Jinjin Li
On k-spaces and k_R-spaces

Persistent URL: http://dml.cz/dmlcz/128036

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ON k-SPACES AND k_R-SPACES

JINJIN LI, Zhangzhou

(Received January 30, 2003)

Abstract. In this note we study the relation between k_R-spaces and k-spaces and prove that a k_R-space with a σ-hereditarily closure-preserving k-network consisting of compact subsets is a k-space, and that a k_R-space with a point-countable k-network consisting of compact subsets need not be a k-space.

Keywords: k_R-spaces, k-spaces, k-networks, σ-hereditarily closure-preserving collections, point-countable collections

MSC 2000: 54D50, 54C30

1. Introduction

Suppose X is a topological space and \mathcal{P} is a collection of subsets of X. A space X is determined by \mathcal{P} if $U \subset X$ is open (closed) in X if and only if $U \cap P$ is open (closed) in P for every $P \in \mathcal{P}$. A space X is a k-space, if it is determined by the cover consisting of all compact subsets of X. A space X is called a k_R-space, if X is completely regular and the necessary and sufficient condition for a real valued function f on X to be continuous is that the restriction of f on each compact subset is continuous. Obviously, every completely regular k-space is a k_R-space. The converse is false, as was first shown by an example of Katětov which appeared in a paper by V. Pták (see [1]). What additional properties of a k_R-space ensure it is a k-space has attracted considerable attention, and some noticeable results have been obtained in [2]–[5]. Such conditions were formulated using the notion of a k-network. \mathcal{P} is a k-network for X if whenever $K \subset U$ with K compact and U open in X, then $K \subset \bigcup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$ (see [6]). Suppose \mathcal{P} is a k-network for X, then \mathcal{P} is a compact k-network if P is compact in X for every $P \in \mathcal{P}$. A family \mathcal{P}

This work was supported by the NSF of China (10271056).
of subsets in X is called locally countable (locally finite), if for each point x there is a neighborhood of x which meets at most countably many (finite many) members of \mathcal{P}. A family \mathcal{P} of subsets in X is called star countable, if each member of \mathcal{P} meets at most countably many other members of \mathcal{P}. A family \mathcal{P} of subsets in X is called point-countable, if each single point meets at most countably many members of \mathcal{P}. A family $\{A_\alpha : \alpha \in I\}$ of subsets of a space X is said to be hereditarily closure-preserving (briefly, HCP) if $\bigcup_{\alpha \in J} \overline{B_\alpha} = \bigcup_{\alpha \in J} B_\alpha$ whenever $J \subset I$ and $B_\alpha \subset A_\alpha$ for each $\alpha \in J$. A collection \mathcal{P} in X is σ-locally countable (locally finite, HCP) if it is a collection that is the union of countably many locally countable (locally finite, HCP) families. Let \mathcal{P} be a k-network consisting of compact subsets in a regular space X. Then \mathcal{P} is locally countable $\Rightarrow \mathcal{P}$ is σ-locally countable $\Rightarrow \mathcal{P}$ is star countable $\Rightarrow \mathcal{P}$ is point-countable. But the inverse implications are not true.

In 1973, Michael constructed an example of a kR-space which is not a k-space, but has a countable k-network (see [2]). In 1991, S. Lin showed that a kR-space with a star countable compact k-network is a k-space (see [3]), which answered affirmatively a question posed in [4]. In 2000, Z. Yun proved in [5] that the following statements are equivalent for a kR-space with a k-network \mathcal{P} of compact subsets, and each of them implies that X is a k-space:

(a) \mathcal{P} is star countable.
(b) \mathcal{P} is locally countable.
(c) \mathcal{P} is σ-locally countable.

Therefore, the following question is raised naturally:

(1) If a kR-space X has a point-countable compact k-network, then is X a k-space?

It is known that locally finite families are HCP. Hence σ-locally finite families are σ-HCP. Further, σ-locally finite families of compact sets are easily seen to be star countable. Thus σ-HCP is a generalization of σ-locally finite in another direction than star countable.

Therefore, the following question seems to be of some interest.

(2) If a kR-space X has a σ-HCP compact k-network, then is X a k-space?

In this paper, we show that question 1 has negative answer by the example below, and question 2 has affirmative answer. In fact, a stronger result is proved—with a k-cover instead of a k-network. A family \mathcal{P} of subsets in X is a k-cover if for any compact subset K, $K \subset \bigcup \mathcal{P}'$ for some finite $\mathcal{P}' \subset \mathcal{P}$ (see [7]).

In this paper, all spaces are Hausdorff spaces, and \mathbb{N}, \mathbb{R} and \mathbb{Q} denote the set of natural numbers, real numbers and rational numbers, respectively.
2. Results

The following Lemma 1 is easy to show.

Lemma 1. Let X be a topological space, \mathcal{P} an HCP-cover of X by closed sets.

1. If P is a k-space for each $P \in \mathcal{P}$, then so is X.
2. If P is normal for each $P \in \mathcal{P}$, then so is X.

Lemma 2. Suppose that X is a k_R-space and $X = \bigcup \mathcal{P}$, where $\mathcal{P} = \{X_n : n \in \mathbb{N}\}$ and X_n is a closed normal k-space. If \mathcal{P} is a k-cover for X, then X is a k-space.

Proof. First we shall show that X is determined by \mathcal{P}. Suppose not. There is a set A which is not closed in X such that for any $n \in \mathbb{N}$, $A \cap X_n$ is closed in X. Taking $a \in A \setminus A$, we have $a \in X_m$ for some $m \in \mathbb{N}$. For $i \in \mathbb{N}$, let $Y_i = \bigcup\{X_n : n \leq m + i - 1\}$, then $a \in Y_1 \subset Y_1 \subset Y_1$. Y_1 is a normal k-subspace by Lemma 1, and $A \cap Y_i$ is closed in X. We can assume that $A \cap Y_1 \neq \emptyset$. Since $a \notin A \cap Y_1$, there is a continuous function f_1 on Y_1 such that $f_1(a) = 1$, and $f_1(A \cap Y_1) = \{0\}$. We define $g_1 : A \cap Y_2 \to \mathbb{R}$ such that $g_1(A \cap Y_2) = \{0\}$. Since Y_1 and $A \cap Y_2$ are closed in X, f_1 is continuous on Y_1, g_1 is continuous on $A \cap Y_2$ and $f_1 = g_1$ on $Y_1 \cap (A \cap Y_2) = A \cap Y_1$, we can define a real valued function $h_1 : Y_1 \cup (A \cap Y_2) \to \mathbb{R}$ such that $h_1(x) = f_1(x)$ if $x \in Y_1$; $h_1(x) = g_1(x)$ if $x \in A \cap Y_2$. So h_1 is continuous on $Y_1 \cup (A \cap Y_2)$. Since Y_2 is a normal space and $Y_1 \cup (A \cap Y_2)$ is closed in Y_2, h_1 can be expanded continuously to Y_2, that is, we can define $f_2 : Y_2 \to \mathbb{R}$ such that f_2 is continuous on Y_2 with the restriction of f_2 on Y_1 being f_1, i.e. $f_2|Y_1 = f_1$, and $f_2(A \cap Y_2) = \{0\}$. By induction, we can define a sequence of real valued continuous functions $f_n : Y_n \to \mathbb{R}$ such that $f_n(A \cap Y_n) = \{0\}$ and $f_n|Y_{n-1} = f_{n-1}$. Define $f : X \to \mathbb{R}$ by $f|Y_n = f_n$, then $f(A) = \{0\}$ and $f(a) = 1$. From the fact $a \in A$ we know that $f(A) \subset f(a)$, and hence f is not continuous on X. On the other hand, for any compact subset $K \subset X$ there exists $n \in \mathbb{N}$ such that $K \subset Y_n$. f is continuous on K because f is continuous on Y_n. Since X is a k_R-space, f is continuous on X. This is a contradiction. Hence X is determined by \mathcal{P}. Next, let $F \subset X$ be such that $F \cap K$ is closed in K for each compact set $K \subset X$. As each X_n is a k-space, $(F \cap X_n) \cap K = (F \cap K) \cap X_n = F \cap K$ is closed in K for each compact set $K \subset X_n$, so $F \cap X_n$ is closed in X_n for each $n \in \mathbb{N}$. Since X is determined by \mathcal{P}, F is closed in X. Hence X is a k-space. \hfill \Box

Theorem 3. A k_R-space with a σ-HCP k-cover consisting of compact subsets is a k-space.

Proof. Suppose X is a k_R-space and has a σ-HCP k-cover consisting of compact subsets. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ-HCP k-cover, where each \mathcal{P}_n is a
HCP collection consisting of compact subsets. For any \(n \in \mathbb{N} \), put \(X_n = \bigcup \mathcal{P}_n \). Clearly each \(X_n \) is closed in \(X \). By Lemma 1, each \(X_n \) is a normal \(k \)-space. By Lemma 2, \(X \) is a \(k \)-space.

Corollary 4. A \(k_{R} \)-space with a \(\sigma \)-HCP compact \(k \)-network is a \(k \)-space.

As for point-countable compact \(k \)-networks, we have

Example 5. There exists a \(k_{R} \)-space \(X \) with a point-countable compact \(k \)-network, such that \(X \) is not a \(k \)-space.

Let \(X \) be the plane and \(\tau_0 \) its usual topology. Let \(A \subset X \) be the \(x \)-axis. For each \(x \in A \), let \(U(x) \) be the vertical line through \(x \); also let \(\mathcal{V}(x) \) be the collection of all \(V \subset X \) of the form \(V = B(x, \delta) - H(x) \), where \(B(x, \delta) \) is an open disc centered at \(x \) with radius \(\delta \) and \(H(x) \) is a \(\tau_0 \)-closed subspace of \(X - \{x\} \) which is disjoint from \(U(x) \). Let \(\land \) be the topology on \(X \) with the following open neighborhood system: an open neighborhood of a point \(p \in X - A \) is an open disc centered at \(p \); an open neighborhood of a point \(q \in A \) is a set which results from picking a \(V(x) \in \mathcal{V}(x) \), for each \(q_1 - \varepsilon < x_1 < q_1 + \varepsilon \), and forming the union of these \(V(x) \); it will be denoted by \(B(q, \varepsilon, \{V(x)\}) \). In [8], R. Borges proved that \((X, \land)\) is homeomorphic to the space \((X, \tau)\) of Example 1.1 in [2]. Recall that \(\tau \) is the coarsest topology on \(X \) which makes every function \(f : X \to \mathbb{R} \) (the real line) \(\tau_0 \)-continuous on \(X - A \) and \(\tau_0 \)-separately continuous at each \(x \in A \), (i.e., for each \(x \in A \), \(f|U(x) \) and \(f|x \)-axis are continuous). In [2], Michael showed that \((X, \tau)\) is a \(\sigma \)-space and a cosmic \(k_{R} \)-space which is not a \(k \)-space. By the construction of the topological space \((X, \tau)\), the subspaces \(A \) and \(X \setminus A \) of \(X \) have their usual topology, and so they have a countable \(k \)-network consisting of compact subsets in \(A \) and \(X \setminus A \), which are denoted by \(\alpha \), \(\beta \), respectively. For every \(x = (x_1, 0) \in A \) and every \(p, q \in \mathbb{Q} \), we denote \(F(x, p, q) = \{(x_1, y_2) \in X : p \leq y_2 \leq q\} \). Since the space \(\{x_1\} \times \mathbb{R} \) has its usual topology, \(F(x, p, q) \) is compact in \(X \). Let \(\mathcal{P} = \alpha \cup \beta \cup \{F(x, p, q) : x = (x_1, 0) \in A, p, q \in \mathbb{Q}\} \).

Clearly \(\mathcal{P} \) is a point-countable cover consisting of compact subsets in \(X \). We shall show \(\mathcal{P} \) is a \(k \)-network for \(X \). Assume that \(C \) and \(U \) are respectively compact and open in \(X \) and such that \(C \subset U \). Since \(C \cap A \subset U \cap A \) and \(C \cap A \) is compact and \(U \cap A \) open in \(A \), there exists a finite \(\alpha' \subset \alpha \) such that \(C \cap A \subset \bigcup \alpha' \subset U \cap A \). By Lemma 3.4 in [2], a compact subset of \(X \) has the following property:

If \(C \) is compact in \(X \), then there are \(\varepsilon > 0 \) and a finite \(A' \subset A \) such that for anything \(y = (y_1, y_2) \in C \) and \(0 < |y_2| < \varepsilon \), there is \(x = (x_1, x_2) \in A' \) with \(y_1 = x_1 \).

Take \(m \in \mathbb{N} \) with \(1/m < \varepsilon \). Let \(L = \{(x_1, x_2) \in X : x_1 \in \mathbb{R} \text{ and } |x_2| \leq 1/m\} \).

Then \(L \) is closed in \(X \), \(C \setminus \text{int}(L) \subset U \setminus A \) with \(C \setminus \text{int}(L) \) compact in \(X \setminus A \) and \(U \setminus A \) open in \(X \setminus A \), thus \(C \setminus \text{int}(L) \subset \bigcup \beta' \subset U \setminus A \) for some finite \(\beta' \subset \beta \).

For every \(x = (x_1, 0) \in A' \), since \(F(x_1, -1/m, 1/m) \cap C \subset (\{x_1\} \times \mathbb{R}) \cap U \) and
F(x_1, -/m, 1/m) \cap C are compact and \((\{x_1\} \times \mathbb{R}) \cap U\) is open in \(\{x_1\} \times \mathbb{R}\), and
\(\{F(x, p, q): p, q \in \mathbb{Q}\}\) is a \(k\)-network for \(\{x_1\} \times \mathbb{R}\), there is a finite \(\gamma_x \subset \{F(x, p, q): p, q \in \mathbb{Q}\}\) such that \(F(x, -1/m, 1/m) \cap C \subset \bigcup x \gamma_x \subset (\{x_1\} \times \mathbb{R}) \cap U\). Clearly \(C \subset \bigcup (\alpha' \cup \beta' \cup \{\gamma_x: x \in A'\}) \subset U\), and \(\alpha' \cup \beta' \cup \{\gamma_x: x \in A'\}\) is a finite subfamily of \(P\). Thus \(P\) is a \(k\)-network for \(X\).

Acknowledgements. The author thanks the referee and Prof. S. Lin for their helpful comments.

References

Author’s address: Dept. of Math., Zhangzhou Teachers College, Zhangzhou, Fujian 36300, P.R. China, e-mail: jinjinli@fjzs.edu.cn.