Czechoslovak Mathematical Journal

N. Ya. Medvedev

Independent axiomatization of varieties of lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 1, 53-57

Persistent URL: http://dml.cz/dmlcz/128307

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

INDEPENDENT AXIOMATIZATION OF VARIETIES OF LA'TTICE ORDERED GROUPS

N. Ya. Medvedev, Barnaul

(Received October 5, 1990)

In the works [1, 2, 3] the author constructed an infinite set of varieties of lattice ordered groups (ℓ-varieties) without independent bases of identities. In connection with this result the following natural question about existence of ℓ-varieties without independent bases in classes of formulae of tight predicate calculus more general than identities (for example, classes of quasidentities or nniversal formulae) arises.

In this work the example of an ℓ-variety without an independent basis of universal formulae is given.

All general facts and definitions about lattice and linearly ordered groups can be found in the book [4].

The U be the ℓ-variety defined by the system of identities Σ :
a) $(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|) \wedge(|[x, y]| \wedge|t|)^{n}=(|[x, y]| \wedge|t|)^{n},(n \in N, n \geqslant 3)$,
b) $\left(x \wedge y^{-1} x^{-1} y\right) \vee e=e$,
c) $\left[|[x, y]| \wedge|t|,\left|\left[x_{1}, y_{1}\right]\right| \wedge\left|t_{1}\right|\right]=e$, where $[x, y]=x^{-1} y^{-1} x y$ and N is the set of natural numbers.
By \hat{U} we denote the ℓ-variety defined by the system of identities $\hat{\Sigma}$:
a) $(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|) \wedge(|[x, y]| \wedge|t|)^{3}=(|[x, y]| \wedge|t|)^{3}$,
b) $\left(x \wedge y^{-1} x^{-1} y\right) \vee e=e$,
c) $\left[|[x, y]| \wedge|t|,\left|\left[x_{1}, y_{1}\right]\right| \wedge\left|t_{1}\right|\right]=e$.

It is evident that the ℓ-varieties U, \hat{U} are ℓ-metabelian, $U \subseteq \hat{U}$ and $U \neq \hat{U}$ ([1]).
Proposition 1. In the lattice of universal classes of ℓ-groups T there is no universal class of ℓ-groups W such that

1) W covers the ℓ-variety U in the lattice T,
2) $W \subseteq \hat{U}$.

Proof. We assume that there exists a universal class W with properties 1), 2). It should be noted that if $G \in \hat{U}$, then G is representable and there exists an abelian ℓ-ideal A such that the factor-group G / A is abelian. So there exists an ℓ-group G such that $G \in W \backslash U$.

First, we suppose that the ℓ-group G is linearly ordered. In this case there are elements $x_{0}, y_{0}, t_{0} \in G$ and a natural number $n \in N(n>3)$ such that

$$
\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)^{3} \leqslant\left(\left|x_{0}\right| \vee\left|y_{0}\right|\right)^{-1}\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)\left(\left|x_{0}\right| \vee\left|y_{0}\right|\right)<\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)^{n}
$$

Let us set for the sake of brevity $a=\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|, b=\left|x_{0}\right| \vee\left|y_{0}\right|$. Then $a \in A, b \notin A$ and $a^{3} \leqslant b^{-1} a b<a^{n}$. Let A_{1} be the normal convex ℓ-subgroup of A, generated by the element a. We choose an element $c \in A_{1}$ such that

$$
c^{3} \leqslant c^{m(c)} \leqslant c^{b}<c^{m(c)+1},
$$

and the natural number $m(c)$ is minimal with this property. Let us consider the ℓ subgroup $G_{1}=\ell-\operatorname{gp}\left(A_{1}, b\right)$ of the linearly ordered group G, generated by the convex ℓ-subgroup A_{1} and the element b. It is easy to see that $b>v$ for every $v \in A_{1}$, and the linearly ordered group $G_{1}=A_{1} \overleftarrow{\lambda}(b)$ is the lexicographic extension of A_{1} by the infinite cyclic group (b). In the linearly ordered group G_{1} the inequalities $v^{3} \leqslant v^{m(c)} \leqslant v^{b}$ are true for every element $v \in A_{1}$. Now, in the linearly ordered group G_{1} we choose an ℓ-subgroup $G_{2}=\ell-\operatorname{gp}\left(A_{1}, b^{2}\right)=A_{1} \overleftarrow{\lambda}\left(b^{2}\right)$. By $u_{l}(G), u_{l}\left(G_{1}\right), u_{l}\left(G_{2}\right)$ we denote the minimal universal classes of ℓ-groups, containing o-groups G, G_{1}, G_{2}, respectively. It is easy to see that $u_{l}(G) \supseteq u_{l}\left(G_{1}\right) \supseteq u_{l}\left(G_{2}\right)$ and $u_{l}\left(G_{1}\right) \neq u_{l}\left(G_{2}\right)$. Indeed let us consider the identity

$$
\begin{equation*}
(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|) \wedge(|[x, y]| \wedge|t|)^{2 m(c)}=(|[x, y]| \wedge|t|)^{2 m(c)} \tag{1}
\end{equation*}
$$

We observe that this identity is not true on the o-group G_{1} when $t=x=c, y=b$. In this case we have

$$
\begin{gathered}
{[x, y]=[c, b]=c^{-1} b^{-1} c b=c^{-1} c^{b} \geqslant c^{-1} c^{3}=c^{2}>e} \\
|[x, y]| \wedge|t|=|[c, b]| \wedge c=c>e,|x| \vee|y|=c \vee b=b
\end{gathered}
$$

and

$$
(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|)=b^{-1} c b<c^{m(c)+1}
$$

But $m(c) \geqslant 3$, hence $m(c)+1<2 m(c)$ and therefore

$$
b^{-1} c b<c^{m(c)+1}<c^{2 m(c)}, b^{-1} c b \wedge c^{2 m(c)}=b^{-1} c b \neq c^{2 m(c)}
$$

Now let us prove that the identity (1) is fulfilled on the o-group G_{2}. If $[x, y]=e$, then the identity (1) is true for these values of variables and so we can suppose that $a_{0}=[x, y] \neq e$. Then $|x| \vee|y|=b^{2 t} a_{1}$, where $t>0, a_{1} \in A_{1}$ and

$$
\begin{gathered}
(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|)=\left(b^{2 t} a_{1}\right)^{-1} a_{0} b^{2 t} a_{1}=a_{1}^{-1} b^{-2 t} a_{0} b^{2 t} a_{1}= \\
=b^{-2 t} a_{0} b^{2 t} \geqslant b^{-2} a_{0} b^{2} \geqslant b^{-1} a_{0}^{3} b \geqslant a_{0}^{3 m(c)}>a_{0}^{2 m(c)}
\end{gathered}
$$

Now it is clear that

$$
(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|) \wedge(|[x, y]| \wedge|t|)^{2 m(c)}=(|[x, y]| \wedge|t|)^{2 m(c)}
$$

for all values of variables from the o-group G_{2}, and the identity (1) is fulfilled on the universal class $u_{l}\left(G_{2}\right) \vee U$, but is not fulfilled on the universal classes $u_{l}\left(G_{1}\right) \vee U$, $u_{l}(G) \vee U$ (here the join operation is considered in the lattice of universal classes of ℓ-groups T).

Moreover $u_{l}\left(G_{2}\right) \vee U \neq U$ because the identity

$$
\begin{equation*}
(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|) \wedge(|[x, y]| \wedge|t|)^{4 m(c)}=(|[x, y]| \wedge|t|)^{4 m(c)} \tag{2}
\end{equation*}
$$

fails to hold on the o-group G_{2} and is true on the ℓ-variety U by definition. So we have the following inclusions: $\hat{U} \supseteq W \supseteq u_{l}(G) \vee U \supseteq u_{l}\left(G_{1}\right) \vee U \supseteq u_{l}\left(G_{2}\right) \vee U$. As all these universal classes are different we have a contradiction with our assumption that the universal class of ℓ-groups W covers U in the lattice T.

Let now the ℓ-group G be not linearly ordered. In this case G is an ℓ-subgroup of the cardinal product $\bar{\Pi} G_{i}$ of linear ordered groups $G_{i}(i \in I)$, where $G_{i}=\varphi_{i}(G)$ are ℓ-homomorphic images of the ℓ-group G. Since $G \notin U$, there exists elements $x_{0}, y_{0}, t_{0} \in G$ and a natural number n_{0} such that

$$
\left(\left|x_{0}\right| \vee\left|y_{0}\right|\right)^{-1}\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)\left(\left|x_{0}\right| \vee\left|y_{0}\right|\right) \wedge\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)^{n_{0}} \neq\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)^{n_{0}}
$$

As $G \in \hat{U}$, we have

$$
\left(\left|x_{0}\right| \vee\left|y_{0}\right|\right)^{-1}\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)\left(\left|x_{0}\right| \vee\left|y_{0}\right|\right) \wedge\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)^{3}=\left(\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|\right)^{3}
$$

Consequently there exists a nonempty subset J of indices I such that the inequalities

$$
\begin{aligned}
& \left(\left|\left[\varphi_{i}\left(x_{0}\right), \varphi_{i}\left(y_{0}\right)\right]\right| \wedge\left|\varphi_{i}\left(t_{0}\right)\right|\right)^{3} \\
& \left.\leqslant\left(\left|\varphi_{i}\left(x_{0}\right)\right| \vee\left|\varphi_{i}\left(y_{0}\right)\right|\right)^{-1}\left(| | \varphi_{i}\left(x_{0}\right), \varphi_{i}\left(y_{0}\right)\right]|\wedge| \varphi_{i}\left(t_{0}\right) \mid\right)\left(\left|\varphi_{i}\left(x_{0}\right)\right| \vee\left|\varphi_{i}\left(y_{0}\right)\right|\right) \\
& <\left(\left|\left[\varphi_{i}\left(x_{0}\right), \varphi_{i}\left(y_{0}\right)\right]\right| \wedge\left|\varphi_{i}\left(t_{0}\right)\right|\right)^{n_{0}}
\end{aligned}
$$

are true for every $i \in J$.
Let us denote $\left|x_{0}\right| \vee\left|y_{0}\right|=b,\left|\left[x_{0}, y_{0}\right]\right| \wedge\left|t_{0}\right|=a, A_{1}$-the ℓ-ideal of G generated by the element a. Then $A_{1} \subseteq A$, where A is the abelian ℓ-ideal of G and

$$
\varphi_{i}^{3}(a) \leqslant \varphi_{i}(b)^{-1} \varphi_{i}(a) \varphi_{i}(b)<\varphi_{i}(a)^{n_{0}}
$$

for arbitrary $i \in J \subseteq I$. It is not difficult to prove that for every element $w \in A_{1}$ the inequality $|w|^{3} \leqslant b^{-1}|w| b$ is fulfilled. Indeed every positive element $w \in A_{1}$ (by definition of A_{1}) satisfies the inequality

$$
e \leqslant w \leqslant a^{g_{1}} \cdots a^{g_{t}}
$$

for some $g_{1}, g_{2}, \ldots, g_{t} \in G$. By a well-known theorem of Riesz ([4], p. 30) $w=$ $w_{1} \cdot w_{2} \cdots w_{t}$, where $e \leqslant w_{1} \leqslant a^{g_{1}}, \ldots, e \leqslant w_{t} \leqslant a^{g_{t}}$. So

$$
w_{k}=w_{k} \wedge a^{g_{k}}=w_{k} \wedge\left|\left[x_{0}^{g_{k}}, y_{0}^{g_{k}}\right]\right| \wedge\left|t_{0}^{g_{k}}\right|=\left|\left[x_{0}^{g_{k}}, y_{0}^{g_{k}}\right]\right| \wedge\left|t_{0}^{\prime}\right|
$$

for $\left|t_{0}^{\prime}\right|=\left|t_{0}^{g_{k}}\right| \wedge\left|w_{k}\right|$. But $G \in \hat{U}$, hence $w_{k}^{b}>w_{k}^{3}$. As all $w_{k}(1 \leqslant k \leqslant l)$ are mutually permutable we can multiply all these inequalities $w_{k}^{b} \geqslant w_{k}^{3}$. As a result we have $w^{b} \geqslant w^{3}$. In the ℓ-ideal $A_{1} \unlhd G$ there exists an element $e \neq c \in A_{1}$ and an index $i_{0} \in I$ such that

$$
\begin{equation*}
\varphi_{i_{0}}(c)^{3} \leqslant \varphi_{i_{0}}(c)^{m\left(c, i_{0}\right)} \leqslant \varphi_{i_{0}}(b)^{-1} \varphi_{i_{0}}(c) \varphi_{i_{0}}(b)<\varphi_{i_{0}}(c)^{\left(m\left(c, i_{0}\right)+1\right)} \leqslant \varphi_{i_{0}}^{n_{0}}(c) \tag{3}
\end{equation*}
$$

and the number $m\left(c, i_{0}\right)$ is the minimal natural number of the numbers $m(w, i)$, where $i \in I, e \neq w \in A_{1}$. By the definition of the number $m\left(c, i_{0}\right)$ for every element $x \in A_{1}$ the inequality

$$
\begin{equation*}
x^{3} \leqslant x^{m\left(c, i_{0}\right)} \leqslant x^{b} \tag{4}
\end{equation*}
$$

is fulfilled. Let us consider ℓ-subgroups $H=\ell-\operatorname{gp}\left(A_{1}, b\right), H_{1}=\ell-\mathrm{gp}\left(A_{1}, b^{2}\right)$. It is not difficult to prove that $b>a$ for every element $a \in A_{1}$, and consequently $H=A_{1} \overleftarrow{\lambda}(b)$, $H_{1}=A_{1} \overleftarrow{\lambda}\left(b^{2}\right)$ are lexicographic extensions of A_{1} by the infinite cyclic groups (b) and $\left(b^{2}\right)$, respectively. As $G \geqslant H \geqslant H_{1}$ we have $u_{l}(G) \supseteq u_{l}(H) \supseteq u_{l}\left(H_{1}\right)$. The inequalities (4) imply that the identity
(5) $(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|) \wedge(|[x, y]| \wedge|t|)^{2 m\left(c, i_{0}\right)}=(|[x, y]| \wedge|t|)^{2 m\left(c, i_{0}\right)}$
is violated on the ℓ-group H under $x=b, y=c, t=b$. The inequalities (4) imply that this identity is fulfilled on the ℓ-group H_{1}. The identity (5) is true on the ℓ-variety U by definition, and so

$$
U \vee u_{l}(H) \neq U \vee u_{l}\left(H_{1}\right), U \subseteq U \vee u_{l}\left(H_{1}\right) \subseteq U \vee u_{l}(H) \subseteq U \vee u_{l}(G) \subseteq W
$$

Direct calculation shows that the identity

$$
\left.(|x| \vee|y|)^{-1}(|[x, y]| \wedge|t|)(|x| \vee|y|) \wedge(| | x, y]|\wedge| t \mid\right)^{4 m\left(c, i_{0}\right)}=(|[x, y]| \wedge|t|)^{4 m\left(c, i_{0}\right)}
$$

is violated on the ℓ-group H_{1} under $x=b^{2}, y=c, t=b^{2}$. However this fact contradicts our assumption that the universal class W covers U in the lattice of universal classes T.

Theorem 1. U is an ℓ-variety without an independent basis of universal formulae.
Proof. Indeed, $U \subseteq \hat{U}$, where the ℓ-variety \hat{U} is an ℓ-variety with a finite basis of identities by definition. If the ℓ-variety U has an infinite independent basis of universal formulae, then in the lattice of universal classes T the ℓ-varietty U has infinitely many different covers contained in the ℓ-variety \hat{U} ([5]). This is impossible by Proposition 1.

References

[1] H. Я. Медөедев: ℓ-многообразния без независимого базиса тождеств, Math. Slovaca 32 (1982), 417-425.
[2] Н. Я. Медөедев: ℓ-многообразния без независимого базиса тождеств (ИИ), Math. Slovaca 35 (1985), 377-380.
[3] Н. Я. Медөедев: О решетке о-аппроксимируемых ℓ - многообразий, Czechoslovak Math. J. 34(109) (1984), 6-17.
[4] В. М. Копытов: Рещеточно упорядоченные группы, Москва, 1984.
[5] В. А. Горбунов: Покрытия в решетках квазимногообразий и независимая аксиоматизируемость, Алгебра и логика 16, 5 (1977), 507-548.

Author's address: Алтайский государственный университет, кафедра алгебры и математической логики, Россия, 656099, Барнаул, Димитрова 66.

