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Abstract. In this paper we prove a theorem on weak homogeneity of MV -algebras which
generalizes a known result on weak homogeneity of Boolean algebras. Further, we consider a
homogeneity condition forMV -algebras which is defined by means of an increasing cardinal
property.
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1. Introduction

A Boolean algebra B0 is called weakly homogeneous if for each 0 < b0 ∈ B0 the
relation card[0, b0] = cardB0 is valid.

In Sikorski [9], Section 25 the following result is presented:

Theorem (A). Let B be a complete Boolean algebra, B 6= {0}. Then B can be

represented as a direct product of weakly homogeneous Boolean algebras.

Sikorski attributes this result to Pierce; in fact, Pierce [7] proved a theorem on
Boolean algebras which are homogeneous with respect to a monotone cardinal prop-

erty f ; theorem (A) is a particular case of Pierce’s result. Cf. also Pierce [8].
For an MV -algebra A we denote by A the underlying set of A . By applying

the basic operations of A we can define a partial order 6 on the set A. Similarly
to the case of Boolean algebras, A is weakly homogeneous if for each 0 < a ∈ A,
card[0, a] = cardA.

Supported by VEGA grant 1/9056/22.
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A subset X 6= ∅ of an MV -algebra A is orthogonal if x1 ∧ x2 = 0 for any two
distinct elements of X . A is orthogonally complete if each its orthogonal subset has
the supremum in A . The notion of principal polar of A is defined analogously to
the case of lattice ordered groups (for a detailed definition, cf. Section 2 below). A

is projectable if each its principal polar is a direct factor.

We denote by M the class of all MV -algebras. Further, let C be the class of all
MV -algebras which are semisimple, orthogonally complete and projectable. Each
complete MV -algebra belongs to the class C , but not conversely.

The class C was dealt with in [6] by investigating MV -algebras which are homo-

geneous with respect to a decreasing generalized cardinal property.

In this paper we prove

Theorem (B). let A be an MV -algebra belonging to the class C . Then A

can be represented as a direct product
∏
i∈I

Ai such that, for each i ∈ I , some of the

following conditions is valid:

(i) Ai is weakly homogeneous;

(ii) Ai is a finite chain.

In Section 5 we investigate the relation between Theorem (A) and Theorem (B).

It turns out that (B) is a generalization of (A).

In Section 6 we prove a result concerning increasing cardinal properties on MV -

algebras.

2. Preliminaries

An MV -algebra is an algebraic structure A = (A;⊕,¬, 1) of type (2, 1, 0) such
that the conditions (MV1)–(MV6) from [1] are satisfied. We put ¬1 = 0.
(The symbol 0 denotes also the neutral element of a lattice ordered group, the

least element of a Boolean algebra and the real zero; the meaning of this symbol will
be always clear from the context.)

Let G be an abelian lattice ordered group with a strong unit u. We put A = [0, u]
and for x, y ∈ A we set x⊕ y = (x + y) ∧ u, ¬x = u− x, 1 = u. Then (A;⊕,¬, 1) is
an MV -algebra which is denoted by Γ(G, u). For each MV -algebra A there exists
an abelian lattice ordered group G with a strong unit u such that A = Γ(G, u).
(Cf. [1].) In what follows we always assume that A is an MV -algebra, A 6= {0} and
A = Γ(G, u). Let a ∈ A, A1 = [0, a]. For x, y ∈ A1 we put x ⊕1 y = (x + y) ∧ a,

¬1a = a− x. Then the structure A1 = (A1;⊕1,¬1, a) is an MV -algebra; we denote
it by the symbol [0, a]A .
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TheMV -algebra A is called semisimple (or archimedean) if there exists no a ∈ A

such that
0 < a < a⊕ a < a⊕ a⊕ a < . . . < u.

The underlying lattice of A will be denoted by `(A ). We say that A is complete if
`(A ) is complete. A is called a chain if the lattice `(A ) is linearly ordered.
The direct product

∏
i∈I

Ai of MV -algebras Ai is defined in the usual way. Assume

that (ai)i∈I is an orthogonal indexed system of elements of A such that
∨
i∈I

ai = u.

For each x ∈ I we put Ai = [0, ai]A . Further, for x ∈ A and i ∈ I we set xi = x∧ai.
Then the mapping ϕ(x) = (xi)i∈I is an isomorphism of A onto the direct product∏
i∈I

Ai. (Cf. [4].) We say that

ϕ : A →
∏

i∈I

Ai

is an internal direct product decomposition of A and that Ai are internal direct
factors of A .

Analogously we define the notion of an internal direct product decomposition of
a Boolean algebra.

For 6= X ⊆ A we put

Xδ = {a ∈ A : a ∧ x = 0 for each x ∈ X}.

The MV -algebra A is projectable if for each x ∈ X , {x}δδ is the underlying set of

an internal direct factor of A .

3. Auxiliary results

An element a of an MV -algebra A is called Boolean if a⊕ a = a. Let B0(A ) be
the set of all Boolean elements of A .

Lemma 3.1 (Cf. [1]). (i) For each A ∈ M , B0(A ) is a Boolean algebra. (ii) For
each Boolean algebra B there exists an MV -algebra A such that A = B0(A ) = B.

We denote by B0 the class of all MV -algebras A with A = B0(A ).

Lemma 3.2. Let A be an orthogonally complete MV -algebra belonging to B0.

Then A ∈ C .
���������

. For each a ∈ A we have a⊕a = a, hence A is semisimple. There exists
a complement a′ of a in `(A ). For each x ∈ A we put ϕ(x) = (x ∧ a, x ∧ a′). Then
ϕ is an internal direct product decomposition of A with the internal direct factors
[0, a] and [0, a′]. We obviously have {a}δδ = [0, a]. Thus A is projectable. �
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Lemma 3.3. Let A ∈ C . Then B0(A ) is a complete Boolean algebra.
���������

. Let {bi}i∈I be an orthogonal subset of B0(A ). Then it is, at the same
time, an orthogonal subset of A . Since A ∈ C , there exists an element b =

∨
i∈I

bi

in A . By the same method as in the proof of Lemma 3.2 in [6] we obtain b ∈ B0(A ).
Hence the element b is also the join of the set {bi}i∈I in B0(A ). Thus B0(A ) is
orthogonally complete. It is well-known that each orthogonally complete Boolean

algebra is complete; therefore B0(A ) is complete. �

We denote by A0 the set of all atoms of the lattice `(A ).

Lemma 3.4. Assume that A is a semisimple MV -algebra. Let a0 ∈ A0. Then

there exists an internal direct factor X(a0) of A such that a0 ∈ X(a0) and the lattice
`(A0) is a finite chain.
���������

. Let A = Γ(G, u). Then G is archimedean. Hence in view of [2] there

exists an internal direct factor Y (a0) of G such that a0 ∈ Y (a0) and Y (a0) is linearly
ordered; moreover, Y (a0) = {na0}n∈Z . Put X(a0) = Y (a0) ∩ A. According to [3],

X(a0) is an internal direct factor of A . It is obvious that `(X(a0)) is a finite chain.
�

Lemma 3.5. LetA be as in 3.4. Let a1, a2 ∈ A0, a1 6= a2. ThenX(a1)∩X(a2) =
{0}.
���������

. We apply the notation analogous to that used in the proof of 3.4.
According to [2] we have

Y (a1) ∩ Y (a2) = {0}, hence X(a1) ∩X(a2) = {0}.

�

Lemma 3.6. Assume that A is an orthogonally complete MV -algebra. Let

{Xi}i∈I be a system of internal direct factors of A such that Xi(1) ∩ Xi(2) = {0}
whenever i(1) and i(2) are distinct elements of I . Then A can be expressed as an

internal direct product of the form

(1) A = Y ×
∏

i∈I

Xi.

���������
. For i ∈ I we denote by xi the greatest element ofXi. Hence xi ∈ B0(A ).

Thus in view of 3.3 there exists x0 =
∨
i∈I

xi in B0(A ). Put y0 = u − x0. We have

y0 ∧ x0 = 0 and y0 ∈ B0(A ). Let Y be the interval [0, y0] of `(A ). Then according
to the definition of the internal direct product, the internal direct decomposition (1)
is valid. �
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Lemma 3.7. Assume that A is anMV -algebra which is semisimple and orthog-

onally complete. Let ∅ 6= A0 = {ai}i∈I . Then

(i) A can be expressed in the form (1) where Xi = X(ai) for each i ∈ I ;

(ii) the lattice `(Y ) has no atom.
���������

. The assertion (i) is a consequence of 3.4, 3.5 and 3.6. Let a be an atom

of `(A ). Then there is i ∈ I such that a = ai. Hence in view of (1), a ∧ y = 0 for
each y ∈ Y . Thus a does not belong to Y . �

Corollary 3.8. Assume that A is as in 3.7 and that 0 < y ∈ Y . Then the

interval [0, y] is infinite.

In view of 3.7 we conclude that for proving Theorem (B) it suffices to consider

the case when in the expression (1) we have A = Y . Hence according to 3.8 we can
assume that

(∗) card[0, a] > ℵ0 for each 0 < a ∈ A.

Further, it suffices to assume that Y 6= {0}.

Lemma 3.9. Let A be an MV -algebra, a ∈ A, card[0, a] = α > ℵ0. Then

card[0, a + a] = α.
���������

. Under the above notation we have A = Γ(G, u). Then

a 6 a⊕ a = (a + a) ∧ u 6 a + a,

whence by considering the intervals in G we get

[0, a] ⊆ [0, a⊕ a] ⊆ [0, a + a].

Thus it suffices to verify that card[0, 2a] = α.
For each x ∈ [0, 2a] we put

ϕ(x) = (x ∧ a, x ∨ a).

Since the underlying lattice `(G) of G is distributive, ϕ is a monomorphism of [0, 2a]
into the direct product L = [0, a] × [a, 2a]. We have card[a, 2a] = card[0, a], hence
cardL = α. Thus card[0, 2a] 6 α. Since card[0, 2a] > card[0, a], we get card[0, 2a] =
α. �

We denote
n · a = a⊕ . . .⊕ a (n-times).

From 3.9 we obtain by induction
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Lemma 3.10. Under the assumptions of Lemma 3.9 we have card[0, n · a] = α

for each positive integer n.

Lemma 3.11. Assume that A is an MV -algebra belonging to C . Suppose

condition (∗) holds. Let 0 < a ∈ A. Then there exist elements an, bn (n = 1, 2, . . .)
of A such that

(i) both the indexed systems (an)n∈N and (bn)n∈N are orthogonal;

(ii) for each n ∈ N , an 6 bn and there exists kn ∈ N with bn 6 knan;

(iii) for each n ∈ N , bn is a boolean element in A ;

(iv) a =
∨

n∈N

an.

���������
. This is a consequence of the construction given in Sections 3 and 4 of

[6] (in [6], the symbol un was used instead of bn). �

Lemma 3.12. Under the notation as in 3.11 we have card[0, an] = card[0, bn]
for each n ∈ N .
���������

. This follows from 3.10 and 3.11, (ii). �

4. Proof of (B)

First assume that A is an MV -algebra belonging to C such that A 6= {0} and
that condition (∗) from Section 3 is satisfied.
We recall that in view of 3.2, the Boolean algebra B0(A ) is complete.
By a simple construction using Axiom of Choice and a transfinite induction argu-

ment we obtain

Lemma 4.1. Let y0 ∈ B0(A ), ∅ 6= Y = {yi}i∈I ⊆ B0(A ), y0 = sup Y in B0(A ).
Then for each i ∈ I there exists y′i ∈ B0(A ) such that y′i 6 yi, y0 =

∨
i∈I

y′i in B0(A )

and the indexed system {y′i}i∈I is orthogonal.

Lemma 4.2. Assume that (yi)i∈I is an orthogonal indexed system of elements

of B0(A ). Let y0 ∈ B0(A ) and let the relation y0 =
∨
i∈I

yi be valid in B0(A ). Then

this relation holds also in the lattice `(A ).
���������

. According to the definition of the internal direct product we have an
internal direct product decomposition

(1) A1 =
∏

i∈I

A1,
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where Ai = [0, yi]A for each i ∈ I , and A1 = [0, y0]A . By way of contradiction,
suppose that the relation y0 =

∨
i∈I

yi fails in `(A ). Then there exists a ∈ A1 such

that a > yi for each i ∈ I and a < y0. For i ∈ I let ai be the component of a in Ai.
Hence ai = a ∧ yi = a for each i ∈ I . There exists x ∈ A1 with y0 = a + x = a⊕ x,

x > 0. Then there is i ∈ I such that xi > 0, where xi is the component of x in Ai.
In view of [4], there exists an internal direct factor Gi of the lattice-ordered group

G1 (we suppose that A0 = Γ(G1, u1)) such that Ai = Gi ∩ A1. For each z ∈ Ai, the
component of z in Gi is the same as the component of z in Ai. Thus we obtain

yi = (y0)i = ai + xi = a + xi > yi + xi > yi.

We have arrived at a contradiction. �

Now, 4.1 and 4.2 yield

Lemma 4.3. Let y0 ∈ B0(A ) and {yi}i∈I ⊆ B0(A ). If the relation y0 =
sup{yi}i∈I holds with respect to B0(A ), then this relation holds also with respect
to `(A ).

Let 0 < a ∈ A. Let an and bn (n ∈ N) be as in 3.11. Since B0(A ) is com-
plete, there exists b ∈ B0(A ) such that the relation b =

∨
n∈N

bn is valid in B0(A ).

According to 4.3, this relation is valid also in `(A ).

Lemma 4.4. Under the above notation, a 6 b.
���������

. This is a consequence of 3.11 (ii) and (iv). �

Let α be an infinite cardinal, α 6 cardA. Put

A(α) = {a ∈ A : card[0, a] 6 α},
B0(α) = {b ∈ B0(A ) : card[0, b] 6 α}.

Since B0(α) ⊆ B0(A ) and since B0(A ) is complete there exists b(α) ∈ B0(A ) such
that

(2) b(α) = sup B0(α)

is valid in B0(A ); in view of 4.3, the relation (2) holds also in `(A ).
We have B0(α) ⊆ A(α). Let 0 < a ∈ A(α). Further, let an and bn (n ∈ N) be as

in 3.11. According to 3.11 and 3.12, bn ∈ B0(α) for each n ∈ N . Let b be as above.
Then b 6 b(α). Hence in view of 4.4 we obtain

(3) b(α) = sup A(α).
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For α = ℵ0 we put a1(α) = b(α). Let α > ℵ0; we denote by α the set of all infinite

cardinals α1 with α1 < α. For each α1 ∈ α we have b(α1) ∈ B0(A ), hence in view of
the completeness of B0(A ) there exists b1(α) ∈ B0(A ) such that b1(α) = sup

α1∈α
b(α1)

in B0(A ). According to 4.3, this relation holds also in `(A ). We put

a1(α) = b(α) − b1(α),

where the operation − is taken with respect to the lattice ordered group G. Then,
in fact, a1(α) belongs to B0(A ) and

(4) a1(α) ∧ b1(α) = 0, a1(α) ∨ b1(α) = b(α).

This yields

Lemma 4.5. Let α1 be an infinite cardinal, α1 > α. Then a1(α) ∧ a1(α1) = 0.

For each cardinal α we denote by K0(α) the set of all infinite cardinals β with

β 6 α. Put α0 = cardA, K0 = K0(α0).

Lemma 4.6. For each α ∈ K0 we have

(5) b(α) =
∨

α1∈K0(α)

a1(α1).

���������
. We proceed by transfinite induction. Let α = ℵ0. Then a1(α) = b(α),

whence (5) is valid.
Let α > ℵ0 and suppose that (5) holds for all infinite cardinals α′ < α. In view of

(4) we get
b(α) = a1(α) ∨ b1(α) = a1(α) ∨

∨

α2∈α

b(α2).

In view of the induction hypothesis we have

b(α2) =
∨

α1∈K0(α2)

a1(α1)

for each α2 ∈ α; thus we obtain

∨

α2∈α

b(α2) =
∨

ℵ06α1<α

a1(α1).

Hence the relation (5) is valid. �

Since b(α0) = u we infer
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Corollary 4.7. u =
∨

α∈K0

a1(α).

From the relation u 6= 0 we get that the set K1 = {α ∈ K0 : a1(α) 6= 0} is
nonempty; hence we have

(6) u =
∨

α∈K1

a1(α).

Let α ∈ K1. Since a1(α) 6 b(α) and b(α) = sup B(α) we obtain

a1(α) = sup
t∈B(α)

(a1(α) ∧ t).

Since a1(α) ∈ B0(A ) and B(α) ⊆ B0(A ) we conclude that the elements a1(α) ∧
t belong to B0(A ). Then in view of 4.1 there exists an orthogonal indexed set
(xα,s)s∈S(α) of nonzero elements of B0(A ) such that

(7) a1(α) =
∨

s∈S(α)

xα,s

and for each x ∈ S(α) there exists t ∈ B(α) with xα,s 6 a1(α) ∧ t. In view of (6)
and (7) we get

(8) u =
∨

α∈K1

∨

s∈S(α)

xα,s.

Moreover, the indexed system (xα,s)α∈K1,s∈S(α) is orthogonal. From this fact and

from the definition of the internal direct product we obtain

Lemma 4.8. TheMV -algebra A can be expressed as an internal direct product

A =
∏

α∈K1,s∈S(α)

Aα,s,

where Aα,s = [0, xα,s]A .

Lemma 4.9. Let α ∈ K1 and s ∈ S(α). Then the MV -algebra Aα,s is weakly

homogeneous.
���������

. Let 0 < a ∈ Aα,s. Then a ∈ B(α), whence card[0, a] 6 α. By way
of contradiction, assume that card[0, a] = α1 < α. This yields that a ∈ B(α1),
thus a 6 b1(α). Hence a ∧ a1(α) = 0. But from a ∈ Aα,s we get a 6 a1(α), thus
a ∧ a1(α) = a and we have arrived at a contradiction. Therefore card[0, a] = α for

each 0 < a ∈ Aα,s. �

From 4.8 and 4.9 we conclude
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Proposition 4.10. Let A be anMV -algebra belonging to the class C , A 6= {0}.
Assume that the condition (∗) from Section 3 is valid. Then A can be expressed as

an internal direct product of weakly homogeneous MV -algebras.

Now let us omit the assumption on the validity of the condition (∗).
���������

of Theorem B. The assertion of this theorem is a consequence of 3.6 and
4.10. �

5. Concluding remarks on the weak homogeneity

Assume that A is anMV -algebra such that the lattice `(A ) is a Boolean algebra;
we put `(A ) = B.

Each internal direct product decomposition of A defines, at the same time, an
internal direct product decomposition of B, and conversely.

If B is complete, then in view of 3.2, A belongs to the class C .

If X 6= {0} is a finite linearly ordered internal direct factor of B, then cardX = 2.
Thus if B is complete then in the relation (1) of 3.6 either I = ∅ or each Xi is a two-
element MV -algebra. Since each two-element MV -algebra is weakly homogeneous,

from (B) we infer that each complete MV -algebra is an internal direct product of
weakly homogeneous MV -algebras. Thus we have verified that Theorem (B) is a

generalization of Theorem (A).

For an MV -algebra A we denote by (s), (oc) and (p) the condition that A is

semisimple, orthogonally complete or projectable, respectively. These conditions
were used in the definition of the class C , hence they are assumed to be valid in

Theorem (B).

Example 1. This example shows that the condition (s) cannot be omitted in
Theorem (B).

Let � and 	 be the additive group of all integers or of all reals, respectively, with
the natural linear order. Consider the lexicographic product G = 	 ◦ � and put
u = (1, 0). Then u is a strong unit of G, thus we can construct the MV -algebra
A = Γ(G, u). This MV -algebra is linearly ordered, hence it has the properties (oc)
and (p). It is easy to verify that it has not the property (s). Further, being linearly
ordered, it is directly indecomposable. Put a = [0, 1]. We have card[0, a] = 2 and
the set A is infinite. Hence A cannot be represented in the form from Theorem (B).

Example 2. Let M be an infinite set. For a mapping f : M → {0, 1} we put

M1(f) = {i ∈ M : f(i) = 1}, M2(f) = M \M1(f).
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We denote by B the set of all f having the property that either M1(f) is finite or
M2(f) is finite. The set B is partially ordered coordinate-wise. Then B is a Boolean
algebra. Hence there is an MV -algebra A with `(A ) = B. This MV -algebra has
the properties (s) and (p) (cf. Section 3). On the other hand, A has not the property
(oc).
Let 0 < f ∈ B. Then the interval [0, f ] of B is weakly homogeneous if and only

if f is an atom of B. It is easy to verify that A cannot be represented as a direct
product of two-element MV -algebras. Thus the condition (oc) cannot be omitted in
Theorem (B).

The question whether the condition (p) can be omitted in Theorem (B) remains
open.

6. A homogeneity condition defined by an

increasing cardinal property

Pierce [7] defined a cardinal property f on Boolean algebras as a rule that assigns
to each Boolean algebra B a cardinal f(B) such that, whenever B1 and B2 are

isomorphic Boolean algebras, then f(B1) = f(B2). Cf. also Pierce [8].
Analogously we can define the notion of a cardinal property for other types of

ordered algebraic structures. Cardinal properties and generalized cardinal properties
on lattice ordered groups were studied in [3], [5].

Let f be a cardinal property on the class B of all Boolean algebras. A Boolean
algebra B is homogeneous with respect to f (shortly: f -homogeneous) if f(B) =
f([0, b]) for each 0 < b ∈ B. We say that f is increasing (or monotone, cf. Sikorski
[9]) if for each B ∈ B and each 0 < b ∈ B the relation f(B) > f([0, b]) is valid.

Theorem (A1) (Cf. Pierce [7]). Let B 6= {0} be a complete Boolean algebra.
Let f be an increasing cardinal property on the class B. Then B can be represented

as a direct product of f -homogeneous Boolean algebras.

The above Boolean algebraic definitions can be straighthforwardly adapted to
MV -algebras. As above, let M be the class of all MV -algebras. For A ∈ M let

`(A ) be the corresponding lattice. Let f be a cardinal property onM . Thus for each
A ∈ M , f(A ) is a cardinal such that, whenever A1, A2 ∈ M and `(A1) ' `(A2),
then f(A1) = f(A2). An MV -algebra A is f -homogeneous if f(A ) = f([0, a]A )
for each 0 < a ∈ A. The cardinal property f is increasing (decreasing) if for each

A ∈ M and each 0 < a ∈ A the relation f([0, a]A ) 6 f(A ) (or f([0, a]A ) > f(A ),
respectively) is valid.
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Decreasing cardinal properties (and, also, decreasing generalized cardinal proper-

ties) on the class M were dealt with in [6].
Consider the following condition for a cardinal property f on M :

(γ) For each A ∈ M and for each 0 < a ∈ A, if f([0, a]A ) is infinite, then
f([0, a]A ) = f([0, a⊕ a]A ).

In view of 3.9, the cardinal property f defined by f(A ) = cardA for each A ∈ M

satisfies the condition (γ).

Theorem (B1). Let A be an MV -algebra belonging to the class C . Let f be

an increasing cardinal property on M satisfying the condition (γ). Then A can be

represented as an internal direct product of MV -algebras Ai (i ∈ I) such that for
each i ∈ I some of the following conditions is satisfied:

(i) Ai is a finite chain;

(ii) Ai is f -homogeneous.

When presenting the proof of (A), Sikorski ([9], p. 107) remarks that the proof of
(A1) is the same as the proof of (A).

Analogously, for proving (B1) it suffices to apply minor modifications in the proof
of (B).
���������

of (B1). Let A be an MV -algebra belonging to the class C . Further,

let f be an increasing cardinal property on M satisfying the condition (γ).
First let us suppose that for each 0 < a ∈ A , the interval [0, a] is infinite (i.e., we

suppose that the condition (∗) is satisfied). We apply the same steps as in 4.4–4.9
with the distinction that

(i) if 0 < x ∈ A, then instead of considering the cardinal

card[0, x]

we consider the cardinal
f([0, x]A );

(ii) instead of applying Lemma 3.9 we apply the assumption on the validity of

the condition (γ);
(iii) instead of speaking about weak homogeneity we speak about f -homogeneity.

In this way we obtain that the assertion analogous to Proposition 4.10 is valid;

the distinction is in the fact that the weak homogeneity of direct factors is replaced
by f -homogeneity. The next step consists in omitting the condition on the validity

of (∗); similarly to Section 4, it suffices to apply 3.6 and the assertion analogous to
4.10. This completes the proof. �
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Also, by the same argument as in Section 5, we obtain that (B1) is a generalization

of (B).
We conclude by the following example.
For eachMV -algebraA letX (A ) be the set of all chains X which are sublattices

of the lattice `(A ). We put

f1(A ) = max{ℵ0, sup{cardX}X∈X (A )}.

Then f1 is an increasing cardinal property on M ; f1 satisfies the condition (γ).

Hence the assertion of (B1) can be applied for f1.
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