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HOMOMORPHIC IMAGES AND RATIONALIZATIONS

BASED ON THE EILENBERG-MACLANE SPACES
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, Chonju

(Received August 21, 2002)

Abstract. Are there any kinds of self maps on the loop structure whose induced homo-
morphic images are the Lie brackets in tensor algebra? We will give an answer to this
question by defining a self map of ΩΣK( � ,2d), and then by computing efficiently some
self maps. We also study the topological rationalization properties of the suspension of the
Eilenberg-MacLane spaces. These results will be playing a powerful role in the computation
of the same n-type problems and giving us an information about the rational homotopy
equivalence.
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1. Introduction and results

In this paper, let K denote the Eilenberg-MacLane space K( � , 2d) for a fixed
integer d > 1. We will use the usual notations ΣX (or ΩX) for the suspension
(or loop space) of X . We know that H̃∗(K; � ) ∼= � [β0, β1, β2, . . . , βn, . . .], where
βn ∈ H2dn(K; � ) is the standard generator [5]. The rational homology of ΩΣK is
a tensor algebra T 〈b0, b1, b2, . . . , bn, . . .〉, where bn has dimension 2dn with diagonal

∆(bn) =
∑

i+j=n

bi ⊗ bj and bn = E∗(βn). Here E is the inclusion E : K ↪→ ΩΣK.

How can we construct a self map of ΣK? Even though there are so many self

maps of ΣK, we need to produce a useful self map to achieve one of the goals of
this paper and to solve the problems of the same n-type problems. First of all,

let χ : ΩΣK → ΩΣK be the map of loop inverse and I the identity map on ΩΣK

sending bn to bn for each n in an integral homology. Secondly, we can consider
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a map [(−1)n] : ΩΣK → ΩΣK inducing a homomorphism [(−1)n]∗ : H∗(ΩΣK) →
H∗(ΩΣK) which sends bn to (−1)nbn for each n on the integral homology groups.
Indeed, we can construct those kinds of maps by using C.A. McGibbon’s result [3].

It is well known that the Hurewicz homomorphism carries the Samelson product
(dual of the Whitehead product) into the Lie bracket. Here, however, is an interesting

question: Are there any kinds of self maps on the loop structure whose induced
homomorphic images can be expressed as the Lie bracket in Lie algebra? We will

find one commutator map on the loop structure which gives us an answer to this
query right after we define a self map as follows.

Definition 1. Define a self map ϕ on ΩΣK as ϕ = I ? [(−1)n], where ? is the
loop multiplication.

Note that the homomorphism ϕ∗ : H∗(ΩΣK)→ H∗(ΩΣK) induced by ϕ is equal
to the composition µ∗ ◦ (I∗ × [(−1)n]∗) ◦∆∗ of homomorphisms, where ∆ and µ are

the diagonal map and the loop multiplication respectively. We, then, define a kind
of commutator map on the loop structure to find a map which will give an answer

to the question above.

Definition 2. Define a map [I, ϕ] : ΩΣK → ΩΣK as the commutator of I and ϕ,

i.e., [I, ϕ] = I ? ϕ ? χ ? ϕ−1.

Conveniently, we will just use the notations ‘g’ for the induced homomorphisms

g∗ = H(g; � ) : H∗(ΩΣK) → H∗(ΩΣK) on the integral homology groups to avoid
abundant notations in Theorem 3 and its proof.

Theorem 3. Let 〈−,−〉 be the Lie bracket. Then
(1) [I, ϕ](b1) = 0,
(2) [I, ϕ](b2) = 0, and
(3) [I, ϕ](b3) = 2 〈b1, b2〉.

As usual, let ΣkK, k > 1, denote the k-fold suspensions of the Eilenberg-MacLane
space. We shall, once again, use the common notation X0 as the rationalization of X

which is a special case of the L-localization, denoted by XL, of X [7], where L is a
set of primes. We now have the following.

Theorem 4. There is no map f : ΣK → ΣΩS2d+1 inducing an isomorphism on

the rational homology groups.

It is already known that there is a map h : ΣΩS2d+1 → ΣK inducing an isomor-

phism on the rational homology groups. Thus the above theorem says that we can
not say generally that the rational homotopy equivalence is an equivalence relation

466



which is, at least for me, one of the most important facts in the rational homotopy

theory.
We now get a result about the Whitehead products on the k-fold suspension of

the given Eilenberg-MacLane space in the (rational) homotopy theory.

Theorem 5. The Whitehead products [ι2di+k, ι2dj+k ] in π2di+2dj+2k−1(ΣkK),
k > 1, are rationally non-trivial, where ιd is a generator in dimension d.

If we take d = 1, then K( � , 2) = � P∞ . So we have the following simple example.

Example 6. The Whitehead product [ι3, ι5] : S7 → Σ � P 3 has an infinite order.

2. Proofs

���������
of Theorem 3. We now prove the theorem by taking several steps.

Step 1 (computation of χ): Considering the loop inverse map χ, we can compute

µ(I× χ)∆(b1) = µ(I× χ)(b1 ⊗ 1 + 1⊗ b1)(2.1)

= µ(b1 ⊗ 1 + 1⊗ χ(b1))

= b1 + χ(b1).

Since (I ? χ) is the trivial map, we have χ(b1) = −b1.

Similarly, if we compute

µ(I× χ)∆(b2) = µ(I× χ)(b2 ⊗ 1 + 1⊗ b2 + b1 ⊗ b1)(2.2)

= µ(b2 ⊗ 1 + 1⊗ χ(b2)− b1 ⊗ b1)

= b2 + χ(b2)− b2
1,

then, by the same reason as above, χ(b2) = −b2 + b2
1.

If we compute once again

µ(I× χ)∆(b3) = µ(I× χ)(b3 ⊗ 1 + b2 ⊗ b1 + b1 ⊗ b2 + 1⊗ b3)(2.3)

= b3 + b2(−b1) + b1(−b2 + b2
1) + χ(b3),

then we finally obtain χ(b3) = −b3 + b1b2 + b2b1 − b3
1.

Step 2 (computation of ϕ): We can compute

ϕ(b3) = µ(I× [(−1)n])∆(b3)(2.4)

= µ(I× [(−1)n])(b3 ⊗ 1 + b2 ⊗ b1 + b1 ⊗ b2 + 1⊗ b3)

= b3 + b2(−b1) + b1b2 − b3

= b1b2 − b2b1.

Similarly, we have ϕ(b1) = 0 and ϕ(b2) = 2b2 − b2
1.
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Step 3 (computation of ϕ−1): Since ϕ ? ϕ−1 = 0 and ϕ(b1) = 0, we have
ϕ−1(b1) = 0. We can also compute

µ(ϕ× ϕ−1)∆(b2) = µ(ϕ× ϕ−1)(b2 ⊗ 1 + b1 ⊗ b1 + 1⊗ b2)(2.5)

= µ(ϕ(b2)⊗ 1 + 0 + 1⊗ ϕ−1(b2))

= ϕ(b2) + ϕ−1(b2).

This computation forces to be ϕ−1(b2) = −ϕ(b2) = −(2b2 − b2
1).

Similarly, we have ϕ−1(b3) = −(b1b2 − b2b1). We can make sure about these facts
again by using the equation ϕ−1 = χ ◦ ϕ.
Step 4 (computation of I?ϕ and χ?ϕ−1): We can compute this map by the same

method as follows:

(2.6) (I ? ϕ)(bi) =





b1 for i = 1,

3b2 − b2
1 for i = 2,

b3 + 3b1b2 − b2b1 − b3
1 for i = 3

and

(2.7) (χ ? ϕ−1)(bi) =





−b1 for i = 1,

−3b2 + 2b2
1 for i = 2,

−b3 + 2b2b1 + 2b1b2 − 2b3
1 for i = 3.

Final step (computation of the commutator): By using the above steps, we finally
have [I, ϕ](b1) = 0, [I, ϕ](b2) = 0 and

[I, ϕ](b3) = {(I ? ϕ) ? (χ ? ϕ−1)}(b3)(2.8)

= µ{(I ? ϕ)× (χ ? ϕ−1)}∆(b3)

= µ{(I ? ϕ)× (χ ? ϕ−1)}(b3 ⊗ 1 + b2 ⊗ b1 + b1 ⊗ b2 + 1⊗ b3)

= b3 + 3b1b2 − b2b1 − b3
1 + (3b2 − b2

1)(−b1)

+ b1(−3b2 + 2b2
1)− b3 + 2b2b1 + 2b1b2 − 2b3

1

= 2(b1b2 − b2b1) = 2 〈b1, b2〉

which complete the proof. �

The above theorem will be helpful in the computation of the homotopy same

n-type problems for certain suspensions [1].
���������

of Theorem 4. We know that ΣK is rationally homotopy equivalent to

the wedge product of spheres, i.e., ΣK '0 S2d+1 ∨ S4d+1 ∨ . . ., where '0 means the
rational homotopy equivalence.
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Suppose the map f : ΣK → ΣΩS2d+1 induces an isomorphism on the rational

homology groups.
We firstly consider a map f1 : ΣK → S2d+1 inducing the non-zero degree λ in

the (2d + 1)-dimensional integral homology groups. In other words, we can, by
assumption, choose an induced homomorphism

(2.9) f1∗ : H2d+1(ΣK; � )/torsion ∼= � → H2d+1(S2d+1; � )∼= �

given by sending the generator x to f1∗(x) = λx, for λ 6= 0.
Secondly, we can also select a prime p such that p and λ are relatively prime.
Finally, we can deduce a contradiction by using the cohomology argument and the

Steenrod power ([6], [2]) in the following commutative diagram

(2.10)

H2d+1(ΣK; � /p) λ←−−−− H2d+1(S2d+1; � /p)

P
1

y P
1

y

H2d+2p−1(ΣK; � /p)
f∗1←−−−− H2d+2p−1(S2d+1; � /p).

Indeed, for a generator 〈x〉 in H2d+1(S2d+1; � /p), we have

0 6= P1(λ〈x〉) (since λ 6= 0, and P1(〈x〉) 6= 0)(2.11)

= f∗1 (P1(〈x〉)) (commutativity)

= f∗1 (0)

= 0

which is a contradiction. Actually, we can choose infinitely many different primes.

We thus conclude that λ = 0. �

The above theorem says that all maps f : ΣK → ΣΩS2d+1 induce the trivial
homomorphism on the rational homology groups. One can verify the above theorem

by considering the phantom map theory. Let X be a pointed CW -complex. A map
f : X → Y is called a phantom map [4] if its restriction to each n-skeleton Xn of X is

inessential. Since the map g : K( � , 2d)→ ΩS2d+1 is an example of a phantom map,
the map Σg = f : ΣK( � , 2d)→ ΣΩS2d+1 of suspension is also phantom. We thus get

the above theorem because the rationalized map Σg0 = f0 : ΣK( � , 2d) → ΣΩS2d+1
0

of a phantom map is always trivial, where � is the set of all rational numbers.
���������

of Theorem 5. Since the k-fold suspension ΣkK, k > 1, of the Eilenberg-
MacLane space is rationally homotopy equivalent to the wedge product of spheres

as mentioned before, we can take generators, say, ι2di+k ∈ � ⊂ π2di+k(ΣkK), where
i = 1, 2, . . ..
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Suppose [ι2di+k , ι2dj+k] has a finite order in π2di+2dj+2k−1(S2di+k ∨ S2dj+k), then,
from the cofibration sequence

S2di+2dj+2k−1 −−→ S2di+k ∨ S2dj+k −−→ S2di+k × S2dj+k(2.12)

−−→ S2di+2dj+2k −−→ . . . ,

we have

(2.13) S2di+k × S2dj+k ' (S2di+k ∨ S2dj+k) ∪[ι2di+k,ι2dj+k ] e2di+2dj+2k.

Since the rationalized Whitehead product [ι2di+k, ι2dj+k]0 is trivial, we also have

(2.14) (S2di+k × S2dj+k) '0 S2di+k ∨ S2dj+k ∨ S2di+2dj+2k

which is a contradiction by using the cohomology argument. Indeed, we have non-
zero cup products in H∗(S2di+k × S2dj+k) while all cup products on the right-hand
side of (2.14) are always trivial. �
In fact, we have

(2.15) ι2di+k ∈ � ⊂ � ⊕ � ⊕ . . .⊕ � ⊕ T ∼= π2di+k(ΣkK),

where T is torsion. Note that in this case π2di+k(ΣkK)/T ∼= � ⊕ � ⊕. . .⊕ � (n-times).
Here n is equal to the sum of the number of indecomposable (1) and the number of

decomposable (n− 1) parts (the Whitehead products) of generators.

Acknowledgement. I would like to thank Professor C.A. McGibbon for encour-
agement and introducing me to the self maps in Theorem 3 which play an important
role and a conclusive step in solving the same n-type conjectures for certain suspen-

sions [1].
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