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Abstract. A space of boundary values is constructed for the minimal symmetric operator
generated by an infinite Jacobi matrix in the limit-circle case. A description of all maximal
dissipative, accretive and selfadjoint extensions of such a symmetric operator is given in
terms of boundary conditions at infinity. We construct a selfadjoint dilation of maximal
dissipative operator and its incoming and outgoing spectral representations, which makes it
possible to determine the scattering matrix of dilation. We construct a functional model of
the dissipative operator and define its characteristic function. We prove a theorem on the
completeness of the system of eigenvectors and associated vectors of dissipative operators.
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1. Introduction

The theory of extensions of symmetric operators is one of the main branches of
operator theory. The first fundamental results in this area were obtained by von

Neumann [13], although the apparent origins can be found in the famous works
of Weyl (see [15], [17]), and also in numerous papers on the classical problem of

moments (see [1], [4]).

To describe the various classes of extensions of symmetric operators, the theorems
on the representation of linear relations have proved to be useful. The first result of

this type belongs to Rofe-Beketov [14]. Independently, in [5] and [9], the notion of
a ‘space of boundary values’ was introduced and all maximal dissipative, accretive,
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selfadjoint, and other extensions of symmetric operators were described (see [8] and

also in the survey article [7]).

However, regardless of the general scheme, the problem of description of the max-

imal dissipative (accretive), selfadjoint and other extensions of a given symmetric
operator via boundary conditions is of considerable interest. This problem is par-

ticularly interesting in the case of singular operators, because at the singular ends
of the interval under consideration the usual boundary conditions are in general are
meaningless.

It is known [10], [12] that the theory of dilations with application of operator

models gives an adequate approach to the spectral theory of dissipative (contrac-
tive) operators. A central part in this theory is played by the characteristic function,
which carries the complete information on the spectral properties of the dissipative

operator. Thus, in the incoming spectral representation of the dilation, the dissipa-
tive operator becomes the model. The problem of the completeness of the system

of eigenvectors and associated vectors is solved in terms of the factorization of the
characteristic function. The computation of the characteristic functions of dissipative

operators is preceded by the construction and investigation of a selfadjoint dilation
and of the corresponding scattering problem, in which the characteristic function is

realized as the scattering matrix.

In this paper we consider the minimal symmetric operator in the space `2w( � )
( � := {0, 1, 2, . . .}) with defect index (1,1) (in Weyl’s limit-circle case), generated by
an infinite Jacobi matrix. We construct a space of boundary values of the minimal

operator and describe all maximal dissipative, maximal accretive and selfadjoint ex-
tensions of minimal operator in terms of the boundary conditions at∞. We construct
a selfadjoint dilation of the maximal dissipative operators and their incoming and
outgoing spectral representations, which makes it possible to determine the scat-

tering matrix of dilation according to the scheme of Lax and Phillips [11]. With
the help of the incoming spectral representation we construct a functional model of

the dissipative operator and define its characteristic function. Finally, on the basis
of the results obtained regarding the theory of the characteristic function we prove

a theorem on completeness of the system of eigenvectors and associated vectors of
dissipative operators.
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2. Extensions of the symmetric operator generated by

an infinite Jacobi matrix

An infinite Jacobi matrix is defined to be a matrix of the form

J =




b0 a0 0 0 0 . . .

a0 b1 a1 0 0 . . .

0 a1 b2 a2 0 . . .
...
...
...
...
...
. . .


 ,

where an 6= 0 and Im an = Im bn = 0 (n ∈ � ).
For every sequence y = {yn} (n ∈ � ) of complex numbers y0, y1, . . . denote by `y

the sequence with components (`y)n (n ∈ � ) defined by

(`y)0 :=
1
w0

(Jy)0 =
1
w0

(b0y0 + a0y1),

(`y)n :=
1
wn

(Jy)n =
1
wn

(an−1yn−1 + bnyn + anyn+1), n > 1,

where wn > 0 (n ∈ � ).
For two arbitrary sequences y = {yn} and z = {zn} (n ∈ � ), denote by [y, z] the

sequence with components [y, z]n (n ∈ � ) defined by

(2.1) [y, z]n = an(ynzn+1 − yn+1zn) (n ∈ � ).

Then we have Green’s formula

(2.2)
j∑

j=0

{wj(`y)jzj − wjyj(`z)j} = −[y, z]n (n ∈ � ).

To pass from the matrix J to operators, we introduce the Hilbert space `2w( � )
(w : = {wn}, n ∈ � ) consisting of all complex sequences y = {yn} (n ∈ � ) such

that
∞∑

n=0
wn|yn|2 < ∞, with the inner product (y, z) =

∞∑
n=0

wnynzn. Next, denote

by D the linear set of all elements y ∈ `2w( � ) such that `y ∈ `2w( � ). We define the
operator L on D by the equality Ly = `y.
It follows from (2.2) that for all y, z ∈ D the limit [y, z]∞ = lim

n→∞
[y, z]n exists and

is finite. Therefore, passing to the limit as n→∞ in (2.2), we get for two arbitrary
vectors y and z of D

(2.3) (Ly, z)− (y, Lz) = −[y, z]∞.
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In `2w( � ) we consider the linear set D′0 consisting of finite vectors (i.e. vectors
having only finite many nonzero components). Denote by L′0 the restriction of the
operator L to D′0. It follows from (2.3) that L

′
0 is symmetric. Consequently, it admits

closure. Its closure is denoted by L0. The domain D0 of L0 consists of precisely those

vectors y ∈ D satisfying the condition

(2.4) [y, z]∞ = 0, ∀ z ∈ D.

The operator L0 is a closed symmetric operator with defect index (0, 0) or (1, 1) and
L = L∗0 [1]–[4], [6], [16]. The operators L0 and L are called, respectively, the minimal

and maximal operators. For defect index (0, 0) the operator L0 is selfadjoint, that
is, L∗0 = L0 = L.

Denote by P (λ) = {Pn(λ)} and Q(λ) = {Qn(λ)} (n ∈ � ) the solutions of the
equation

(2.5) an−1yn−1 + bnyn + anyn+1 = λwnyn (n = 1, 2, . . .)

satisfying the initial conditions

(2.6) P0(λ) = 1, P1(λ) =
λw0 − b0

a0
, Q0(λ) = 0, Q1(λ) =

1
a0
.

The function Pn(λ) is a polynomial of degree n in λ and is called a polynomial
of the first kind, while Qn(λ) is a polynomial of degree n − 1 in λ and is called a
polynomial of the second kind.

Note that P (λ) is a solution of the equation (Jy)n = λwnyn, but Q(λ) is not:
(JQ)n = λwnQn for 1 6 n, but (JQ)0 = 1 6= 0 = λQ0. The equation (Jy)n = λwnyn

is equivalent to (2.5) for n ∈ � and under the boundary condition y−1 = 0. The
Wronskian of two solutions y = {yn} and z = {zn} (n ∈ � ) of (2.5) is defined to be
Wn(y, z) := an(ynzn+1−yn+1zn), so thatWn(y, z) = [y, z]n (n ∈ � ). The Wronskian
of two solutions of (2.5) does not depend on n, and two solutions of this equation

are linearly independent if and only if their Wronskian is nonzero. It follows from
the conditions (2.6) and the constancy of the Wronskian thatWn(P,Q) = 1 (n ∈ � ).
Consequently, P (λ) and Q(λ) form a fundamental system of solutions of (2.5).
We assume that the minimal symmetric operator L0 has defect index (1, 1), so

that the Weyl limit-circle case holds for the expression `y (see [1]–[4], [6], [16]).
Since L0 has defect index (1, 1), P (λ) and Q(λ) belong to `2w( � ) for all λ ∈ � .
Let u = P (0) and v = Q(0), so that u = {un} and v = {vn} (n ∈ � ) are solutions

of (2.5) with λ = 0 that satisfy the initial conditions

(2.7) u0 = 1, u1 = − b0
a0
, v0 = 0, v1 =

1
a0
.
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We have u, v ∈ `2w( � ); what is more, u, v ∈ D, and

(2.8) (Ju)n = 0 (n ∈ � ), (Jv)0 = 1, (Jv)n = 0, n > 1.

Lemma 2.1. For arbitrary α, β ∈ � , there exists a vector y ∈ D satisfying
(2.9) [y, u]∞ = α, [y, v]∞ = β.

���������
. Let f be an arbitrary vector in `2w( � ) satisfying

(2.10) (f, u) = −α, (f, v) = −β.

Such vector f exists, even among linear combinations of u and v. Indeed, if f =
c1u+c2v, then the conditions (2.10) are a system of equations in the constants c1 and
c2 whose determinant is the Gram determinant of the linearly independent vectors u

and v, and hence is nonzero. �

Denote by y = {yn} the solution of (Jy)n = wnfn (n ∈ � ) satisfying y0 = 0. This
solution can be expressed by

yn =
n∑

j=0

(ujvn − unvj)wjfj (n ∈ � ),

and hence belongs to `2w( � ).
We show that y is the desired vector. Indeed, applying (2.3) to f and u, v we

obtain

(f, u) = (Ly, u) = −[y, u]∞ + (y, Lu),(2.11)

(f, v) = (Ly, v) = −[y, v]∞ + (y, Lv).

But Lu = 0, and thus (y, Lu) = 0; moreover, in view of the condition y0 = 0
and the third relation in (2.8) we also have (y, Lv) = 0. Therefore, (2.9) follows
from (2.10) and (2.11). The lemma is proved. �

Since the vectors u = {un} and v = {vn} (n ∈ � ) are real and since [u, v]n = 1
(n ∈ � ), the following assertion can be verified immediately on the basis of the (2.1).

Lemma 2.2. For arbitrary vectors y = {yn} ∈ D and z = {zn} ∈ D

(2.12) [y, z]n = [y, u]n[z, v]n − [y, v]n[z, y]n (n ∈ � ∪ {∞}).

Then we have
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Theorem 2.3. The domain D0 of the operator L0 consists precisely of those

vectors y ∈ D satisfying the following boundary conditions

(2.13) [y, u]∞ = [y, v]∞ = 0.

���������
. As noted above, the domain D0 of L0 coincides with the set of all

vectors y ∈ D satisfying (2.4). By virtue of Lemma 2.2, (2.4) is equivalent to

(2.14) [y, u]∞[z, v]∞ − [y, v]∞[z, u]∞ = 0.

Further, by Lemma 2.1, the numbers [v, z]∞ and [u, z]∞ (z ∈ D) can be arbitrary.
Therefore, the equality (2.14) for all z ∈ D is possible if and only if the condi-
tions (2.13) hold. The theorem is proved. �

The triple (H ,Γ1,Γ2), where H is a Hilbert space and Γ1 and Γ2 are linear map-
pings of D(A∗) into H , is called ([5], [8], [9]) a space of boundary values of a closed

symmetric operator A, acting in a Hilbert space H with equal (finite or infinite)
defect index if

1) for any f, g ∈ D(A∗),

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H ;

2) for any F1, F2 ∈ H there exists a vector f ∈ D(A∗) such that Γ1f = F1,
Γ2f = F2.

In our case, we denote by Γ1 and Γ2 the linear mappings of D into � defined by
(2.15) Γ1y = [y, v]∞, Γ2f = [y, u]∞ (y ∈ D).

Then we have

Theorem 2.4. The triple ( � ,Γ1 ,Γ2) defined by (2.15) is the space of boundary
values of the operator L0.

���������
. By Lemma 2.1, for arbitrary y, z ∈ D we have

(Ly, z)− (y, Lz) = −[y, z]∞ = [y, v]∞[z, u]∞ − [y, u]∞[z, v]∞

= (Γ1y,Γ2z)− (Γ2y,Γ1z),

i.e., the first requirement of the definition of the space of boundary values is valid.

Its second requirement is valid due to Lemma 2.1. The theorem is proved. �

By [5], [8, Theorem 1.6, p. 156], [9], Theorem 2.4 implies the following
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Theorem 2.5. Every maximal dissipative (accretive) extension Lh of L0 is de-

termined by the equality Lhy = Ly on the vectors y in D satisfying the boundary

condition

(2.16) [y, v]∞ − h[y, u]∞ = 0,

where Imh > 0 or h = ∞ (Imh 6 0 or h = ∞). Conversely, for an arbitrary h with
Imh > 0 or h = ∞ (Imh 6 0 or h = ∞), the boundary condition (2.16) determines a
maximal dissipative (accretive) extension on L0. The selfadjoint extensions of L0 are

obtained precisely when h is a real number or infinity. For h = ∞ the condition (2.16)
should be replaced by [y, u]∞ = 0.

3. Selfadjoint dilation of the dissipative operator

In the sequel we shall study the maximal dissipative operators Lh (Imh > 0)
generated by the expression `(y) and the boundary condition (2.16).
Let us add to the space H := `2w( � ) the ‘incoming’ and ‘outgoing’ channels D− :=

L2(−∞, 0) and D+ := L2(0,∞). We form the main Hilbert space of the dilation
H = L2(−∞, 0)⊕H ⊕L2(0,∞), and in H we consider the operator Lh generated

by the expression

(3.1) L 〈ϕ−, y, ϕ+〉 =
〈

i
dϕ−
dξ

, `(y), i
dϕ+

dς

〉

on the set D(Lh) of vectors 〈ϕ−, y, ϕ+〉 satisfying the conditions: ϕ− ∈W 1
2 (−∞, 0),

ϕ+ ∈ W 1
2 (0,∞), y ∈ D,

(3.2) [y, v]∞ − h[y, u]∞ = αϕ−(0), [y, v]∞ − h[y, u]∞ = αϕ+(0),

where α2 := Imh, α > 0 and W 1
2 is the Sobolev space. Then we have

Theorem 3.1. The operator Lh is selfadjoint in H and is a selfadjoint dilation

of the operator Lh.
���������

. Suppose that f, g ∈ D(Lh), f = 〈ϕ−, y, ϕ+〉 and g = 〈ψ−, z, ψ+〉.
Then, integrating by parts and using (2.13), we get

(Lhf, g)H =
∫ 0

−∞
iϕ′−ψ− dξ + (`y, z)H +

∫ ∞

0

iϕ′+ψ+ dξ(3.3)

= iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0)− [y, z]∞ + (f,Lhg)H .
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Next, using the boundary conditions (3.2) for the components of the vectors f , g

and the relation (2.12), we see by direct computation that

iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0)− [y, z]∞ = 0.

Thus, Lh is symmetric. Therefore, to prove that Lh is selfadjoint, it suffices to show

that L ∗
h ⊆ Lh.

Take g = 〈ψ−, z, ψ+〉 ∈ D(L ∗
h ). Let L ∗

h g = g∗ =
〈
ψ∗−, z

∗, ψ∗+
〉
∈ H , so that

(3.4) (Lhf, g)H = (f, g∗)H , ∀ f ∈ D(Lh).

By choosing vectors with suitable components as the f ∈ D(Lh) in (3.4), it is not
difficult to show that ψ− ∈ W 1

2 (−∞, 0), ψ+ ∈ W 1
2 (0,∞), z ∈ D and g∗ = L g, with

the operation L defined by (3.1). Consequently, (3.4) takes the form

(L f, g)H = (f,L g)H , ∀ f ∈ D(Lh).

Therefore, the sum of the integral terms in the bilinear form (L f, g)H must be equal
to zero:

(3.5) iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0)− [y, z]∞ = 0

for all f = 〈ϕ−, y, ϕ+〉 ∈ D(Lh). Further, solving the boundary conditions (3.2) for
[y, u]∞ and [y, v]∞ we find that

[y, u]∞ =
1
iα

(ϕ+(0)− ϕ−(0)),

[y, v]∞ = αϕ−(0) +
h

iα
(ϕ+(0)− ϕ−(0)).

Therefore, using (2.12), we find that (3.5) is equivalent to the equality

iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0) = −[y, z]∞

=
1
iα

(ϕ+(0)− ϕ−(0))[z, v]∞

−
[
αϕ−(0) +

h

iα
(ϕ+(0)− ϕ−(0))

]
[z, u]∞.

Since the values ϕ±(0) can be arbitrary complex numbers, a comparison of the
coefficients of ϕ±(0) on both sides of the last equality gives us that the vector g =
〈ψ−, z, ψ+〉 satisfies the boundary conditions

[z, v]∞ − h[z, u]∞ = αψ−(0), [z, v]∞ − h[z, u]∞ = αψ+(0).

Consequently, the inclusion L ∗
h ⊆ Lh is established, and hence Lh = L ∗

h .
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The selfadjoint operator Lh generates in H a unitary group Ut = exp[iLht]
(t ∈ � := (−∞,∞)). Denote by P : H → H and P1 : H → H the mappings
acting according to the formulae P : 〈ϕ−, y, ϕ+〉 → y and P1 : y → 〈0, y, 0〉. Let
Zt = PUtP1 (t > 0). The family {Zt} (t > 0) of operators is a strongly continuous
semigroup of completely nonunitary contractions on H . Denote by Ah the generator
of this semigroup: Ahy = lim

t→+0
(it)−1(Zty − y). The domain of Ah consists of all

the vectors for which the limit exists. The operator Ah is a maximal dissipative.
The operator Lh is called the selfadjoint dilation of Ah [10], [12]. We show that

Ah = Lh, and hence Lh is a selfadjoint dilation of Lh. To do this, we first verify the
equality [10], [12]

(3.6) P (Lh − λI)−1P1y = (Lh − λI)−1y, y ∈ H, Imλ < 0.

With this goal, we set (Lh − λI)−1P1y = g = 〈ψ−, z, ψ+〉. Then (Lh − λI)g = P1y,
and hence Lz − λz = y, ψ−(ξ) = ψ−(0)e−iλξ and ψ+(ς) = ψ+(0)e−iλς . Since

g ∈ D(Lh), and hence ψ− ∈ L2(−∞, 0); it follows that ψ−(0) = 0, and consequently,
z satisfies the boundary condition [z, v]∞−h[z, u]∞ = 0. Therefore, z ∈ D(Lh), and
since a point λ with Imλ < 0 cannot be an eigenvalue of a dissipative operator, it
follows that z = (Lh − λI)−1y. We remark that ψ+(0) is found from the formula

ψ+(0) = α−1([z, v]∞ − h[z, u]∞).

Thus,

(Lh − λI)−1P1y =
〈
0, (Lh − λI)−1y, α−1([z, v]∞ − h[z, u]∞)e−iλς

〉

for y ∈ H and Imλ < 0. Upon applying the mapping P , we obtain (3.6).
It is now easy to show that Ah = Lh. Indeed by (3.6),

(Lh − λI)−1 = P (Lh − λI)−1P1 = −iP
∫ ∞

0

Ute−iλt dtP1

= −i
∫ ∞

0

Zte−iλt dt = (Ah − λI)−1, Imλ < 0,

from which it is clear that Lh = Ah. Theorem 3.1 it is proved. �
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4. Scattering theory of dilation and the functional model

of dissipative operator

The unitary group Ut = exp[iLht] (t ∈ � ) has an important property which makes
it possible to apply to it the Lax-Phillips scheme [11]. Namely, it has incoming and
outgoing subspaces D− = 〈L2(−∞, 0), 0, 0〉 and D+ = 〈0, 0, L2(0,∞)〉 possessing the
following properties
(1) UtD− ⊂ D−, t 6 0 and UtD+ ⊂ D+, t > 0;
(2)

⋂
t>0

UtD− =
⋂

t>0

UtD+ = {0};

(3)
⋃

t>0

UtD− =
⋃

t60

UtD+ = H ;

(4) D−⊥D+.
Property (4) is obvious. To prove property (1) forD+ (the proof forD− is similar),

we set Rλ = (Lh − λI)−1, then for all λ with Imλ < 0 and for any f = 〈0, 0, ϕ+〉 ∈
D+, we have

Rλf =
〈

0, 0,−ie−iλξ

∫ ξ

0

e−iλsϕ+(s) ds
〉

;

from this it follows that Rλf ∈ D+, therefore, if g⊥D+, then

0 = (Rλf, g)H = −i
∫ ∞

0

e−iλt(Utf, g)H dλ, Imλ < 0.

From this it follows that (Utf, g)H = 0 for all t > 0. Hence UtD+ ⊂ D+ for t > 0,
and property (1) has thus been proved.
To prove property (2), we denote by P+ : H → L2(0,∞) and P+

1 : L2(0,∞) →
D+ the mappings acting according to the formulae P+ : 〈ϕ−, u, ϕ+〉 → ϕ+ and P

+
1 :

ϕ→ 〈0, 0, ϕ〉, respectively. We note that the semigroup of isometries Vt = P+UtP
+
1 ,

t > 0 is a one-sided shift in L2(0,∞). Indeed, the generator of the semigroup
of the one-sided shift Vt in L2(0,∞) is the differential operator i(d/dξ) with the
boundary condition ϕ(0) = 0. On the other hand, the generator A of the semigroup
of isometries U+

t , t > 0, is the operator

Aϕ = P+LhP
+
1 f = P+Lh〈0, 0, ϕ〉 = P+

〈
0, 0, i

dϕ
dξ

〉
= i

dϕ
dξ
,

where ϕ ∈ W 1
2 (0,∞) and ϕ(0) = 0. But since a semigroup is uniquely determined

by its generator, it follows that U+
t = Vt, and hence

⋂

t>0

UtD+ =
〈

0, 0,
⋂

t>0

VtL
2(0,∞)

〉
= t{0},

i.e. property (2) is proved. �
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In this scheme of the Lax-Phillips scattering theory, the scattering matrix is defined

in terms of the theory of spectral representations. We proceed to their construction.
Along the way, we also prove property (3) of the incoming and outgoing subspaces.

Lemma 4.1. The operator Lh is totally nonselfadjoint (simple).
���������

. Let H ′ ⊂ H be a nontrivial subspace in which Lh induces a self-
adjoint operator L′h with domain D(L′h) = H ′ ∩ D(Lh). If y ∈ D(L′h), then
y ∈ D(L′h

∗) and Im(Lhy, y) = 0. Since we get from Im(Lhy, y) = (Imh)|[y, u]∞|2 = 0
that [y, u]∞ = 0. This and the boundary condition (2.16) also imply the equality
[y, v]∞ = 0. Thus,

(4.1) [y, u]∞ = [y, v]∞ = 0, y ∈ D(L′h).

Denote by L0 and L∞ the selfadjoint extensions of L0 determined by the boundary
conditions [y, v]∞ = 0 and [y, u]∞ = 0, respectively. By (4.1) D(L′h) is contained in
each of D(L0) and D(L∞). Suppose that λ belongs to the spectrum of L′h. Then
λ is real, and there exists a sequence of vectors fn ∈ D(L′h) such that ‖fn‖ = 1 and
‖Lhfn − λfn‖ → 0 as n → ∞. This implies that λ belongs also to the spectra of
the operators L0 and L∞. Since the spectra of L0 and L∞ are purely discrete, λ is
an eigenvalue of these operators. The corresponding eigenvectors differ from P (λ)
only by a scalar factor, because P (λ) is the only linearly independent solution of
the equations (Jy)n = λwnyn (n ∈ � ). Consequently, [P (λ), u]∞ = [P (λ), v]∞ = 0.
Further, from (2.12) with y = P (λ) and z = Q(λ) we have

(4.2) [P (λ), Q(λ)]∞ = [P (λ), u]∞[Q(λ), v]∞ − [P (λ), v]∞[Q(λ), u]∞.

The right-hand side is equal to 0 in view of (4.2), while the left-hand side, being the

value of the Wronskian of the solutions P (λ) and Q(λ) of (2.5), is equal to 1. This
contradiction shows that H ′ = {0}. The lemma is proved. �

We set H− =
⋃

t>0

UtD−, H+ =
⋃

t60

UtD+.

Lemma 4.2. H− + H+ = H .
���������

. Taking into account property (1) of the subspace D+, it is easy to show

that the subspace H ′ = H 	 (H− + H+) is invariant relative to the group {Ut}
and has the form H ′ = 〈0, H ′, 0〉, where H ′ is a subspace in H . Therefore, if the

subspace H ′ (and hence also H ′) were nontrivial, then the unitary group {U ′t},
restricted to this subspace, would be a unitary part of the group {Ut}, and hence the
restriction L′h of Lh to H ′ would be a selfadjoint operator in H ′. From the simplicity
of the operator Lh it follows that H ′ = {0}, i.e.H ′ = {0}. The lemma is proved. �
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Let us adopt the following notation nh(λ) := [P (λ), u]∞ − h[P (λ), v]∞,

n(λ) :=
[P (λ), u]∞
[P (λ), v]∞

,(4.3)

Sh(λ) :=
nh(λ)
nh(λ)

=
n(λ)− h

n(λ)− h
.(4.4)

From (4.3), it follows that n(λ) is a meromorphic function on the complex plane �
with a countable number of poles on the real axis. Further, it is possible to show that

the function n(λ) possesses the following properties: Imλ · Imn(λ) > 0 for Imλ 6= 0
and n(λ) = n(λ) for λ ∈ � with the exception of the real poles of n(λ).
Let

U −
λ (ξ, ζ) =

〈
e−iλξ,

α

nh(λ)
P (λ), Sh(λ)e−iλζ

〉
.

We note that the vectors U−λ (ξ, ζ) for real λ do not belong to the spaceH . However,
U−λ (ξ, ζ) satisfy the equation LU = λU (λ ∈ � ) and the corresponding boundary
conditions for the operator Lh.

With the help of the vectorU−λ (ξ, ζ), we define the transformationF− : f → f̃−(λ)
by (F−f)(λ) := f̃−(λ) := 1/

√
2π (f, U−λ )H on the vector f = 〈ϕ−, y, ϕ+〉 in which

ϕ−(ξ), ϕ+(ζ) are smooth, compactly supported functions, and y = {yn} (n ∈ � ) is
a finite nonzero sequence.

Lemma 4.3. The transformationF− maps H− isometrically onto L2( � ). For all
vectors f, g ∈ H− the Parseval equality and the inversion formula hold:

(f, g)H = (f̃−, g̃−)L2 =
∫ ∞

−∞
f̃−(λ)g̃−−(λ) dλ,

f =
1√
2π

∫ ∞

−∞
f̃−(λ)U−λ dλ,

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).
���������

. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ−, 0, 0〉, we have

f̃−(λ) :=
1√
2π

(f, U−λ )H =
1√
2π

∫ 0

−∞
ϕ−(ξ)eiλξ dξ ∈ H2

−,

and in view of the usual Parseval equality for Fourier integrals

(f, g)H =
∫ 0

−∞
ϕ−(ξ)ψ−(ξ) dξ =

∫ ∞

−∞
f̃−(λ)g̃−(λ) dλ = (F−f,F−g)L2 .
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Here and below, H2
± denote the Hardy classes in L

2( � ) consisting of the functions
analytically extendable to the upper and lower half-planes, respectively.

We now extend the Parseval equality to the whole of H−. With this goal, we

consider in H− the dense set H ′
− of vectors obtained as follows from the smooth,

compactly supported functions in D− : f ∈ H ′
− if f = UT f0, f0 = 〈ϕ−, 0, 0〉, ϕ− ∈

C∞0 (−∞, 0), where t = Tf is a non-negative number (depending on f). In this case, if
f, g ∈ H ′

−, then for T > Tf and T > Tg we have U−T f, U−T g ∈ D− and, moreover,
the first components of these vectors belong to C∞0 (−∞, 0). Therefore, since the
operators Ut (t ∈ � ) are unitary, by the equality

F−Utf = (Utf, U
−
λ )H = eiλt(f, U−λ )H = eiλtF−f,

we have

(f, g)H = (U−T f, U−T g)H = (F−U−T f,F−U−T g)L2(4.5)

= (e−iλT F−f, e−iλT F−g)L2 = (F−f,F−g)L2 .

Taking closure in (4.5), we obtain the Parseval equality for the whole space H−.
The inversion formula follows from the Parseval equality if all integrals in it are

understood as limits in the mean of integrals over finite intervals. Finally,

F−H− =
⋃

t>0

F−UtD− =
⋃

t>0

e−iλtH2
− = L2( � ),

i.e. F− maps H− onto the whole of L2( � ). The lemma is proved. �

We set

U+
λ (ξ, ς) =

〈
Sh(λ)e−iλξ,

α

nh(λ)
P (λ), e−iλς

〉
.

We note that the vectors U+
λ (ξ, ς) for real λ do not belong to the spaceH . However,

U+
λ (ξ, ς) satisfy the equation LU = λU (λ ∈ � ) and the corresponding boundary
conditions for the operator Lh. With the help of the vector U

+
λ (ξ, ς), we define the

transformation F+ : f → f̃+(λ) on vectors f = 〈ϕ−, y, ϕ+〉 in which ϕ−(ξ), ϕ+(ς)
are smooth, compactly supported functions, and y = {yn} (n ∈ � ) is a finite nonzero
sequence, by setting (F+f)(λ) := f̃+(λ) := 1/

√
2π (f, U+

λ )H . The proof of the next
result is analogous to that of Lemma 4.3.
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Lemma 4.4. The transformation F+ maps H+ isometrically onto L2( � ), and
for all vectors f, g ∈ H+, the Parseval equality and the inversion formula hold:

(f, g)H = (f̃+, g̃+)L2 =
∫ ∞

−∞
f̃+(λ)g̃+(λ) dλ, f =

1√
2π

∫ ∞

−∞
f̃+(λ)U+

λ dλ,

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).

According to (4.3), the function Sh(λ) satisfies |Sh(λ)| = 1 for λ ∈ � . Therefore,
it follows from the explicit formula for the vectors U+

λ and U
−
λ that

(4.6) U−λ = Sh(λ)U+
λ (λ ∈ � ).

It follows from Lemmas 3.3 and 3.4 that H− = H+. Together with Lemma 3.2 this
shows that H = H− = H+, and property (3) for the Ut above has been established

for the incoming and outgoing subspaces.

Thus, the transformation F− maps H isometrically onto L2( � ) with the sub-
space D− mapped onto H2

− and the operators Ut passing into the operators of
multiplication by eiλt. In other words, F− is the incoming spectral representa-

tion for the group {Ut}. Similarly, F+ is the outgoing spectral representation
for {Ut}. It follows from (4.6) that the passage from the F+-representation of a

vector f ∈ H to its F−-representation is realized by multiplication of the function
Sh(λ) : f̃−(λ) = Sh(λ)f̃+(λ). According to [11], the scattering matrix (function) of
the group {Ut} with respect to the subspaces D− and D+, is the coefficient by which
the F−-representation of a vector f ∈ H must be multiplied in order to get the

corresponding F+-representation: f̃+(λ) = Sh(λ)f̃−(λ). According to [11], we have
now proved the following theorem.

Theorem 4.5. The function Sh(λ) is the scattering matrix of the group {Ut} (of
the selfadjoint operator Lh).

Let S(λ) be an arbitrary inner function [12] on the upper half-plane. Define
K = H2

+	SH2
+. ThenK 6= {0} is a subspace of the Hilbert spaceH2

+. We consider

the semigroup of the operatorsZt (t > 0) acting inK according to the formula Ztϕ =
P [eiλtϕ], ϕ := ϕ(λ) ∈ K , where P is the orthogonal projection from H2

+ onto K .

The generator of the semigroup {Zt} is denoted by T : Tϕ = lim
t→+0

(it)−1(Ztϕ − ϕ),

which is a dissipative operator acting in K and having domain D(T ) consisting
of all functions ϕ ∈ K , such that the limit exists. The operator T is called a

model dissipative operator. (We remark that this model dissipative operator, which
is associated with the names of Lax and Phillips [11], is a special case of a more
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general model dissipative operator constructed by Sz.-Nagy and Foiaş [12].) The

basic assertion is that S(λ) is the characteristic function of the operator T .
Let K = 〈0, H, 0〉 so that H = D− ⊕K ⊕D+. It follows from the explicit form

of the unitary transformation F− that under the mapping F−,

H → L2( � ), f → f̃−(λ) = (F−f)(λ), D− → H2
−, D+ → S−h H

2
+,(4.7)

K → H2
+ 	 S−h H

2
+, Utf → (F−UtF

−1
− f̃−)(λ) = eiλtf̃−(λ).

The formulas (4.7) show that the operator Lh is a unitarily equivalent to the model

dissipative operator with characteristic function Sh(λ). Since the characteristic func-
tions of unitarily equivalent dissipative operators coincide [12], we have proved the

following theorem.

Theorem 4.6. The characteristic function of the dissipative operatorLh coincides

with the function Sh(λ) defined by (4.4).

5. Completeness theorem for the system of eigenvectors and

associated vectors of the dissipative operator

It is known that the characteristic function of a dissipative operator Lh carries

complete information about the spectral properties of this operator [10], [12]. For
example, the absence of the singular factor of the characteristic function Sh(λ) in the
factorization Sh(λ) = s(λ)B(λ) (where B(λ) is a Blaschke product) guarantees the
completeness of the system of eigenvectors and associated vectors of the dissipative

operator Lh.

Theorem 5.1. For all values of h with Imh > 0, except possibly for a single
value h = h0, the characteristic function Sh(λ) of the dissipative operator Lh is a

Blaschke product and the spectrum of Lh is purely discrete and belongs to the open

upper half plane. The operator Lh (h 6= h0) has a countable number of isolated
eigenvalues with finite multiplicity and limit point at the infinity, and the system of

eigenvectors and associated vectors of this operator is complete in `2w( � ).
���������

. It is clear from the explicit formula (4.4) that the Sh(λ) is an inner
function in the upper half-plane and, moreover, meromorphic in the whole λ-plane.

Therefore, it can be factored in the form

(5.1) Sh(λ) = eiλcBh(λ) c = c(h) > 0,
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where Bh(λ) is a Blaschke product. It follows from (5.1) that

(5.2) |Sh(λ)| 6 e−c(h) Im λ, Imλ > 0.

Further, expressing n(λ) in terms of Sh(λ), we find from (4.4) that

(5.3) n(λ) =
hSh(λ)− h

Sh(λ) − 1
.

If c(h) > 0 for a given value of h (Imh > 0), then (5.2) implies that lim
t→+∞

Sh(it) =

0, and then (5.3) gives us that lim
t→+∞

n(it) = h. Since n(λ) does not depend on h,

this implies that that c(h) can be nonzero at most at a single point h = h0 (and,
further, h0 = lim

t→+∞
n(it)). The theorem is proved. �
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