Czechoslovak Mathematical Journal

Hailong Lix; Lang Sun
 On domination number of 4-regular graphs

Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 4, 889-898

Persistent URL: http://dml.cz/dmlcz/127938

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON DOMINATION NUMBER OF 4-REGULAR GRAPHS

Hailong Liu and Liang Sun, Beijing

(Received November 30, 2001)

Abstract. Let G be a simple graph. A subset $S \subseteq V$ is a dominating set of G, if for any vertex $v \in V-S$ there exists a vertex $u \in S$ such that $u v \in E(G)$. The domination number, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. In this paper we prove that if G is a 4-regular graph with order n, then $\gamma(G) \leqslant \frac{4}{11} n$.

Keywords: regular graph, dominating set, domination number
MSC 2000: 05C69

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph. For a vertex $v \in V(G)$, denote by $N(v)$ the open neighborhood of v. Let $N[v]=N(v) \cup\{v\}$. Denote by $\delta(G)$ the minimum degree of G. For a subset S of $V(G)$, denote by $G[S]$ the subgraph induced by S. A subset $S \subseteq V$ is a dominating set of G, if for any vertex $u \in V-S$ there exists a vertex $v \in S$ such that $u v \in E(G)$. The domination number, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. A dominating set S of G is a γ-set if $|S|=\gamma(G)$. Some bounds on $\gamma(G)$ with minimum degree conditions have been obtained as follows.

Theorem 1 [3]. If a graph G has no isolated vertices, then $\gamma(G) \leqslant n / 2$.
McGuaig and Shepherd made another improvement on the upper bound. Let \mathscr{A} be the collection of graphs in Figure 1.

The project was partially supported by NNSFC 19871036.

Figure 1. Graphs in family \mathscr{A}
Theorem 2 [2]. If G is a connected graph with $\delta(G) \geqslant 2$ and $G \notin \mathscr{A}$, then $\gamma(G) \leqslant 2 n / 5$.

Reed again improved the bound by increasing the minimum degree requirement.

Theorem 3 [4]. If G is a connected graph with $\delta(G) \geqslant 3$, then $\gamma(G) \leqslant 3 n / 8$.
Motivated by the above conclusions, Haynes et al. [1] conjectured that
Conjecture 1 [1]. For any graph G with $\delta(G) \geqslant k, \gamma(G) \leqslant k(3 k-1)^{-1} n$.
The question still remains open for graphs G having $4 \leqslant \delta(G) \leqslant 6$. In the next section, we will prove that $\gamma(G) \leqslant 4 n / 11$ for any 4-regular graph G with order n.

2. Main Results

First, we give some definitions and symbols needed for the proof of Theorem 4.
Let S be a γ-set of G, let $N_{i}(S)=\{u \in V-S:|N(u) \cap S|=i\}$ where $1 \leqslant i \leqslant 4$. For any vertex $v \in S$, let $N_{i}(v, S)=N(v) \cap N_{i}(S)$. Denote by $\lambda(S)$ the number of isolates in $G[S]$. Let $\mu(S)=\left|N_{1}(S)\right|$ and $\eta(S)=\left|N_{2}(S)\right|$. Let $J_{0}=\{v \in$ $\left.S:\left|N_{1}(v, S)\right|=0\right\}, J_{1}=\left\{v \in S:\left|N_{1}(v, S)\right|=1\right\}$ and $J_{2}=\left\{v \in S:\left|N_{1}(v, S)\right| \geqslant 2\right\}$. Let $B=\left\{v \in J_{0}: N(v) \cap N_{3}(S) \neq \emptyset\right\}$ and $R=\left\{u \in N_{3}(S): N(u) \cap B \neq \emptyset\right\}$. For any vertex $v \in J_{1}$ there exists only one vertex $u \in V-S$ such that $u \in N_{1}(v, S)$; we write $P(v)$ for u.

For any two vertex subsets $C, D \subseteq V$, we denote the set of edges between C and D by $E[C, D]$.

Theorem 4. If G is a 4-regular graph with order n, then $\gamma(G) \leqslant \frac{4}{11} n$.
Proof. Among all γ-sets of G, let S be chosen so that
(1) $\lambda(S)$ is maximized;
(2) subject to (1), $\mu(S)$ is minimized;
(3) subject to (2), $\eta(S)$ is minimized.

Before proceeding further, we prove the following claims.

Claim 1. Each vertex $v \in J_{0} \cup J_{1}$ is an isolate in $G[S]$.
Proof. Suppose to the contrary that v is not isolated in $G[S]$. If $v \in J_{0}$, then $S^{\prime}=S-\{v\}$ is a domination set of G. This contradicts the fact that S is a γ-set of G. If $v \in J_{1}$, then $S^{\prime}=(S-\{v\}) \cup\{P(v)\}$ is a γ-set of G with $\lambda\left(S^{\prime}\right)>\lambda(S)$. This contradicts our choice of S.

Claim 2. For any vertex $v \in J_{1}$, if $\left|N_{2}(v, S)\right|=0$ then $\left|N(P(v)) \cap N_{1}(S)\right|=0$.
Proof. Suppose to the contrary that $\left|N(P(v)) \cap N_{1}(S)\right|>0$, then $S^{\prime}=(S-$ $\{v\}) \cup\{P(v)\}$ is also a γ-set of G with $\lambda\left(S^{\prime}\right)=\lambda(S), \mu\left(S^{\prime}\right)<\mu(S)$, a contradiction.

Claim 3. For any $u \in V-S$, if $v_{1}, v_{2} \in N(u) \cap J_{0}$ then $\left|N_{2}\left(v_{1}, S\right) \cap N_{2}\left(v_{2}, S\right)\right| \geqslant 2$.
Proof. Suppose to the contrary that $\left|N_{2}\left(v_{1}, S\right) \cap N_{2}\left(v_{2}, S\right)\right|<2$. Then if $\left|N_{2}\left(v_{1}, S\right) \cap N_{2}\left(v_{2}, S\right)\right|=0$, then $S^{\prime}=\left(S-\left\{v_{1}, v_{2}\right\}\right) \cup\{u\}$ is a dominating set of G with $\left|S^{\prime}\right|<|S|$, a contradiction. If $\left|N_{2}\left(v_{1}, S\right) \cap N_{2}\left(v_{2}, S\right)\right|=1$ then $S^{\prime}=$ $\left(S-\left\{v_{1}, v_{2}\right\}\right) \cup\left(N_{2}\left(v_{1}, S\right) \cap N_{2}\left(v_{2}, S\right)\right)$ is a dominating set of G with $\left|S^{\prime}\right|<|S|$, a contradiction.

Claim 4. Assume that $v \in J_{1}$ and $\left|N_{2}(v, S)\right|=0$. For $1 \leqslant t \leqslant 3$, if $\left|N_{4}(v, S)\right|=t$, then $\left|N(P(v)) \cap N_{3}(S)\right| \geqslant t$.

Proof. Suppose to the contrary that $\left|N(P(v)) \cap N_{3}(S)\right|<t$. Then we have $\left|N(P(v)) \cap N_{2}(S)\right|=3-\left|N(P(v)) \cap N_{3}(S)\right|>3-t$. Thus $S^{\prime}=(S-\{v\}) \cup\{P(v)\}$ is a γ-set of G with $\lambda\left(S^{\prime}\right)=\lambda(S), \mu\left(S^{\prime}\right)=\mu(S)$ and $\eta\left(S^{\prime}\right)<\eta(S)$. This contradicts the choice of S.

Now we define a function $f: E[V-S, V] \rightarrow\left\{0, \frac{1}{4}, \frac{1}{2}, 1\right\}$ as follows.
For any $v \in S$, define

$$
f(u v)= \begin{cases}1, & u \in N_{1}(v, S) \\ \frac{1}{2}, & u \in N_{2}(v, S) \\ \frac{1}{4}, & u \in N_{3}(v, S) \cup N_{4}(v, S), \\ 0, & \text { otherwise } .\end{cases}
$$

For any $u \in N_{3}(S)$, define

$$
f(u w)= \begin{cases}\frac{1}{2}, & w \in N_{3}(S) \\ \frac{1}{4}, & w \in V-N_{3}(S) .\end{cases}
$$

For any $u \in V-S-N_{3}(S)$, define

$$
f(u w)= \begin{cases}\frac{1}{4}, & w \in N_{3}(S) \\ 0, & w \in V-S-N_{3}(S)\end{cases}
$$

In order to prove the theorem, note that

$$
n-|S|=|V-S|=\sum_{u v \in E[V-S, V]} f(u v),
$$

so we need only to prove that

$$
\sum_{u v \in E[V-S, V]} f(u v) \geqslant \frac{7}{4}|S| .
$$

If we can find a function $g: E[V-S, S]$ satisfying the conditions

$$
\begin{align*}
\sum_{u v \in E[V-S, V]} f(u v) & \geqslant \sum_{u v \in E[V-S, S]} g(u v), \tag{1}\\
\sum_{u v \in E[V-S, S]} g(u v) & \geqslant \frac{7}{4}|S|, \tag{2}
\end{align*}
$$

the conclusion will follow immediately.
For convenience, for any $v \in S$ we define $h(v)=\sum_{u \in N(v) \cap(V-S)} g(u v)$.
Note that

$$
\sum_{u v \in E[V-S, S]} g(u v)=\sum_{v \in S}\left(\sum_{u \in N(v) \cap(V-S)} g(u v)\right)=\sum_{v \in S} h(v) .
$$

If the following condition holds, then condition (2) holds as well:

$$
\text { For any vertex } \quad v \in S, \quad h(v) \geqslant \frac{7}{4} .
$$

In the following, we will define a function $g: E[V-S, S] \rightarrow\left\{0, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}\right\}$ satisfying conditions (1) and (3).

For any vertex $v \in J_{2}$ and $u v \in E[V-S, S]$, define

$$
g(u v)= \begin{cases}1, & u \in N_{1}(v, S) \\ 0, & \text { otherwise }\end{cases}
$$

Assuming that $w_{1}, w_{2} \in N_{1}(v, S)$, we have $h(v) \geqslant g\left(w_{1} v\right)+g\left(w_{2} v\right)=2$.

For any vertex $v \in J_{1}$ and $u v \in E[V-S, S]$, define

$$
g(u v)= \begin{cases}1, & u \in N_{1}(v, S) \\ \frac{1}{4}, & \text { otherwise }\end{cases}
$$

Thus we have

$$
h(v)=g(P(v) v)+\sum_{u \in N(v)-\{P(v)\}} g(u v)=1+\frac{3}{4}=\frac{7}{4} .
$$

For any $v \in J_{0}$ and $u v \in E[V-S, S]$, if $u \in N_{2}(v, S)$, define

$$
g(u v)=f(u v)=\frac{1}{2}
$$

Before proceeding further, we introduce the following notation:
Let $K=\left\{v \in J_{0}: N(v) \cap N\left(J_{0}-\{v\}\right)=\emptyset\right\}$ and $L=J_{0}-K$.
Denote

$$
\begin{aligned}
M_{1}= & \left\{y \in N(K) \cap N_{4}(S) \mid N(y)-K \subseteq J_{1}\right. \\
& \text { and for any vertex } \left.x \in N(y)-K, N_{2}(x, S)=\emptyset\right\}, \\
Q_{1}= & \left\{y \in N(K) \cap N_{4}(S) \mid N(y)-K \subseteq J_{1}\right. \\
& \text { and there exist two vertices } x_{1}, x_{2} \in N(y)-K
\end{aligned}
$$

such that $N_{2}\left(x_{1}, S\right)=\emptyset$ and $N_{2}\left(x_{2}, S\right)=\emptyset$ and an other vertex $x_{3} \in N(y)-K$ such that $\left.N_{2}\left(x_{3}, S\right) \neq \emptyset\right\}$.

Now, we consider the following two cases.

Case 1. $v \in K$.
Case 1.1. $\left|N(v) \cap Q_{1}\right| \leqslant 1$.
Case 1.1.1. $N(v) \cap M_{1}=\emptyset$.
For any $u \in N(v)-Q_{1}-N_{2}(S)$, if $u \in N_{3}(S)$ then there exists a vertex $x \in V-S$ such that $u x \in E(G)$. Define $g(u v)=f(u v)+f(u x)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. If $u \in N_{4}(S)$, then $(N(u)-\{v\}) \subseteq J_{1} \cup J_{2}$. If $(N(u)-\{v\}) \cap J_{2} \neq \emptyset$, then there exists a vertex $x \in N(u) \cap J_{2}$. Define $g(u v)=f(u v)+f(u x)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. Otherwise, there exist two vertices $x_{1}, x_{2} \in N(u)-\{v\}$ such that $N_{2}\left(x_{1}, S\right) \neq \emptyset$ and $N_{2}\left(x_{2}, S\right) \neq \emptyset$. Assume that $w_{1} \in N_{2}\left(x_{1}, S\right)$ and $w_{2} \in N_{2}\left(x_{2}, S\right)$ and define

$$
g(u v)=f(u v)+\frac{1}{2}\left(f\left(w_{1} x_{1}\right)-\frac{1}{4}\right)+\frac{1}{2}\left(f\left(w_{2} x_{2}\right)-\frac{1}{4}\right)=\frac{1}{2} .
$$

If $N(v) \cap Q_{1} \neq \emptyset$, for any vertex $u \in N(v) \cap Q_{1}$ define $g(u v)=f(u v)=\frac{1}{4}$. Thus

$$
h(v)=\sum_{u \in N(v) \cap(V-S)} g(u v) \geqslant \sum_{u \in N(v) \cap\left(V-S-Q_{1}\right)} g(u v)+\sum_{u \in N(v) \cap Q_{1}} g(u v) \geqslant \frac{7}{4} .
$$

Case 1.1.2. $N(v) \cap M_{1} \neq \emptyset$.
There exists a vertex $u \in N(v) \cap M_{1}$. For any vertex $x \in N(u)-\{v\}$, by Claim 4, we can select a vertex $z \in N(P(x)) \cap N_{3}(S)$. We claim that $z \in N_{3}(S)-(R-N(v))$. Suppose to the contrary that $z \in R-N(v)$, then there exists a vertex $b \in B$ such that $b z \in E(G)$ and $b \neq v$. Since $N(v) \cap N(b)=\emptyset$, we let $S^{\prime}=(S-\{b, v, x\}) \cup\{z, u\}$. Then S^{\prime} is a dominating set of G with cardinality less than S, a contradiction. Assume that $N(u)-\{v\}=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then for $1 \leqslant i \leqslant 3$ there exist $z_{i} \in$ $N\left(P\left(x_{i}\right)\right) \cap\left(N_{3}(S)-(R-N(v))\right)$. Assume $N(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. For $i=1,2,3$, define

$$
g\left(u_{i} v\right)=f\left(u_{i} v\right)+f\left(z_{i} P\left(x_{i}\right)\right) \geqslant \frac{1}{2} .
$$

Moreover, define $g\left(u_{4} v\right)=f\left(u_{4} v\right) \geqslant \frac{1}{4}$. Thus we have

$$
h(v)=\sum_{i=1}^{4} g\left(u_{i} v\right) \geqslant \frac{7}{4} .
$$

Case 1.2. $\left|N(v) \cap Q_{1}\right| \geqslant 2$.
Then there exist two vertices $u, u^{\prime} \in N(v) \cap Q_{1}$. Further, there exist $x_{1}, x_{2} \in$ $N(u) \cap J_{1}$ and $x_{1}^{\prime}, x_{2}^{\prime} \in N\left(u^{\prime}\right) \cap J_{1}$ such that $N_{2}\left(x_{1}, S\right)=\emptyset, N_{2}\left(x_{2}, S\right)=\emptyset, N_{2}\left(x_{1}^{\prime}, S\right)=$ \emptyset and $N_{2}\left(x_{2}^{\prime}, S\right)=\emptyset$. By Claim 4 there exist $z_{i} \in N\left(P\left(x_{i}\right)\right) \cap\left(N_{3}(S)-(R-N(v))\right)$ and $z_{i}^{\prime} \in N\left(P\left(x_{i}^{\prime}\right)\right) \cap\left(N_{3}(S)-(R-N(v))\right)$ where $i=1,2$. Assume $N(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. For $i=1,2$, define

$$
g\left(u_{i} v\right)=f\left(u_{i} v\right)+f\left(z_{i} P\left(x_{i}\right)\right) \geqslant \frac{1}{2} .
$$

Moreover, define $g\left(u_{4} v\right)=f\left(u_{4} v\right)+f\left(z_{1}^{\prime} P\left(x_{1}^{\prime}\right)\right) \geqslant \frac{1}{2}$ and $g\left(u_{4} v\right)=f\left(u_{4} v\right)$. Thus we have

$$
h(v)=\sum_{i=1}^{4} g\left(u_{i} v\right) \geqslant \frac{7}{4} .
$$

Case 2. $v \in L$.
By the definition of L and Claim 3 there exists $v^{\prime} \in L$ such that $\mid N_{2}(v, S) \cap$ $N_{2}\left(v^{\prime}, S\right) \mid \geqslant 2$.

If $\left|N_{2}(v, S) \cap N_{2}\left(v^{\prime}, S\right)\right|=4$, then

$$
h(v)=\sum_{u \in N(v)} g(u v)=4 \times \frac{1}{2}=2 \quad \text { and } \quad h\left(v^{\prime}\right)=\sum_{u^{\prime} \in N\left(v^{\prime}\right)} g\left(u^{\prime} v^{\prime}\right)=4 \times \frac{1}{2}=2 .
$$

If $\left|N_{2}(v, S) \cap N_{2}\left(v^{\prime}, S\right)\right|=3$, then for $u \in N(v)-N_{2}(v, S)$ and $u^{\prime} \in N\left(v^{\prime}\right)-$ $N_{2}\left(v^{\prime}, S\right)$, define $g(u v)=f(u v)=\frac{1}{4}$ and $g\left(u^{\prime} v^{\prime}\right)=f\left(u^{\prime} v^{\prime}\right)=\frac{1}{4}$, thus
$h(v)=\sum_{y \in N(v)} g(y v)=3 \times \frac{1}{2}+\frac{1}{4}=\frac{7}{4} \quad$ and $\quad h\left(v^{\prime}\right)=\sum_{u^{\prime} \in N\left(v^{\prime}\right)} g\left(u^{\prime} v^{\prime}\right)=3 \times \frac{1}{2}+\frac{1}{4}=\frac{7}{4}$.
If $\left|N_{2}(v, S) \cap N_{2}\left(v^{\prime}, S\right)\right|=2$, then we assume that $u_{1}, u_{2} \in N_{2}(v, S) \cap N_{2}\left(v^{\prime}, S\right)$ and distinguish the following cases.

Case 2.1. $\left|\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap\left(N_{3}(S) \cup N\left(J_{2}\right)\right)\right| \geqslant 2$.
Case 2.1.1. $\left|\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap N\left(J_{2}\right)\right| \geqslant 2$.
Without loss of generality, there exist $y \in N(v) \cap N\left(J_{2}\right)$ and $y^{\prime} \in N\left(v^{\prime}\right) \cap N\left(J_{2}\right)$. Then there exist vertices $x, x^{\prime} \in J_{2}$ such that $x y \in E(G)$ and $x^{\prime} y^{\prime} \in E(G)$. Define $g(y v)=f(y v)+f(y x)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ and $g\left(y^{\prime} v^{\prime}\right)=f\left(y^{\prime} v^{\prime}\right)+f\left(y^{\prime} x^{\prime}\right)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. For $z \in N(v)-\left\{u_{1}, u_{2}, y\right\}$ and $z^{\prime} \in N\left(v^{\prime}\right)-\left\{u_{1}, u_{2}, y^{\prime}\right\}$, define $g(z v)=f(z v)=\frac{1}{4}$ and $g\left(z^{\prime} v^{\prime}\right)=f\left(z^{\prime} v^{\prime}\right)=\frac{1}{4}$. Therefore, we have

$$
h(v)=g\left(u_{1} v\right)+g\left(u_{2} v\right)+g(y v)+g(z v)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4}
$$

and

$$
h\left(v^{\prime}\right)=g\left(u_{1} v^{\prime}\right)+g\left(u_{2} v^{\prime}\right)+g\left(y v^{\prime}\right)+g\left(z v^{\prime}\right)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4} .
$$

Case 2.1.2. $\left|\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap N_{3}(S)\right| \geqslant 2$.
Without loss of generality, there exist vertices $y \in N(v) \cap N_{3}(S)$ and $y^{\prime} \in N\left(v^{\prime}\right) \cap$ $N_{3}(S)$. Then there exist vertices $x, x^{\prime} \in V-S$ such that $x y \in E(G)$ and $x^{\prime} y^{\prime} \in E(G)$. If $x \in N_{3}(S)$, define $g(y v)=f(y v)+\frac{1}{2} f(y x)=\frac{1}{4}+\frac{1}{2} \times \frac{1}{2}=\frac{1}{2}$. Otherwise, define $g(y v)=f(y v)+f(y x)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. Similarly, we can define $g\left(y^{\prime} v^{\prime}\right)=\frac{1}{2}$. For $z \in N(v)-\left\{u_{1}, u_{2}, y\right\}$ and $z^{\prime} \in N\left(v^{\prime}\right)-\left\{u_{1}, u_{2}, y^{\prime}\right\}$, define $g(z v)=f(z v)=\frac{1}{4}$ and $g\left(z^{\prime} v^{\prime}\right)=f\left(z^{\prime} v^{\prime}\right)=\frac{1}{4}$. Therefore, we have

$$
h(v)=g\left(u_{1} v\right)+g\left(u_{2} v\right)+g(y v)+g(z v)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4}
$$

and

$$
h\left(v^{\prime}\right)=g\left(u_{1} v^{\prime}\right)+g\left(u_{2} v^{\prime}\right)+g\left(y v^{\prime}\right)+g\left(z v^{\prime}\right)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4} .
$$

Case 2.3. $\left|\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap N\left(J_{2}\right)\right|=1$ and $\left|\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap N_{3}(S)\right|=1$.
Without loss of generality, there exist vertices $y \in N(v) \cap N_{3}(S)$ and $y^{\prime} \in N\left(v^{\prime}\right) \cap$ $N\left(J_{2}\right)$. Then there exist a vertex $x \in V-S$ such that $x y \in E(G)$ and a vertex $x^{\prime} \in J_{2}$ such that $x^{\prime} y^{\prime} \in E(G)$. If $x \in N_{3}(S)$, define $g(y v)=f(y v)+\frac{1}{2} f(y x)=\frac{1}{4}+\frac{1}{2} \times \frac{1}{2}=\frac{1}{2}$. Otherwise, define $g(y v)=f(y v)+f(y x)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. Define $g\left(y^{\prime} v^{\prime}\right)=f\left(y^{\prime} v^{\prime}\right)+$ $f\left(y^{\prime} x^{\prime}\right)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. For $z \in N(v)-\left\{u_{1}, u_{2}, y\right\}$ and $z^{\prime} \in N\left(v^{\prime}\right)-\left\{u_{1}, u_{2}, y^{\prime}\right\}$, define $g(z v)=f(z v)=\frac{1}{4}$ and $g\left(z^{\prime} v^{\prime}\right)=f\left(z^{\prime} v^{\prime}\right)=\frac{1}{4}$. Therefore, we have

$$
h(v)=g\left(u_{1} v\right)+g\left(u_{2} v\right)+g(y v)+g(z v)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4}
$$

and

$$
h\left(v^{\prime}\right)=g\left(u_{1} v^{\prime}\right)+g\left(u_{2} v^{\prime}\right)+g\left(y^{\prime} v^{\prime}\right)+g\left(z^{\prime} v^{\prime}\right)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4} .
$$

Case 2.2. $\left|\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap\left(N_{3}(S) \cup N\left(J_{2}\right)\right)\right| \leqslant 1$.
Denote

$$
\begin{aligned}
M_{2}= & \left\{y \in N(L) \cap N_{4}(S) \mid N(y)-L \subseteq J_{1}\right. \text { and there exist two vertices } \\
& \left.x_{1}, x_{2} \in N(y)-L \text { such that } N_{2}\left(x_{1}, S\right)=\emptyset, N_{2}\left(x_{2}, S\right)=\emptyset\right\}, \\
Q_{2}= & \left\{y \in N(L) \cap N_{4}(S) \mid N(y)-L \subseteq J_{1} \text { and }|N(y)-L|=2\right. \\
& \text { and for } \left.x_{1}, x_{2} \in N(y)-L, N_{2}\left(x_{1}, S\right)=\emptyset, N_{2}\left(x_{2}, S\right) \neq \emptyset\right\} .
\end{aligned}
$$

Case 2.2.1. $\left|N(v) \cup N\left(v^{\prime}\right) \cap Q_{2}\right| \leqslant 1$.

Case 2.2.1.1. $\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap M_{2}=\emptyset$.
If $N(v) \cap Q_{2} \neq \emptyset$, assume $u_{3} \in N(v) \cap Q_{2}$ and $u_{4} \in N(v)-\left\{u_{1}, u_{2}, u_{3}\right\}$ and $u_{5} \in N\left(v^{\prime}\right)-\left\{u_{1}, u_{2}, u_{3}\right\}$. Then, without loss of generality, there exist vertices x_{1}, x_{2}, x_{3} and x_{4} such that $x_{1}, x_{2} \in N\left(u_{3}\right)-L, x_{3}, x_{4} \in N\left(u_{4}\right)-L$ and $N_{2}\left(x_{1}, S\right)=$ $\emptyset, N_{2}\left(x_{2}, S\right) \neq \emptyset, N_{2}\left(x_{3}, S\right) \neq \emptyset$ and $N_{2}\left(x_{4}, S\right) \neq \emptyset$. Assume $w_{i} \in N_{2}\left(x_{i}, S\right)$ for $i=2,3,4$. By Claim 4 we can select $z_{1} \in\left(N\left(P\left(x_{1}\right)\right) \cap\left(N_{3}(S)-\left(R-\left(N(v) \cap N\left(v^{\prime}\right)\right)\right)\right)\right.$. Define $g\left(u_{3} v^{\prime}\right)=f\left(u_{3} v\right)+f\left(z_{1} x_{1}\right)=\frac{1}{2}, g\left(u_{4} v\right)=f\left(u_{4} v\right)=\frac{1}{4}$ and $g\left(u_{3} v\right)=f\left(u_{3} v\right)=$ $\frac{1}{4}, g\left(u_{5} v^{\prime}\right)=f\left(u_{5} v^{\prime}\right)+\frac{1}{2} \times\left(f\left(w_{2} x_{2}\right)-\frac{1}{4}\right)+\frac{1}{2} \times\left(f\left(w_{3} x_{3}\right)-\frac{1}{4}\right)+\frac{1}{2} \times\left(f\left(w_{4} x_{4}\right)-\frac{1}{4}\right) \geqslant \frac{1}{2}$.

Therefore, we have

$$
\begin{gathered}
h(v)=g\left(u_{1} v\right)+g\left(u_{2} v\right)+g\left(u_{3} v\right)+g\left(u_{4} v\right) \geqslant \frac{7}{4} \\
h\left(v^{\prime}\right)=g\left(u_{1} v^{\prime}\right)+g\left(u_{2} v^{\prime}\right)+g\left(u_{3} v^{\prime}\right)+g\left(u_{5} v^{\prime}\right) \geqslant \frac{7}{4} .
\end{gathered}
$$

If $N(v) \cap Q_{2}=\emptyset$, assume $u_{3}, u_{4} \in N(v)-\left\{u_{1}, u_{2}\right\}$ and $u_{5}, u_{6} \in N\left(v^{\prime}\right)-\left\{u_{1}, u_{2}\right\}$. Then, without loss of generality, there exist vertices x_{1}, x_{2}, x_{3} and x_{4} such that $x_{1}, x_{2} \in N\left(u_{3}\right)-L, x_{3}, x_{4} \in N\left(u_{4}\right)-L$ and $N_{2}\left(x_{1}, S\right) \neq \emptyset, N_{2}\left(x_{2}, S\right) \neq \emptyset, N_{2}\left(x_{3}, S\right) \neq$ \emptyset and $N_{2}\left(x_{4}, S\right) \neq \emptyset$. Assume $w_{i} \in N_{2}\left(x_{i}, S\right)$ for $i=1,2,3,4$.

Define $g\left(u_{3} v\right)=f\left(u_{3} v\right)+\frac{1}{2} \times\left(f\left(w_{1} x_{1}\right)-\frac{1}{4}\right)+\frac{1}{2} \times\left(f\left(w_{2} x_{2}\right)-\frac{1}{4}\right)=\frac{1}{2}, g\left(u_{4} v\right)=$ $f\left(u_{4} v\right)=\frac{1}{4}$ and $g\left(u_{5} v^{\prime}\right)=f\left(u_{5} v^{\prime}\right)+\frac{1}{2} \times\left(f\left(w_{3} x_{3}\right)-\frac{1}{4}\right)+\frac{1}{2} \times\left(f\left(w_{4} x_{4}\right)-\frac{1}{4}\right)=$ $\frac{1}{2}, g\left(u_{6} v^{\prime}\right)=f\left(u_{6} v^{\prime}\right)=\frac{1}{4}$. Therefore, we have

$$
h(v)=g\left(u_{1} v\right)+g\left(u_{2} v\right)+g\left(u_{3} v\right)+g\left(u_{4} v\right) \geqslant \frac{7}{4}
$$

and

$$
h\left(v^{\prime}\right)=g\left(u_{1} v^{\prime}\right)+g\left(u_{2} v^{\prime}\right)+g\left(u_{5} v^{\prime}\right)+g\left(u_{6} v^{\prime}\right) \geqslant \frac{7}{4} .
$$

Case 2.2.1.2. $\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap M_{2} \neq \emptyset$.
Assume $u \in\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap M_{2}$, then there exist two vertices $x_{1}, x_{2} \in N(u)-$ $\left\{v, v^{\prime}\right\} \subseteq J_{1}$ such that $N_{2}\left(x_{1}, S\right)=\emptyset, N_{2}\left(x_{2}, S\right)=\emptyset$. By the same argument as in case 1, we can select two vertices $z_{1} \in N\left(P\left(x_{1}\right)\right) \cap N_{3}(S)$, $z_{2} \in N\left(P\left(x_{2}\right)\right) \cap N_{3}(S)$; we claim that $z_{1}, z_{2} \in N_{3}(S)-\left(R-\left(N(v) \cup N\left(v^{\prime}\right)\right)\right)$. Without loss of generality, suppose to the contrary that there exists a vertex $b \in B$ such that $b z_{1} \in E(G)$ and $b \notin\left\{v, v^{\prime}\right\}$. Since $N(v) \cap N(b)=\emptyset, S^{\prime}=S-\left\{b, v, x_{1}\right\} \cup\left\{z_{1}, u\right\}$ is a dominating set of G with cardinality less than S, a contradiction. Assume that $y_{1}, y_{2} \in N(v)-\left\{u_{1}, u_{2}\right\}$, $y_{1}^{\prime}, y_{2}^{\prime} \in N\left(v^{\prime}\right)-\left\{u_{1}, u_{2}\right\}$, define $g\left(y_{1} v\right)=f\left(y_{1} v\right)+f\left(z_{1} P\left(x_{1}\right)\right) \geqslant \frac{1}{2}, g\left(y_{2} v\right)=f\left(y_{2} v\right) \geqslant$ $\frac{1}{4}$ and $g\left(y_{1}^{\prime} v^{\prime}\right)=f\left(y_{1}^{\prime} v^{\prime}\right)+f\left(z_{2} P\left(x_{2}\right)\right) \geqslant \frac{1}{2}, g\left(y_{2}^{\prime} v^{\prime}\right)=f\left(y_{2}^{\prime} v^{\prime}\right) \geqslant \frac{1}{4}$. Thus we have

$$
h(v)=g\left(u_{1} v\right)+g\left(u_{2} v\right)+g\left(y_{1} v\right)+g\left(y_{2} v\right) \geqslant \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4}
$$

and

$$
h\left(v^{\prime}\right)=g\left(u_{1} v^{\prime}\right)+g\left(u_{2} v^{\prime}\right)+g\left(y_{1}^{\prime} v^{\prime}\right)+g\left(y_{2}^{\prime} v^{\prime}\right) \geqslant \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{7}{4} .
$$

Case 2.2.2. $\left|N(v) \cup N\left(v^{\prime}\right) \cap Q_{2}\right| \geqslant 2$.
Then there exist two distinct vertices y, $y^{\prime} \in\left(N(v) \cup N\left(v^{\prime}\right)\right) \cap Q_{2}$, so there exist $x_{1}, x_{2} \in\left(N(y) \cup N\left(y^{\prime}\right)\right) \cap J_{1}$ such that $N_{2}\left(x_{1}, S\right)=\emptyset$ and $N_{2}\left(x_{2}, S\right)=\emptyset$. (Note that this is possible for $x_{1}=x_{2}$). By Claim 4, we can select $z_{1} \in\left(N\left(P\left(x_{1}\right)\right) \cap\left(N_{3}(S)-\right.\right.$ $\left.\left(R-\left(N(v) \cap N\left(v^{\prime}\right)\right)\right)\right), z_{2} \in N\left(P\left(x_{2}\right)\right) \cap\left(N_{3}(S)-\left(R-\left(N(v) \cap N\left(v^{\prime}\right)\right)\right)\right)$. We can argue in the same way as before, and conclude that $h(v) \geqslant \frac{7}{4}$ and $h\left(v^{\prime}\right) \geqslant \frac{7}{4}$.

Thus we complete the definition of the function g. It is easy to find that g satisfies conditions (1) and (3). This completes the proof of the theorem.

References

[1] T. W. Haynes, S. T. Hedetniemi and P.J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, 1998.
[2] W. McGuaig and B. Shepherd: Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762.
[3] O. Ore: Theory of Graphs. Amer. Math. Soc. Colloq. Publ. (AMS, Providence, RI) 38 (1962).
[4] B. Reed: Paths, stars, and the number three. Comb. Prob. Comp. 5 (1996), 277-295.
Authors' address: Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China, e-mail: liu_hailong@163.com, sun30318@yahoo.com.

