 ∈ TB
x0
M . Indeed, jBϕ(jr

xf) = jB(f ◦ϕ) = jB(f ◦ t−1
x ◦ tx ◦ϕ0) = jBϕ0(jr

x0
f0).
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This general property extends ι̃x0 to ι̃ : TAM → T r
kM . The map ι̃ is not a natural

transformation and for a manifold M , it depends on the selection of the algebra
basis Bx0 at x0 ∈ M . To stress this we shall use sometimes the notation ι̃Bx0

for ι̃.
We have proved the following assertion.

Proposition 1. Let A =  r
k/I be a Weil algebra, p :  r

k → A the projec-

tion homomorphism with its associated natural transformation p̃ : T r
k → TA and

ι : A →  r
k a linear map satisfying p ◦ ι = idA. For a manifold M and x0 ∈ M

let Bx0 be a minimal set of generators of the algebra J
r
x0

(M, � )0 = T r∗
x0
M . Then

there is an embedding ι̃Bx0
: TAM → T r

kM satisfying p̃M ◦ ι̃Bx0
= idT AM such that

(ι̃Bx0
(jAϕ))(jr

x0
f̃) = ι((jAϕ)(jr

x0
f̃)) for any jAϕ ∈ TA

x0
M and jr

x0
f̃ ∈ Bx0 .

In the following investigations, we shall need coordinates on TAM and T ∗TAM .
We introduce them and using Proposition 1, we give a relation between them and

those on T r
kM to be right now recalled. Consider a polynomial form of elements

from  r
k , namely

1
α!xατ

α for 0 6 |α| 6 r. Since Weil bundles preserve products, we

have canonical coordinates xi
α on T

r
k � m = (  r

k )m for 1 6 i 6 m and 0 6 |α| 6 r.
Consider the system S formed by non-zero images p(τα) of all τα ∈  r

k forming its

monomial linear basis. Take a maximal linearly independent subset S0 of S (a linear
basis of A). Then any element d ∈ S−S0 is uniquely expressed as cdaa for a ∈ x0. For

any element b ∈ S, select a monomial representative τβ having a minimal multiindex
among all of them. Then there is such a basis S0 ⊆ S that any cda = cδα satisfy

|δ| > |α| for the minimal representatives τα of p−1(a) and τ δ of p−1(d). Define
the map ι : A →  r

k by ι(a) = τα for a minimal representative τα of a ∈ S0 and

ι(d) = cδατ
α for other elements d ∈ S and their minimal representatives τ δ . Hence ι

is a linear map satisfying p◦ι = idA from Proposition 1. It introduces the coordinates

yi
α on T

AM by

(2) ι̃

(
p̃
( 1
γ!
xi

γτ
γ
))

=
1
α!
yi

ατ
α.

The following formula gives the relation between the coordinates yi
α of p̃(

1
γ!x

i
γτ

γ)
and xi

α of the projected element of T
r
kM . It is of the form

(3) yi
α = xi

α +
α!
δ!
xi

δc
δ
α.

The transformation laws for the action of the jet group Gr
k on the standard

fiber (T ∗TA)0 � m are of the form

(4) yi
α = ai

l1...lsy
l1
α1
. . . yls

αs
+
α!
δ!
ai

h1...ht
yh1

δ1
. . . yht

δt
cδα.
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Further, we define the additional coordinates pα
i on T

∗TAM by pα
i dy

i
α. The trans-

formation laws for the action of Gr+1
m on the additional coordinates satisfies

(5) pβ
j =

(α+ β)!
α!β!

ãl
jl1...lsy

l1
α1
. . . yls

αs
pαβ

l +
γ!
δ!β!

ãl
jh1...ht

yh1
δ1
. . . yht

δt
cδβ
γ pγ

l .

The relation between pα
i and the additional coordinates q

γ
i on T

∗T r
kM defined by

qγ
i dx

i
γ is given by

(6) qγ
i = pγ

i for τγ ∈ S0 and qγ
i =

α!
γ!
pα

i c
γ
α otherwise.

Without loss of generality, we can suppose the following form of generators of the

ideal I . Let πr
s :  r

k →  s
k be the canonical projection of Weil algebras. Then

there is such a set of generators of I that each of them either gets mapped to zero

by πr
1 or is a linear monomial. In the following investigations, such an ideal will

be called a normal ideal. It is easy to see that for any Weil algebra A there is a

Weil algebra A0 with this property and an algebra isomorphism ϕ : A → A0. Then
every natural operatorDA

M : TM → TTAM is bijectively assigned a natural operator
DA0

M : TM → TTA0M by

DA
MX(y) := T ϕ̃−1

0 ◦DA0
M X ◦ ϕ̃0(y)

for a vector field X on M , y ∈ TAM . The notation ϕ̃0 indicates the natural equiva-
lence TA → TA0 induced by the isomorphism ϕ0 : A→ A0.

For a manifold M and an algebra basis Bx0 of the algebra of covelocities T
r∗
x0
M

with the source at x0 ∈M , let us define operators TM → TTAM by means of ι̃Bx0

and natural operators T → TT r
k as follows. Every natural operator l : T → TT r

k

defines an operator

(7) Λ = ΛM,Bx0
: TM → TTAM by ΛM ;Bx0

= T p̃ ◦ λ ◦ ι̃Bx0

which does not have to be natural and neither do the functions Λ̃ = Λ̃M ;Bx0
:

T ∗TAM → � . Consider a basis of natural operators T → TT r
k .

The non-absolute natural operators λ together with some of the absolute ones in

this basis induce natural operators Λ: T → TTA, while the others will be used for
the construction of natural functions T ∗TAM → R, i.e. those functions T ∗TAM → �
which become free of the selection of x0 ∈M and Bx0 ∈ T ∗rx0

M .
By general theory, [5], searching for natural T -functions defined on T ∗TA, we are

going to investigate Gr+2
m -invariant functions defined on (Jr+1T )0 � m × (T ∗TA)0 � m .

Therefore we state some assertions, concerning the action of Gr+2
m and some of its
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subgroups on this space. It will be necessary to consider the coordinate expression of

this action as well as that of base operators Λ: TM → TTAM and their associated
functions Λ̃ : T ∗TAM → � .
Denote by λβ

j a natural operator λDβ
j
associated to a derivation of  r

k defined by

τi → δj
i τ

β for j ∈ {1, . . . , k} and 1 6 |β| 6 r. Then we have coordinate forms of λβ
j ,

Λβ
j and Λ̃β

j . We have

λβ
j =

γ!
(γ − β)!

xi
jγ−β

∂

∂xi
γ

, Λβ
j =

( α!
(α− β)!

yi
jα−β +

α!
(δ − β)!

yi
jδ−βc

δ
α

) ∂

∂yi
α

,(8)

Λ̃β
j =

( α!
(α− β)!

yi
jα−β +

α!
(δ − β)!

yi
jδ−βc

δ
α

)
pα

i .(9)

Let k be the width of the Weil algebra A. For m > k, define an immersion element
i ∈ TA

0 � m as follows. For m > k, let imk : � k → � m defined by imk = id � k ×(0)m−k

be the canonical inclusion of � k into � m . Then define i ∈ TA
0 � m by

(10) i = jAimk .

In coordinates, it satisfies yi
α = 0 whenever |α| > 2 and yi

j = δi
j .

Consider the jet group Gr
k, [5]. It can be identified with Aut  r

k , the group of
automorphisms of the algebra  r

k , as follows. For j
r
0g ∈ Gr

k and j
r
0ϕ ∈  r

k define

(11) jr
0g(j

r
0ϕ) = jr

0ϕ ◦ (jr
0g)

−1.

For a Weil algebra p :  r
k → A =  r

k/I Alonso in [1] defined subgroups GA and GA

of Gr
k as follows. GA = {jr

0g ∈ Gr
k ; p◦jr

0g = p} and GA = {jr
0g ∈ Gr

k ; Ker(p◦jr
0g) =

Ker(p)}. He also proved that GA is a normal subgroup of GA and the property

GA/GA ' AutA.
In the following investigations, we shall need the concept of a regular A-point and

thus we recall it. An element ϕ ∈ MA is said to be regular (a regular A-point) if
and only if its image coincides with A, [1]. Taking into account the identificatin (1),

such a concept can be extended to an A-velocity jAϕ ∈ TAM . Clearly, it is regular
if and only if ϕ is an immersion in 0 ∈ � k , where k is the width of A. Further, it

must hold that dimM > k. In the case m = k the concept of regularity coincides
with that of invertibility. The map ι̃ from Proposition 1 preserves regularity and

thus ι̃ : Ak → � k can be restricted to reg(Nk) → Gr
k, where N denotes the nilpotent

ideal of A.

The following lemma characterizes GA as the stability subgroup of the immersion
element i.
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Lemma 2. Let A =  r
m/I be a Weil algebra of width k with the projection

homomorphism p and a normal ideal I of  r
m . Let St(i) ⊆ Gr

m be the stability

subgroup of the immersion element i ∈ TA
0 � m under the canonical left action of Gr

m.

Then GA = St(i) = Ker p̃ ∩Gr
m, if we consider the restriction of p̃ � m to Gr

m.
���������

. The formula (11) implies that every element of Gr
m stabilizes i if and

only if ai
j = δi

j for j ∈ {1, . . . , k} and ai
α + α!

δ! a
i
δc

δ
α = 0 whenever |α| > 2 and

τα ∈ 〈τ1, . . . , τk〉.
On the other hand, GA = {jr

0g ∈ Gr
m ; p ◦ jr

0ϕ ◦ (jr
0g)

−1 = p ◦ jr
0ϕ ∀ jr

0ϕ ∈
 r

m}. The transformation law for the action of jr
0g ∈ Aut  r

m on j
r
0ϕ ∈  r

m (in the
coordinates xα) is given by

(12) xα = xl1...lq ã
l1
α1
. . . ãlq

αq

for all decompositions α1 . . . αq of α. Further, the application of (3) on (12) yields

the identity

(13) yα = xl1...lq ã
l1
α1
. . . ãlq

αq
+
α!
δ!
xh1...ht ã

h1
δ1
. . . ãht

δt
cδα,

satisfied for any admissible yα, xγ .
Substituting the ith projection pri for ϕ in (13), we obtain 0 = yα = ãi

α + α!
δ! ã

i
δc

δ
α

for |α| > 2, τα 6∈ I and τα ∈ 〈τ1 . . . , τk〉. Moreover we obtain ãi
j = ai

j = δi
j for

j ∈ {1, . . . , k}. This proves that GA ⊆ St(i). The converse inclusion follows from
the coordinate characterization of St(i) in the very beginning of the proof, the fact
that the functions pri fulfill the condition from the definition of GA and from an

application of the automorphisms from the definition of GA. This proves our claim.
The second assertion follows from the formulas (3), (4) and the definition of the

coordinates yi
α, which completes the proof. �

Let A =  r
m/I be a Weil algebra, dimM > m+1. In the proof of the main result,

we need to describe the stability group of jr+1
0 (∂/∂ym+1). The transformation laws

for the action of Gr+2
m+1 on (Jr+1T )0 � m have the coordinate expression

(14) Xi
α = ai

lγ1
X l

γ2
ãγ

α,

where X i
α, |α| 6 r+ 1 denote the canonical coordinates of jr+1

0 (∂/∂ym+1). Further,
any multiindex γ including the empty one is decomposed into γ1, γ2 and the notation

ãγ
α denotes the system of all ã

l1
α1
. . . ãls

αs
for l1, . . . , ls forming the multiindex γ and

decompositions α1, . . . , αs forming α. It follows that in coordinates any element

of Gr+2
m+1 must satisfy a

i
j = δi

m+1 and a
i
α = 0 whenever the multiindex α formed by

all of 1, . . . ,m+ 1 contains at least one m+ 1 for |α| > 2. To describe the stability

875



group of jr+1
0 (∂/∂ym+1) in terms of Lemma 2, denote by As

m+1 the Weil algebra of

 s
m+1/J for J = 〈τm+1τ

α〉, |α| > 1. Thus we have proved the following lemma.

Lemma 3. The stability group of jr+1
0 (∂/∂ym+1) in Gr+2

m+1 is of the form

ι̃((Ar+2
m+1)

m+1) ∩Gr+2
m+1.

Moreover, the stability group of jr+1
0 (∂/∂ym+1) and the immersion element i ∈

TA
0 � m+1 is of the form

GA;m+1 = GA ∩ ι̃((Ar+2
m+1)

m+1).

Let us consider the basis B̃ of all T -functions Λ̃ defined on T ∗TAM (not natural
in general), constructed from the non-absolute natural operators L(τα)T A and from

the absolute operators Λβ
j with the coordinate expression given by (8). Let B̃1 denote

the subbasis of B̃ formed by natural T -functions T ∗TA → � .
Alonso in [1] proved that there is a structure of a fiber bundle on regTAM with the

standard fiber Gr
m/GA over an m-dimensional manifold M and therefore regTA

0 � m

is identified with Gr
m/GA. The elements of reg(TA)0 � m are the left classes jr

0gGA.
Let A =  s

m/I be a Weil algebra of width k 6 m, where I is a normal ideal.

Define a map ι̃∗ : Am → Gs
m by

(15) ι̃∗ := (ι̃ ◦ p̃k)× id � m−k .

Then we have a map Imm: T ∗(reg TA)0 � m → (T ∗i T
A)0 � m defined by

(16) Imm(w) = l((ι̃∗(q(w)))−1, w),

for w ∈ T ∗ regTA
0 � m and the cotangent bundle projection q.

In the following assertion we prove that the map Imm preserves the value of any
Λ̃ : T ∗TA � m → � induced by a natural function λ̃ : T ∗A→ � .

Proposition 4. Let A =  r
m/I be Weil algebra of width k with the normal

ideal I and (T ∗(regTA))0 � m → (regTA)0 � m be the restriction of the natural bundle

T ∗TA � m → TA � m to the open submanifold (regTA)0 � m . Then all operators from

B̃ − B̃0 are Gr+2
m -invariant with respect to the map Imm.

���������
. We prove that for any Λ̃β

j : (T ∗TA)0 � m and for any w ∈ T ∗(regTA)0 � m

the values of Λ̃β
j (w) and Λ̃β

j (Imm(w)) coincide. We use the coordinates from (2)
and (5) and the transformation laws from (4) and (5) for the action of Gr+2

m on
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(T ∗TA)0 � m . To emphasize Imm(w) as a transformed value under this action use pα
i

for the additional cordinates of Imm(w) (obviously, the cordinates yi
α indicate those

of the immersion element i). Then the formula (5) reduces to

(17) pβ
j =

(α+ β)!
α!β!

ãl
jαp

αβ
l +

γ!
δ!β!

ãl
jδc

δβ
γ pγ

l .

We have β!pβ
j = Λ̃β

j (Imm(w)) = Λ̃β
j (yi

α, p
γ
i ), which follows from the formula (9).

The coincidence of Λ̃β
j (w) with Λ̃β

j (Imm(w)) will be proved if there is an element
jr+2
0 g ∈ ι̃∗(Am) the coordinates of which satisfy the equation determined by the
formulas (17) and by the second formula from (9) multiplied by β!. Clearly, it
suffices to put ãi

γ = yi
γ and complete the other coordinates of j

r+2
0 g so that it

belongs to ι̃∗(Am). This proves our claim. �

The following lemma specifies a certain class of functions, among which all inves-
tigated ones must be contained.

Lemma 5. Let A be a normal Weil algebra of width k and height r considered
as  r+2

m+1/I for m > k. Then every Gr+2
m+1-invariant function f : (Jr+1T )0 � m+1 ×

T ∗TA � m+1 → � is of the form h(
�

L(τα)T A, Λ̃β
j ) for some smooth function h of a

suitable type.

���������
. By the general lemma from [5, Chapter VI], every G1

m+1-invariant

function defined on (Jr+1T )0 � m+1 × T ∗TA � m+1 must satisfy f(jr+1
0 X,w) =

h(X i
γp

β
i , y

i
αp

β
i ) for any non-zero jr+1

0 X of a vector field X on � m+1 , if we use

again the coordinates yi
α and pα

i . The last expression can be considered in

the form h(
�

L(τα)T A, X i
γp

β
i , Λ̃

β
j , y

i
δp

β
i ) for |β| > 0, |γ| > 1 and |δ| > 2. Iden-

tify q(w) with jAg for any w ∈ T ∗(regTA)0 � m+1 , i.e. q(w) = l(ι̃∗(jAg), i) and put

jr+1
0 Y = l((ι̃∗(jAg))−1, jr+1

0 X). Then f(jr+1
0 X,w) = h(

�
L(τα)T A, Y i

γp
β
i , Λ̃

β
j , 0, p

0
i )

for |γ| > 1 and i ∈ {1, . . . , k}. Here pβ
i indicate the transformed values of p

β
i

under the map Imm. The last identity follows from Proposition 5. Further, there
is jr+2

0 g ∈ GA ∩ GAr+2
m+1

such that l(jr+1
0 g, jr+1

0 (∂/∂ym+1)) = jr+1
0 Y . Then we

have f(jr+1
0 X,w) = h(

�
L(τα)T A, 0, Λ̃β

j , p
0
i ) for i ∈ {1, . . . , k}. The excessive coordi-

nates p0
i are annihilated by an element of Kerπr+1

r ∩ ι̃((Ar+2
m+1)

m+1), namely by an
element satisfying in coordinates ai

α = 0 except of α = (i, . . . , i)︸ ︷︷ ︸
(r+1)-times

. Such an element

stabilizes jr+1
0 (∂/∂ym+1) as well as i, which completes the proof. �

Searching for all natural T -functions T ∗TA � m+1 → � among those from Lemma 5,
we introduce a basis B of functions, defined on T ∗i TA � m+1 which shall be iden-
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tified with B̃ as follows. By general theory, [5], every natural T -function de-
fined on T ∗TA � m+1 → � is determined by its values over jr+1

0 (∂/∂ym+1) and
(T ∗TA)0 � m+1 . Further, Lemma 3 and the formula (16) imply that the map Imm
stabilizes jr+1

0 (∂/∂ym+1) in the following sense. For any w ∈ T ∗(regTA)0 � m+1 , the

action of ι̃∗(q(w)) on (Jr+1T )0 � m+1 stabilizes jr+1
0 (∂/∂ym+1).

Thus we have the basis B of functions defined on T ∗i TA � m+1 obtained by the
restriction of B̃ to jr+1

0 (∂/∂ym+1) and T ∗i T
A � m+1 . Conversely, B determines B̃ by

(18) B̃
(
jr+1
0

( ∂

∂ym+1

)
, w

)
= B ◦ Imm(w).

Analogously, we construct B1 from B̃1. Moreover, for any w ∈ T ∗i (regTA)0 � m+1 ,

the values formed by B(w) coincide with the cordinates pβ
j of w for j = 1, . . . , k and

|β| > 1 in case of the absolute operators and pβ
m+1 in case of the non-absolute ones.

Thus any base T -function of B defined on T ∗i (regTA)0 � m+1 corresponds to some
projection prβ

j : T ∗i (regTA)0 � m+1 → � .
It follows from Lemma 3 and the naturality of

�
L(τα)T A that all natural T -

functions (T ∗TA) � m+1 → � from Lemma 5 are in a canonical bijection with GA-

invariant functions defined on T ∗i T
A � m+1 which are of the form h(

�
L(τα)T A)(Λ̃β

j )
for Λ̃β

j : T ∗i T
A � m+1 → � . Using coordinates, we find all GA-invariants of p

β
j ,

j ∈ {1, . . . , k}, |β| > 1. Then we identify the functions h(
�

L(τα)T A)(pβ
j ) with

h(
�

L(τα)T A)(Λ̃β
j ) and by (17), we obtain all natural T -functions on T ∗TA � m+1 .

This way we have deduced that our problem can be reduced to the problem of
finding all GA-invariant functions defined on T ∗i T

A � m+1 . The coordinate expression

for the action of GA on T ∗i T
A � m+1 is given by (17). It follows that T ∗i T

A � m+1 is
identified with the space RN endowed with such an action. Thus we are searching

for GA-invariant functions defined on � N .

We are going to investigate GA ∩ Gr
m+1-orbits on R

N , since only p0
j depend on

Br+1
m+1 and they can be annihilated by this subgroup. For those orbits, we construct

all functions distinguishing them and then we express the corresponding invariants
in terms of elements from B̃.
The following assertion describes an important property of (GA ∩ Kerπr

s)-orbits
which is needed in the proof of the main result. Denote by Bs ⊆ B the set of all
(GA ∩Kerπr

s)-invariants selected from B and denote by Ns the number of elements

in Bs. Clearly, B1 ⊆ B2 ⊆ . . . ⊆ Br−1 ⊆ Br. Further, denote Bs
t = Bs − Bt and

Ns
t = Ns −Nt. Then we have
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Proposition 7. Let w ∈ � N and let Orbs(w) be its (GA ∩ Kerπr
s)-orbit. Then

Bs+1
s (Orbs(w)) has the structure of an affine subspace of RNs+1

s , the modelling vector

space of which is (Bs+1
m+1 ∩GA)/H for a normal Lie subgroup H ⊆ Bs+1

m+1 ∩GA. The

canonical injection i0 of such a vector space into the vector space RNs+1
s and the sum

of a point with a vector are given by

(19) i0([js+1
0 ϕ]H) = `(js+1

0 ϕ,w) − w and w + [js+1
0 ϕ]H = `(js+1

0 ϕ,w),

respectively for [js+1
0 ϕ]H ∈ (Bs+1

m+1 ∩ GA)/H and any element w of Bs+1
s (Orbs(w)),

where ` denotes the canonical left action of a jet group on the standard fiber.
���������

. The proof is done directly applying the formula (17) restricted to

Bs+1
m+1 ∩ GA. Let w1 and w2 be elements of Bs+1

s (Orbs(w)). Then w1 can be ob-
tained from w by the action of an element of Bs+1

m+1 ∩GA. The cordinate expression

for such a transformation is given by pβ
j = pβ

j + (α+β)!
α!β! ã

l
jαp

αβ
l + γ!

δ!β! ã
l
jδc

δβ
γ pγ

l =

pβ
j + (α+β)!

α!β! ã
l
jαp

αβ
l + (δ+β)!

δ!β! ã
l
jδq

δβ
l using the formula (6). Analogously for w1 and w2,

we have pβ
j = pβ

j + (α+β)!
α!β! b̃

l
jαp

αβ
l + γ!

δ!β! b̃
l
jδc

δβ
γ pγ

l = pβ
j + (α+β)!

α!β! b̃
l
jδp

αβ
l + (δ+β)!

δ!β! b̃
l
jδ q̄

δβ
l .

It follows from the definition of Orbs(w), Bs+1
s (Orbs(w)), the formula (6) and the

transformation laws for the action of Gr+1
m+1 on T ∗T r

kM that qδβ
l are Kerπr+1

1 -
invariants. Then we have pβ

j = pβ
j + (α+β)!

α!β! (ãl
jα + b̃ljα)pαβ

l + (δ+β)!
δ!β! (ãl

jδ + b̃ljδ)q
δβ
l +

(α+β+γ)!
α!β!γ! ãh

lγ b̃
l
jαp

αβγ
h + (α+β+ε)!

α!β!ε! ãh
lεb̃

l
jαq

αβε
h . Consider js+1

0 ψ ∈ Bs+1
m+1 and j

s+1
0 ϕ ∈

Bs+1
m+1. Let ãi

γ , b̃
i
γ and c̃iω denote the coordinates of j

s+1
0 ϕ−1, js+1

0 ψ−1 and
j2s+1
0 (i2s+1

s (js+1
0 ϕ−1) ◦ i2s+1

s (js+1
0 ψ−1)) for |γ| = s + 1 and |ω| = 2s + 1, where

irs : Js → Jr denotes in general the canonical inclusion of jet functors of order s,
r, for s 6 r. Then any chω is in fact a sum of some ã

h
lη b̃

l
γ for all admissible

decompositions of ω containing γ and η. Then the transformation laws for pβ
j

depend on B2s+1, which is a contradiction with pβ
j ∈ Bs+1

s (Orbs(w)). Finally,

we have pβ
j = pβ

j + (α+β)!
α!β! (ãl

jα + b̃ljα)pαβ
l + (δ+β)!

δ!β! (ãl
jδ + b̃ljδ)q

δβ
l , which implies

−−→ww2 = −−→ww1 +−−−→w1w2.
In the second step, we are going to prove the uniqueness of an element of

Bs+1
m+1 ∩GA determined by the couple of elements of Bs+1

s (Orbs(w)). This follows
from the fact that if an element of Bs+1

s (Orbs(w)) is stabilized by js+1
0 g ∈ Bs+1

m+1

under the canonical left action then the whole Bs+1
s (Orbs(w)) is stabilized. Denote

H = Sts+1
s;m+1 ⊆ GA ∩ Bs+1

m+1 the stability group of Bs+1
s (Orbs(w)). Clearly, H is a

closed and normal subgroup of GA ∩ Bs+1
m+1, which completes the proof. �

The first formula from (19), giving the definition of the vector space structure on
(Bs+1

m+1 ∩ GA)/H also allows us to introduce the scalar product on it, induced by
the scalar product on RNs+1

s . It will be used in the construction of a basis D̃ of
additional natural functions. The construction is given by a procedure, generating
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step by step a basis of GA-invariants. As a matter of fact, they are functions defined

on T ∗i T
A � m+1 corresponding in the sense of (18) to base natural T ∗TA-functions,

which are in fact functions of the elements of B̃.
We start the procedure by selecting the elements of B1 and puting D̃1 = B̃1. For

any w ∈ T ∗i TA � m+1 , consider its orbit Orb(w) = Orb1(w).
In the second step, consider B2

1(Orb1(w)), which is by Proposition 7 a k2-

dimensional affine subspace of the affine space � N2
1 for some k2 6 N2

1 . Consider
the orthogonal complement � C

2 in the vector space � N2
1 to � 2 = (B2

m+1 ∩GA)/H2
1 ,

where H2
1 corresponds to the normal subgroup H of B

s+1
m+1 ∩GA from Proposition 7.

The new GA-invariants are obtained as the components of the unique point P2 given

by the intersection of B2
1(Orb1(w)) with the affine subspace of � N2

1 containing the
origin and the modelling vector space of which being � C

2 . For almost every GA-orbit
in the sense of density, the maximal dimension K2 is attained and so it suffices to

select only N2
1 −K2 components forming the basis of the additional GA-invariants

from the second step.

We are going to give their expressions in formulas. Select a linear basis of � 2

formed by the elements [j20ϕ1
1]H2

1
, . . . [j20ϕ

K2
1 ]H2

1
. Denote by Ort2i ([j20ϕ2]H2

1
) the or-

thogonal complement to the sequence obtained from this basis by omitting the ith

element. Then for any w ∈ T ∗i TA � m+1 we have

(20) P2(w) = B2
1(w) +

((B2
1(w), [j20ϕ2]H2

1
),Ort2i ([j20ϕ2]H2

1
)

(([j20ϕ2]H2
1
, [j20ϕ

i
2]H2

1
),Ort2i ([j20ϕ2]H2

1
)
[j20ϕ

i
2]H2

1

using the vector form of the notation and the symbol ( , ) for the scalar prod-
uct. Taking into account the identification (18) and selecting N 2

1 − K2 compo-

nents of P2, we obtain the base natural functions Ĩ1
2 , . . . , Ĩ

N2
1−K2

2 and the basis

D̃2 = D̃1 ∪ Ĩ1
2 , . . . , Ĩ

N2
1−K2

2 of natural T ∗TA-functions after the second step of the

procedure.

Further, we used the uniquely determined element α2(w) of � 2 = (B2
m+1∩GA)/H2

1

to obtain P2 and so the element w ∈ T ∗i TA � m+1 is after the second step transformed

into w2 = `(α2(w), w).
In the (s+1)th step of the procedure we start from the basis D̃s of natural functions

and an element ws = `(αs) ◦ . . . ◦ `(α2)(w) instead of the w from the second step.
Consider Bs+1

s (Orbs(w)), which is by Proposition 7 a ks-dimensional affine sub-
space of the affine space � Ns+1

s for some ks+1 6 Ns+1
s . Consider the orthogonal

complement � C
s+1 in the vector space � Ns+1

s to � s+1 = (Bs+1
m+1 ∩ GA)/Hs+1

s , where
Hs+1

s corresponds to the normal subgroup H of Bs+1
m+1∩GA from Proposition 7. The

new GA-invariants are obtained as the components of the unique point Ps+1 given by
the intersection of Bs+1

s (Orbs(ws)) with the affine subspace of � Ns+1
s containing the
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origin and the modelling vector space of which being � C
s . For almost every GA-orbit

in the sense of density, the maximal dimension Ks+1 is attained and so it suffices to
select only N2

1 −K2 components forming the basis of the additional GA-invariants
from the (s+ 1)th step.
Let us express them in formulas. Select a linear basis of � s+1 formed by the

elements [js+1
0 ϕ1

s+1]Hs+1
s

, . . . , [js+1
0 ϕ

Ks+1
s+1 ]Hs+1

s
. Denote by Orts+1

i ([js+1
0 ϕs+1]Hs+1

s
)

the orthogonal complement to the sequence obtained from this basis by omitting the
ith element. Then for any w ∈ T ∗i TA � m+1 we have

(21) Ps+1(ws) = Bs+1
s (ws) + Cs+1

i [js+1
0 ϕi

s+1]Hs+1
s

if we put

(22) Cs+1
i =

((Bs+1
s (ws), [js+1

0 ϕs+1]Hs+1
s

),Orts+1
i ([js+1

0 ϕs+1]Hs+1
s

)

(([js+1
0 ϕs+1]Hs+1

s
, [js+1

0 ϕi
s+1]Hs+1

s
),Orts+1

i ([js+1
0 ϕs+1]Hs+1

s
)

where ( , ) denotes the scalar product and we use the vector form of the notation.
Taking into account the identification (18), we obtain the N s+1

s -tuple of natural
T ∗TA-functions given by

(23) Ĩs+1(w) ' Ps+1(`(αs+1) ◦ . . . ◦ `(α2)(w)).

Selecting N s+1
s − Ks+1 components of Ps+1, we obtain the base natural functions

Ĩ1
s+1, . . . , Ĩ

Ns+1
s −Ks+1

s+1 and the basis D̃s+1 = D̃s ∪ Ĩ1
s+1, . . . , Ĩ

Ns+1
s −Ks+1

s of natural

T ∗TA-functions after the (s+ 1)th step of the procedure.
This generating alghoritm is finished if in the (s+ 2)th step the inequality ks+2 >

Ns+2
s+1 . This means that the excessive coordinates can be annihilated by the action
of Bs+1

m+1 ∩GA. Clearly, s 6 r − 1.
In the case of the (s+ 2)th step, we start from ws+1 obtained as follows. We used

the uniquely determined element αs+1(ws) of � s+1 = (Bs+1
m+1 ∩GA)/Hs+1

s to obtain
Ps+1 and so the element ws ∈ T ∗i T

A � m+1 is after the (s + 1)th step transformed
into ws+1 = `(αs+1(ws), ws).
We have proved the main result given in the following classification theorem

Theorem 8. Let A =  r
k/I be a Weil algebra of width k, dimM = m > k + 1.

Let ι̃Bx0
: TAM → T r

kM be the embedding presented in Proposition 1. Consider a

basis C of A and a basis B0 of Der(  r
k ). Further, let B̃ be a basis of functions defined

on T ∗TAM constructed from operators T p̃ ◦ λD ◦ ι̃Bx0
by the operation ˜ defined at

the very end of Section 1, D ∈ B0. Then all natural T -functions fM : T ∗TAM → �
are of the form

(24) h( ˜LM (c)T A
M , Ĩ1

M ;h, Ĩ
1
M ;2, . . . , Ĩ

N2
1−K2

M ;2 , Ĩ1
M ;r , . . . Ĩ

Nr
r−1−Kr

M ;r )
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where h is any smooth function of a suitable type, Ĩh1 are natural functions selected

directly from B̃ and Ĩ ls
M ;s are obtained in the sth step of the recurrent procedure.
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