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ON OSCILLATORY SOLUTIONS OF DIFFERENTIAL 

INEQUALITIES 

MIROSLAV BARTUŠEK, Brno 

(Received June 25, 1990) 

Let -oo < a < 6 ^ o o , n ^ 2 and let / t : [a, b) x Rn —• R, i = 1, . . . , n fulfil the 
local Caratheodory conditions. When studying oscillatory solutions of the system 

(1) y\ = /i(<,yi,. ..,2/n), i = l , . . . , n 

it is very often supposed that 

a t / , ( * ,* ! , . . . , s n )x t + i > 0 for x t + i ^ 0, 

/,-(*,a?i,...,a?„) = 0for x t + i = 0 , i = l , . . . , n 

where a,- G {—1,1}, x n + i = £1, see [3, 4]. 
y = (y i , . . . , yn) is called a solution of (1) if yt: J = (a, 6) —> R is locally absolutely 

continuous and (1) holds for almost all t G J. 
The system (1) leads naturally to be the investigation of properties of a system of 

differential inequalities 

* ty;(t)y t+1(t) > 0 for yt+i(*) ^ 0, 

y;W = 0<=y t+i(0 = 0, i = l , . . . , n 

where at G { -1 ,1} , * G J, yn + i = yi-
y = (yi, • • •, yn) is called a solution of (3) if yt: J —• R is locally absolute continu

ous and (3) holds for alH G J for which yj(*) exists. Denote by T the set of all such 
solutions. It is evident that T is not empty and that (1), (2) is a special case of (3). 

Let n0 be the entire part of ^ and let y;+jbn = yy, «j+*n = <*j be valid for 
j G { l , . . . , n } , * G { . . . , - 1 , 0 , 1 , . . . } . 

A continuous function z: J —• R is called oscillatory if sup \z(t)\ > 0 for any 
r £ J and there exists a sequence of its zeros tending to 6. *€-r>6) 

Let y £T,i G { 1 , . . . , n} hold. A number r is called a simple zero of yt if yt(r) = 0, 
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Suppose that r is a simple zero of y,-. It follows from (3) that there exists an 
interval [r1} ^ ] C J such that ri < r -<C r2, 2/J(r) / 0, yj(tf) has a constant sign for 
almost all t £ [r1} r2] and thus yi(t) yi(t) < 0 holds for t £ [n, r ) , £ £ (r, r2] . 

In the paper conditions are given under which all zeros of oscillatory functions y, 
for y £ T are simple in a left neighbourhood of the number 6. We generalize to (3) 
or (1), (2) similar results obtained for the differential equation of the n-th order in 
[5] (linear case) and [2] (nonlinear case): 

2/W = / ( < , 2 / , . . . , ^ - 1 ) ) in J x FT, n > 2 , 

a / ( < , x 1 , . . . , x n ) x 1 > 0 

where a £ { — 1,1}, / is continuous. This equation can be transformed into (1), (2) 
with a\ = ... = an-i = 1, an = a . 

Let Z: J —• R be continuous. A point c £ [a, 6] is called an H-point of Z if there 
exist sequences {TJJ J 0 , {rjfc}j° of numbers from J tending to c such that Z(Tk) = 0, 
Z(fk)?0,(Tk-c)(fk-c)>0. 

L e m m a 1. Let i,j £ { 1 , . . . , n} and y £T hold. Then c £ [a, 6] is an H-point of 
y, if and only if c is an H-point of yj. 

P r o o f . Let {rjfc}^0, {rjb}i° be increasing sequences of zeros of y, such that 
Tk ^ U < Tk+i, lim rjfc = c, y(t) / 0 on (rjt,rjb), k £ N. Then there exist numbers 

fc—•oo _ _ 

U, tk, k e N such that Tk < U < U < fki l/i(U),]/i(U) exist and j/i(U)l/i(U) < 0 
is valid. According to (3) we have yi+i(tk)yi+i(tk) < 0 and there exists a zero 
/3k of t/,+i, <fc < /?jb < U- Thus c is an H-point of j/,-+i, too. By repeating the 
considerations for i -f 1, 1 + 2, . . . , n, 1, 2, . . . , i — 1 we get the statement of the 
lemma. The lemma is proved. • 

Let y £ T, .; £ { 1 , . . . , n}, and let yj be oscillatory. Since 6 is an H-point of j / ; , it 
follows from Lemma 1 that y,, i = 1, . . . , n is oscillatory, too. Thus we can define: 
A solution y £ T is oscillatory if every component of y is oscillatory. A point c £ J 
is an H-point of y £ T if it is an H-point of every component of y. Further, let T0, 
To C T be the set of oscillatory solutions of (3) for which there exists no H-point in 
the interval J. The set To is nonempty, it contains e.g. oscillatory solutions of (1), 
(2), see [3,4]. 

Lemma 2. Let y £ T, i £ { 1 , . . . , n}, yi(t) = 0 on [ci, C2] C 1, ci < C2 be vaIicf. 
Then yj(t) = 0 on [ci,c2], j = 1, . . . , n. 

P r o o f . As yj(<) = 0 on [c1}C2], it follows from (3) that y,-+i(t) = 0 on [ci,C2]. 
By repeating this argument for i -f 1, i + 2, . . . , n, 1, . . . , i — 1 we get the statement. 
The lemma is proved. • 
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N o t a t i o n . Let y e T. Put Vn(t) = f[ yt(*), S = {t:t e J,Vn(t) £ 0} . If 
r, k e {1 , . • •, 2n}, r ^ k, then let us define , = 1 

Wrk(t) = card{i: r < i ^ *, <*t-iyt-i(t)yt(<) < 0} for r < *, 

Wrr(t) = 0, teS. 

Put VV(t) = VVi,n+i(f). Further, let r € J, VV(r) = 0, £ | y t ( r ) | ^ 0 be valid. Let 
»=i 

us define integer numbers m, ji, /t, i = 1, ..., m and B(r) by the following relations: 

/0 = min{«: y3(r) -̂  0, 1 ^ s ^ n}, 

jVn = max{s: y5(r) -̂  0, 1 ^ s ^ n}, 

j t = max{s: y/(r) -^0, /t_i ^ / ^ s O'm}, f = l , . . . , m - 1 

/, = min{s: ya(r) ^ 0, j t < s < jm}y i= l , . . . , m - 1 

'm = n-r/0 , 
/ . - 1 

П< 
t = l m=ji 

m .. *. —1 

(5) B(r) = X ) { / . - i . - l + -;((-l)''--'' + l) n(«m)sign(y,.(r)%i(r))}. 

Lemma 3. Let y E T, 0 ^ t0 < r < tx < b, J2\yi(r)\ > 0, VU(T) = 0 and 
t = i 

Vn(t) ^Oforte [*o,*i] ~ M be vaiid. Then 

W(to)-W(h) = B(T)>0 

holds. 

P r o o f . It is clear that the function W is constant on the intervals [to,r) and 
(r, t\]. According to (5) we get 

W(t) = Wlin+1(t) = W,0,,m(t), t € [t0,T)U(T,t1]1 

m 

(6) W(t0) - W(h) = ^(Wj.Uto) = Wj...(.i)). 
1 = 1 

Consider the function Wj^^ It follows from (5) that /t ^ ji -f 2, 

(7) yjt(r) # 0, y,(r) = 0 for j{ < s < /., w . (r ) ^ 0. 

This together with (3) and (7) implies that the following relations are valid in a right 
(left) neighbourhood of r for almost all t: 

% _ i ( r ) = 0, yj(t) ± 0 => a;-iyj_i(t)y;(t) > 0 

(8) =>aj^1yj.1(t)yj(t)>01 (< 0) 

i = /t, / t - l , . . . , j,. + 2. 
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Thus 

sign y;-+1 (r^) = ocU-i . . . a J i + i sign yit{tx), 

signy i i+1(<0) = (- l ) / i"" J i"1a / ._1 . . .c* i t + 1 signyït(t0) 

and 

/ . - 1 

W , V . ( < i ) = ^ ( l - I I «msign( W , ( r ) % , ( r ) ) ) , 
m=ji 

WSv*(M = ^ - i * " l + 2 ( l - ( - l ) l < " i < " 1 I I ^ s i g n ( y , . ( r ) y i . ( r ) ) ) . 
m=ji 

Consequently, we have 

1 / ,~1 

WjtU(t0) - Wjiuitx) = /,- - * - 1 + 2 ( ( " 1 ) / , " i i + 0 I I «msign(y /,(r)y>t(r)) > 0 

and the statement of the lemma follows from (6). The lemma is proved. D 

Consequence 1. Let the assumptions of Lemma 3 be fulfilled and, moreover, let 
there exist numbers ij, 0 ^ i < j < 2n such that yi(T)yj{T) / 0, ys(T) = 0 for 
i < s < j and either j — i = 2, (*iO:i+i sign yi(T)yj{T) > 0 or j — i ^ 3 is valid. Then 
W(t0) - W(h) > 0. 

Lemma 4. Let y G T, 0 -̂  t0 < n ^ r2 < t\ < b, yt- = 0 on [n, r2], i = 1, . . . , n 
and Vn(t) 7-0 for * € [*o,*i] - [n, r2] be valid. Then W{t0) - W{tx) > 0. 

P r o o f . The relations (8) are valid in a right (left) neighbourhood of the number 
r2 ( n ) for j = n + 1, n + 2, . . . , 2 and thus KV(r2) = n, KV(i0) = 0 holds. The lemma 
is proved. D 

Theorem 1. Let y G T be valid and let the interval J have no H-point of this 
solution. Then the function W is nonincreasing on the set S. 

P r o o f . Let *i , i2 G 5, tx < £2 be valid. As J has no H-points of y, the interval 
[/i,/2] can be divided into a finite number of subintervals on which the assumptions 
of Lemma 3 or Lemma 4 are fulfilled. The theorem is proved. D 

R e m a r k . The fact that W is nonincreasing was proved for differential equation 
of the n-th order in [5], [2]. It is also used in [6] for a cyclic feedback system 
xf{ — /»(y»-i,y»), i modn (the assumptions of / are such that this system can be 
easily transformed into (1), (2)). 
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Theorem 2. Let y G To. Then there exists a number t G J such that the following 
statements hold for I = [f, 6). 

I. The zeros ofyi7 i = 1, . . . , n are simple on I. 

II. Ifi G { 1 , . . . , n}, c G J, y»(c) = 0 is valid, then a t_ia ty t+i(c)y t_i(c) < 0. 

III. The function m = W(t) is constant on the set S 0 I, m G { 1 : . . . , n — 1}, and 

the number m -f M 1 + fj a t J is odd. 

IV. Let i G { 1 , . . •, n}. Between two arbitrary consecutive zeros of yt iying in / 
there exists a single zero of yt+i-

V. Let i G { 2 , . . . , n + 1}. Between two arbitrary consecutive zeros ofyi lying in I 
there exists a single zero of y t_i. 

P r o o f . It follows from Theorem 1 that W is increasing on S. As y G To, we 
have S C\ [r, b) -̂  0 for an arbitrary T £ J. As PV acquires the values from the set 
{ 0 , 1 , . . . , n}, there exist numbers i and m such that i G 5, W(*) = m for t G / H 5. 
The statements I and II follow from Consequence 1 and Lemma 4. 

Let us prove the rest of III. The inequality m -̂  0 follows directly from y G To and 
the case I. Thus let m = n. Let r G I be an arbitrary zero of y2. Then it follows from 
the case II that a i a 2 sign(yi(t)y3^)) < 0 holds in a left neigbourhood of r. Accord
ing to (8) we have a2sign(y2(*)y3(t)) < 0 and thus we get ax sign(yi(t)y2(t)) > 0, 
which contradicts W(t) = n. Thus m < n. Further, let r G IDS be valid. Then the 
number 

Z = n«f»W»+1(r) = f[a, f[ y] (r) 
» = 1 » = 1 J = l 

n 

is equal to +1 (= —1) if f| at = 1 (= —1). On the other hand, by the definitions 
t= i 

of m and VV(r), Z = 1 (Z = - 1 ) if m = W(r) is even (odd). This yields the rest of 
the statement III. 

The case IV: Let i < T\ < r2 be consecutive zeros of yt. It follows from the 
proof of Lemma 1 that yt+i has a zero in the interval (ri,r2). The statement will 
be proved by the indirect proof. Thus, let there exist zeros ci, c2 of yt+i such that 
T\ < ci < c2 < r2. Without loss of generality we can suppose that ci, c2 are 
consecutive zeros, yt+i(t) ^ 0 on (ci,c2). Then according to the statement II we 
have a t+ia ty t+2(cJ)y t(cJ) < 0, j = 1,2. Thus yt+2(ci) and yi^(c2) have the same 
sign and by virtue of (3) the function yj+ 1 has a constant sign in a neighbourhood 
of ci, c2 (for almost all t). But this contradicts the fact that ci, c2 are consecutive 
zeros of yt+i. 

The case V can be proved similarly to IV. The theorem is proved. D 

As the system (1), (2) is a special case of (3), we get the following consequence of 
Theorem 2. 
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Consequence 2. Let y G To be a solution of (1), (2). Then the statement of 
Theorem 2 holds. 

In [1] it is proved that for the equation (4) there exist at most two H-points in 
the interval J if either n is odd or n is even and (—l)n°o. = — 1. If n is even and 
(—l)n°a = 1, then infinitely many H-points may exist in J, see an example in [1]. 
In the sequel this result will be generalized to the inequalities (3). 

Lemma 5. Let y G T, 1 G { 1 , . . . ,n} and either n be odd or n be even and 

(-l)no fl <*i = 1. Let 

i = l 

y/-iy/+«+i = «/+iOf/-iy/-i+iy/+ii « = 1 , 2 , . . . , * 

hold where s = n — no — 1. Then the function 

F(t)= £ ( " ! ) ' ( I I ai+i)»-.(.)Vi+.+i(.) 
i=0 S ' = - i 

+ i(« " 2no)(-in ( f [ <*i) »?+no+i(0 

is nondecreasing on J. 

P r o o f . For almost all t G J we have 

F'(t) = o:/y{y/+i = ^ (-1)' ( I J a'+i)(y/-i^+»+i -«/+i«/+iy/-i+iy{+i 
i=i L S'=-i ' j 

+ (-l)n°-1( f l fti + l)w-no + iy{+no 
S' = -n0+l ' 

- f ( n - 2 n 0 ) ( - i r o ( n a i ) j / / + f l o + l 2 / ; + n o + 1 . 
S = i y 

Using the assumptions of the lemma and the fact that y /+ n o + i = yi-no holds for n 
odd we get for almost all t: 

F'(t) = a/yf(t)^+ i(t) for n odd, 

F'(z-) = or/yf(*)y/+i(0 + ( " I f 0 " 1 ( n« i )» /+n o yJ + n o Wy/+n 0 +i (0 for n even. 
M=I ' 

Thus according to (3) F is nondecreasing on J. The lemma is proved. • 
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T h e o r e m 3 . Let the assumptions of Lemma 5 be fulfilled. Then there exist at 

most two H-points of y in J. If c\, c2, 0 < c\ < c2 < b are two H-points then 

yi = 0 on [ci, c2], i = I, 2, ..., n. Moreover, ify is oscillatory then the statement of 

Theorem 2 is valid. 

P r o o f . It follows from the definition of H-points that c is an H-point, and the 
implication c G (0, 6) =-> yi(c) = 0, i = 1, . . . , n holds. Thus, F(ci) = F(c2) = 0 and 

according to Lemma 5 we have F(t) = 0, t G [ci,C2J. This together with (9), (3) 
yields yJ(<)y/+i(J) = 0 for almost all t G [ci, c2] and thus using (3) we have t//+i = 0 
on [ci, c2]. We can conclude by virtue of Lemma 2 that yi = 0 holds on [c\, c2], i = 1, 
. . . . n. It is clear that three H-points cannot exist. The theorem is proved. • 

C o n s e q u e n c e 3 . Let y be a solution of (1), (2), / G { 1 , . . . , n } . Let either n be odd 
n 

or n be even and (—l)n° YI a% = — 1- Let there exist functions Fj : J x Rn —• (0, oo), 
t = i 

j = 1, ..., s, s = n — no — 1 such that Fj fulfil the local Caretheodory conditions and 

( fi-j(i,*i, • • - j^n) = (*t-jFj(t,xi,. . . , x n ) a ; / _ J + i , . 

/ / - f j (^^l , . . . ,-Cn) = al+jFj(t,Xi, . . . , I n ) ^ + j + l , j = 1, . . . , « . 

Then the statement of Theorem 3 holds. 

R e m a r k . Suppose that there exist e > 0 and functions at-: J —• (0 ,oo) , i = 1, 
. . . , n such that a; are locally integrable and 

n 
\fi(t,xx,...,xn)\ ^ ai(t)^T\xi\ on J x [~e,e]n. 

«=i 

Then it is clear that the Cauchy problem of (1), (2) with zero initial conditions is 
uniquely solvable. Thus there exists no H-point of an oscillatory solution y, and the 
statement of Theorem 2 holds for y. 
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