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Abstract. The study on limit points of eigenvalues of undirected graphs was initiated
by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove:
1. Every real number is a limit point of eigenvalues of graphs. Every complex number is
a limit point of eigenvalues of digraphs.

2. For a digraph D, the set of limit points of eigenvalues of iterated subdivision digraphs
of D is the unit circle in the complex plane if and only if D has a directed cycle.

3. Every limit point of eigenvalues of a set D of digraphs (graphs) is a limit point of
eigenvalues of a set D̈ of bipartite digraphs (graphs), where D̈ consists of the double
covers of the members in D.

4. Every limit point of eigenvalues of a set D of digraphs is a limit point of eigenvalues
of line digraphs of the digraphs in D.

5. If M is a limit point of the largest eigenvalues of graphs, then −M is a limit point of
the smallest eigenvalues of graphs.
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1. Introduction

Since A. J. Hoffman [9] initiated the study of limit points of graph eigenvalues

in 1972, many interesting results have been obtained on this topic (see, for exam-
ple, [2]–[7], [9], [10], [15]). Hoffman [9] studied limit points of the largest eigenvalues

of graphs, and he determined all limit points less than
√

2 +
√

5 (the golden mean)
and showed that these limit points constitute an increasing sequence (an) with a1 = 2
and lim

n→∞
an =

√
2 +

√
5. He also suggested that possibly there exists a real num-

ber λ such that every number not less than λ is a limit point of the largest eigenvalues
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of graphs. In fact this is true with λ =
√

2 +
√

5, as proved by Shearer [15]. From
these works the set of limit points of the largest eigenvalues of graphs has been de-
termined. For k > 2, the limit points of the kth largest eigenvalues of graphs have
been studied for a long time, but they have not been completely determined. Dasong

Cao and Hong Yuan [2], [3] showed that for each k > 2 there is a gap in the set Lk

of limit points of the kth largest eigenvalues of graphs, and that Lk ⊆ Lk+1 for all k.

They conjectured in [3] that lim
k→∞

Lk = R, the set of all real numbers.

In this paper we will first prove that every real number is a limit point of eigen-

values of graphs, and then extend the study to the limit points of eigenvalues of
digraphs.

We follow [1] for general graph theoretical terminology. All digraphs in this paper

are finite without loops or multiple arcs. Undirected simple graphs are simply called
graphs. Let D be a digraph (graph) with adjacency matrix A. The charateristic
polynomial of D is χ(D, x) = |xI − A|, where I denotes the identity matrix. The
roots (complex numbers) of χ(D, x) are called the eigenvalues of D. It is well known
that all eigenvalues of D must be real numbers when D is a graph.

To state our main results, we need the following

Definition 1. Let D denote an infinite set of digraphs (graphs). The complex
number ζ is said to be a limit point of igenvalues of D if there is an infinite sequence
of distinct complex numbers λn, each of which is an eigenvalue of a digraph (graph)
in D, such that ζ = lim

n→∞
λn.

Remarks.

(i) When D is the set of all digraphs (graphs), we simply say that ζ is a limit point

of digraph (graph) eigenvalues.

(ii) Every limit point of graph eigenvalues is a limit point of digraph eigenvalues.

Remark (ii) can be justified as follows. For any graph G there corresponds a

unique digraph D(G), called its associated digraph, which is obtained when each
edge e of G is replaced by two oppositely oriented arcs with the same ends as e. It

is obvious that a graph G and its associated digraph D(G) have the same adjacency
matrix, and so they have the same eigenvalues. Hence, when we consider eigenvalues,

a graph can be seen as a digraph with a symmetric adjacency matrix.

We say that a digraph is bipartite if its underlying graph is bipartite. Note that a

bipartite graph and a bipartite digraph both have an adjacency matrix in the block

form

[
0 A

B 0

]
, where 0 denotes the block with all entries zero. While for bipartite

graphs B must equal to the transpose AT of A, there is no such restriction for
bipartite digraphs.

896



For an n by n matrix A, let Ä denote the 2n by 2n matrix

[
0 A

A 0

]
.

Definition 2. LetD be a digraph (graph) with adjacency matrixA. The digraph
(graph) with the adjacency matrix Ä is called the double cover of D, denoted by D̈.

Remarks.
(i) D̈ is a graph when D is a graph, since Ä is symmetric when A is symmetric.

(ii) D̈ is a bipartite digraph (graph) when D is a digraph (graph).

The concept of line digraphs was introduced in Harary and Norman [8]. For a
digraph D with vertex set V (D) and arc set A(D), the line digraph L(D) of D

has A(D) as its vertex set; (a, b) is an arc of L(D) if and only if there are vertices u,
v, w in D with a = (u, v) and b = (v, w), i.e., the head of a coincides with the

tail of b. The subdivision digraph S(D) of D is obtained by inserting a new vertex
onto every arc of D; that is, each arc (u, v) of D is replaced by two new arcs (u, w)
and (w, v) where w is a new vertex. The iterated subdivision digraphs are defined
inductively by Sr(D) = S(Sr−1(D)) with S0(D) = D and S1(D) = S(D).
We will prove:

1. Every real number is a limit point of eigenvalues of graphs. Every complex

number is a limit point of eigenvalues of digraphs.

2. For a digraph D, the set of limit points of eigenvalues of iterated subdivision

digraphs of D is the unit circle in the complex plane if and only if D has a
directed cycle.

3. Every limit point of eigenvalues of a set D of digraphs (graphs) is a limit point
of eigenvalues of a set D̈ of bipartite digraphs (graphs), where D̈ consists of the
double covers of the members in D.

4. Every limit point of eigenvalues of a set D of digraphs is a limit point of eigen-
values of line digraphs of the digraphs in D.

5. If M is a limit point of the largest eigenvalues of graphs, then −M is a limit

point of the smallest eigenvalues of graphs.

2. Lemmas

Lemma 1. Let D be a digraph or graph. If the eigenvalues of D are λi (i =
1, . . . , n), then the eigenvalues of the double cover D̈ of D are ±λi (i = 1, . . . , n).
���������

. Let A be the adjacency matrix of D. Then

χ(D̈, x) = |xI − Ä| =
∣∣∣∣

xI −A

−A xI

∣∣∣∣ .
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It is well known in matrix theory (see, for example, [11, p. 45]) that if M is an

invertible matrix then

∣∣∣∣
M N

P Q

∣∣∣∣ = |M | ·
∣∣Q− PM−1N

∣∣. So,

χ(D̈, x) = xn
∣∣∣xI − (−A)

( 1
x

I)(−A
)∣∣∣

= xn
∣∣∣xI − 1

x
A2

∣∣∣ = |x2I −A2| = |xI −A| · |xI + A|
= (−1)n|xI −A| · | − xI −A| = (−1)nχ(D, x)χ(D,−x).

This proves Lemma 1. �

Let D1 and D2 be digraphs (graphs) with matrices A and B, respectively. The

Kronecker product D1 ⊗ D2 is the digraph (graph) with adjacency matrix A ⊗ B,
the Kronecker product of the matrix A with the matrix B. From matrix theory (see,

e.g., [14, p. 24]) we know that the set of the eigenvalues of a Kronecker product A⊗B

of square matrices A and B is the same as the set of all possible products λAλB where

λA and λB are eigenvalues of A and B, respectively. Since the Kronecker product is
associative, we have the following Lemma 2.

Lemma 2. Let Di denote digraphs (graphs), i = 1, 2, . . . , n. The set of eigenval-

ues of D1⊗D2⊗ . . .⊗Dn is the same as the set of all possible products λ1λ2 . . . λn,

where λi is an eigenvalue of Di.

Lemma 3. If a real number r is a limit point of graph eigenvalues, then

i) −r is also a limit point of graph eigenvalues;

ii) every point on the circle with radius |r| centered at the origin in the complex
plane is a limit point of digraph eigenvalues.

���������
. i) If λ is an eigenvalue of a graph D, then by Lemma 1, −λ is an

eigenvalue of D̈. This implies i) directly.

ii) From Remark (ii) following Definition 1, r is also a limit point of digraph
eigenvalues. Let r = lim

n→∞
λn, where λn are distinct and each λn is an eigenvalue of a

digraphGn. It is well known (see [4, p. 53]) that the eigenvalues of a directed cycleDn

with n vertices are exp(i2kπ/n) (k = 0, 1, . . . , n−1; i =
√
−1), the nth complex roots

of unit. Note that these n complex roots are evenly distributed in the unit circle on
the complex plane.

Now, let D denote the set of all digraphs Gn ⊗Dn. By Lemma 2, λn exp(i2kπ/n)
(k = 0, 1, . . . , n−1) are eigenvalues of Gn⊗Dn. Note that these n complex numbers

are evenly distributed on the circle with radius |λn| centered at the origin in the
complex plane, and that lim

n→∞
|λn| = |r|. Then it is easily seen that every point on
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the circle with radius |r| centered at the origin in the complex plane is a limit point
of eigenvalues of D, and so it is a limit point of digraph eigenvalues. This completes
the proof for Lemma 3. �

Lemma 4. A digraph D has a nonzero eigenvalue if and only if D has a directed

cycle.
���������

. From the “Coefficients Theorem for Digraphs” (see [4, p. 32]), we know

that for a digraph D with n vertices,

χ(D, x) = xn + a1x
n−1 + . . . + an with ai =

∑

L∈Li

(−1)p(L) (i = 1, 2, . . . , n)

where Li is the set of all such subdigraphs L of D with exactly i vertices that each
component of L is a directed cycle; p(L) denotes the number of components of L.
So, the necessity of the lemma follows immediately. To show the sufficiency, since

D has a directed cycle, we consider the directed cycles ofD with the shortest length %.
Then we see that in χ(D, x) = xn + a1x

n−1 + . . . + an, a% 6= 0, and this proves the
sufficiency. �

Lemma 5 (Lin and Zhang [12]; also see [13, p. 19]). Let D be a digraph with

n vertices and m arcs. Then χ(L(D), x) = xm−nχ(D, x).

Lemma 6 (Zhang, Lin, and Meng [16]). Let D be a digraph with n vertices and

m arcs. Then χ(S(D), x) = xm−nχ(D, x2).

3. Main results

Theorem 1.
i) Every real number r is a limit point of graph eigenvalues.

ii) Every complex number ζ is a limit point of digraph eigenvalues.
���������

. i) It is well known that a cycle Cn with n vertices has eigenvalues
2 cos(2kπ/n), k = 1, 2, . . . , n. So, it is obvious that r = 0 is a limit point of graph
eigenvalues. Then, by Lemma 3 (i), we may assume r > 0 without loss of generality.
Note that C4n+1 has a positive eigenvalue λn = 2 cos(2nπ/(4n + 1)). Obviously
λn → 0 as n →∞. So, for any 0 < ε < 1

2r, we may take an n such that λn < 1
2ε. Let

N =
⌊
(r− 1

2ε)/λn

⌋
. ThenN 6 (r− 1

2ε)/λn < N+1. It follows that Nλn 6 r− 1
2ε < r

and that Nλn > r − 1
2ε − λn > r − ε. Thus we have r − ε < Nλn < r. Now let

Gε denote the product graph of N copies of C4n+1. It is well known (see, e.g., [4])
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that the eigenvalues of the product graph Γ1 × Γ2 of two graphs Γ1 and Γ2 are the

sums of eigenvalues of Γ1 with those of Γ2. (Note that Γ1 × Γ2 is denoted differently
in [4] as Γ1 + Γ2.) Hence, Nλn are eigenvalues of Gε. Therefore, for any ε > 0 there
is a graph Gε with an eigenvalue in the open interval (r− ε, r). It clearly implies i).
ii) directly follows from i) and Lemma 3 (ii). �

It should be pointed out that the graphs and digraphs in Theorem 1 can be
restricted as regular graphs and regular digraphs, which can be easily seen from the

proof of Theorem 1.

Theorem 2. For a digraph D, the set of limit points of eigenvalues of iterated

subdivision digraphs of D is the unit circle in the complex plane if and only if D has

a directed cycle.

���������
. If D has no directed cycles, then all the iterated subdivision di-

graphs Sr(D) have no directed cycles. Then by Lemma 4, all eigenvalues of Sr(D)
are zero so that no limit points exist.

Let D be a digraph with a directed cycle. Then by Lemma 4, D has nonzero
eigenvalues. Let α be any one of the nonzero eigenvalues. By Lemma 6, the subdivi-

sion digraph S(D) has the two square roots of α among its eigenvalues. Clearly, for
any positive integer r, the iterated subdivision digraph Sr(D) has all the 2rth roots

of α among its eigenvalues. Note that in the complex plane the 2rth roots of α

are evenly distributed on the circle centered at the origin with the radius equal to

the 2rth root of the modulus of α. Since lim
r→∞

2r = ∞, lim
r→∞

2r
√
|α| = 1, and every

nonzero eigenvalue of Sr(D) is a 2rth root of a nonzero eigenvalue of D, we see that

the set of the nonzero eigenvalues of Sr(D) approaches the unit circle in the complex
plane as r →∞. Hence Theorem 2 follows. �

When we consider the limit points of eigenvalues of a set D of digraphs (graphs),
the next two theorems are helpful.

Theorem 3. Let D be an infinite set of digraphs (graphs), and let D̈ denote the
set of the double covers of digraphs (graphs) in D. Every limit point of eigenvalues
of D is a limit point of eigenvalues of D̈.
���������

. It follows from Lemma 1. �

From Theorems 1 and 3, we immediately have
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Corollary 1. Every real number is a limit point of eigenvalues of bipartite graphs.
Every complex number is a limit point of eigenvalues of bipartite digraphs.

For an infinite set D of digraphs, let ~D denote the set of all line digraphs L(D)
with D in D. We have

Theorem 4. Every limit point of eigenvalues of D is a limit point of eigenvalues
of ~D.
���������

. It follows from Lemma 5. �

From Theorems 1 and 4, we immediately have

Corollary 2. Every complex number is a limit point of eigenvalues of line di-
graphs.

Note that if λ is the largest eigenvalue of a graph G, then by Lemma 1, −λ is the

smallest eigenvalue of the double cover G̈ of G. This implies

Theorem 5. IfM is a limit point of the largest eigenvalues of graphs, then −M is

a limit point of the smallest eigenvalues of graphs.

By Theorem 5 we can obtain the following result of [6].

Corollary 3. Every number in the interval
(
−∞,−

√
2 +

√
5
]
is a limit point of

the smallest eigenvalues of graphs.
���������

. It was initiated by Hoffman [9] and proved by Shearer [15] that every
number not less than

√
2 +

√
5 (the golden mean) is a limit point of the largest

eigenvalues of graphs. Then Corollary 3 immediately follows from Theorem 5. �
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