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I N D E P E N D E N T AXIOMATIZATION OF VARIETIES 

O F LATTICE ORDERED GROUPS 

N. YA . MEDVEDEV, Barnaul 

(Received October 5, 1990) 

In the works [1, 2, 3] the author constructed an infinite set of varieties of lattice 
ordered groups (^-varieties) wi thou t independent bases of identities. In connection 
with this result the following natural question about existence of ^-varieties wi thou t 

independent bases in classes of formulae of tight predicate calculus more general than 
identities (for example, classes of quasidentities or universal formulae) arises. 

In this work the example of an ^-variety without an independent basis of universal 
formulae is given. 

All general facts and definitions about lattice and linearly ordered groups can be 
found in the book [4]. 

The U be the ^-variety defined by the system of identities E: 
a) ( |x |V|y|)-1( | [^y] |A|<|)( |x |V|y|)A(|[x,j , ] |A| . | )" = (|[x,y]|A|<|)n , (neN,n> 3), 
b) (x Ay lx 1 y ) V e = e, 
c ) [l[x>2/]l A |*|, |[-Ci,2/i]| A |^i|] = e, where [x,r/] = x~ly~lxy and N is the set of 

natural numbers. 

By U we denote the ^-variety defined by the system of identities E: 

a) ( | x | V | r / | ) - 1 ( | [ x , t / ] | A | < | ) ( | a : | V M ) A ( | [ x ) j , ] | A | < | ) 3 = ( | [x ,y] |A|< | ) 3 , 
b) (x Ay lx 1 y ) V e = e, 

c) [|[*,.y]|A|*|, | [ * i , y i ] | A | / i | ] =e. 
It is evident tha t the ^-varieties U, U are ^-metabelian, U C U and U ?- U ([1]). 

P r o p o s i t i o n 1. In the lattice of universal classes of i-groups T there is no uni

versal class of i-groups W such that 

1) W covers the i-variety U in the lattice T , 

2) WCU. 

P r o o f . We assume tha t there exists a universal class W with properties 1), 2). 
It should be noted tha t if G E U, then G is representable and there exists an abelian 
f-ideal A such tha t the factor-group G/A is abelian. So there exists an ^-group G 
such tha t G eW\U. 
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First, we suppose tha t the ^-group G is linearly ordered . In this case there are 

elements XQ, yo>*o G G and a natural number n G N(n > 3) such tha t 

(IKj/o]|A|.o|)3^(|xo|V|y0|)"1(|[xo)yo]|A|<o|)(ko|V|yo|)<(|[xo,yo]|A|<oir. 

Let us set for the sake of brevity a = |[x0, yo]| A |^o|, b = |xo|V|yo|. Then a G A, b £ A 

and a 3 ^ b~lab < a". Let A\ be the normal convex ^-subgroup of A, generated by 

the element a. We choose an element c G A\ such tha t 

c 3 ^ c ^ c > ^ c 6 < c m ( c ) + 1 , 

and the natura l number m(c) is minimal with this property. Let us consider the l-

subgroup Gi = -?-gp(-4i,6) of the linearly ordered group G, generated by the convex 

^-subgroup A\ and the element 6. It is easy to see tha t 6 > v for every v G A\, 

and the linearly ordered group G\ = A\ \ (6) is the lexicographic extension of A\ 

by the infinite cyclic group (6). In the linearly ordered group Gi the inequalities 

v3 <C. um( c) ^ vh are true for every element v G A\. Now, in the linearly ordered group 

Gi we choose an ^-subgroup G 2 = £-gp(A\,b2) = Ai A (62). By u/(G), t i / (Gi) , ui(G2) 

we denote the minimal universal classes of ^-groups, containing O-groups G, G i , G 2 , 

respectively. It is easy to see tha t ui(G) D ui(G\) D u\(G2) and u\(G\) ^ t i / (G 2) . 

Indeed let us consider the identity 

(1) ( M V M Y 1 (|[x, y]| A \t\)(\x\ V \y\) A (\[x, y]\ A \t\)2m(c) = (\[x, y]\ A \t\)2m(c). 

We observe tha t this identity is not true on the O-group Gi when t = x = c, y = 6. 
In this case we have 

[x,y] = [c,6] = c _ 1 6 _ 1 c 6 = c~lch ^ c~lc2 = c2 > e, 

|[x,2/]|A|*| = | [ c , 6 ] | A c = O e , |x | V \y\ = c V 6 = 6, 

and 

( |x| V \y\)-X(\[x,y]\ A \t\)(\x\ V |y|) = 6">c6 < cm^+1. 

But m(c) >. 3, hence m(c) + 1 < 2m(c) and therefore 

6- J c6 < c m W + 1 < c2m(c\ b~lcb A c2m<e> = 6-xc6 -£ c2m(c\ 

Now let us prove that the identity (1) is fulfilled on the o-group o2- If [x,y] — e, 

then the identity (1) is true for these values of variables and so we can suppose tha t 

a0 = [x,y] ^ e. Then |x| V \y\ = b2ta\, where t > 0, ai € Ai and 

(1*1 V \y\)-l(\[x, y]\ A \t\)(\x\ V |y|) = (b2,a1)-
la0b

2ta1 = a^b'^aob^a, = 

= b-2ta0b
2t >. b~2a0b

2 ^ b-'alb ^ a3m(c) > a2m(c). 
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Now it is clear that 

(|*| V lyirHH-.ril A \t\)(\x\ V \y\) A (|[x,y]| A |<|)2m(c) = (|[x,y]| A |<|)2m(c) 

for all values of variables from the o-group G2) and the identity (1) is fulfilled on the 
universal class ui(G2) V U, but is not fulfilled on the universal classes uj(G\) V U, 
ui(G) V U (here the join operation is considered in the lattice of universal classes of 
^-groups T). 

Moreover ui(G2) V U ^ U because the identity 

(2) (1*1 V lyl)"1 (|[x, y]\ A \t\)(\x\ V |y|) A (|[x, y}\ A | t | ) 4 m ( c ) = (|[x, y]\ A | i | ) 4 m ( c ) 

fails to hold on the o-group G2 and is true on the ^-variety U by definition. So we 
have the following inclusions: U D W D ut(G) V U D ui(G\) VU D ti/(G2) V U. As 
all these universal classes are different we have a contradiction with our assumption 
that the universal class of ^groups W covers U in the lattice T. 

Let now the i?-group G be not linearly ordered. In this case G is an ^-subgroup 
of the cardinal product IIG,- of linear ordered groups G,(z G I), where G, = <Pi(G) 
are ^-homomorphic images of the £-group G. Since G ^ U, there exists elements 
,£o, Vo,io € G and a natural number no such that 

(kol v lyoir'Obo,yo]| A |<o|)(|x0| v Is/ol) A (|[x0,yo]| A |*o|)no ^ (|[x0,yo]| A |<o|)no. 

As G G U, we have 

( |x0 |V|yo|)-1( |[xo )yo]|A|<o|)dxo|V|yo|)A(|[xo )yo]|A| . 'o |)3=(|[xo,yo]|A|<o|)3 . 

Consequently there exists a nonempty subset J of indices / such that the inequalities 

(\[<Pi(xo),<Pi(yo)]\A\<pi(t0)\)
3 

^ (\<Pi(*o)\ V |.».(»b)|)-1(lb«(-!o), W(t*>)]| A M * o ) D ( M * o ) | V \<pi(yo)\) 

<(\[<Pi(*o),<Pi(yo)]\A\<Pi(to)\)n° 

are true for every i G J. 
Let us denote |x0 | V \y0\ = 6, |[x0,t/o]| A |*0| = a, A\—the if-ideal of G generated 

by the element a. Then A\ C A, where A is the abelian if-ideal of G and 

tf(a) ^ <Pi(bYl<Pi(a)<pi(b) < <pi(a)n° 

for arbitrary i G J C I. It is not difficult to prove that for every element w G A\ 
the inequality \w\3 ^ 6""1|u;|6 is fulfilled. Indeed every positive element w G A\ (by 
definition of A\) satisfies the inequality 

e ^ w <^a91 -a9* 
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for some #i, g2, • • •, 9t G G. By a well-known theorem of Riesz ([4], p . 30) w = 
w\ - w? - —wt, where e ^ w\ ^ a91, . . . , e ^ wt ^ a9i. So 

^ = wkAa9> =wkA |[#,0g f c]l A | t f | = | [ * 8 \ # ] l A |t'0| 

for |*'0| = |*gfc | A \wk\. But G G U, hence w\ > tvj!. As all wk(l <£ ife ^ /) are mutually 
permutable we can multiply all these inequalities w\ ^ w\. As a result we have 
wb ^ tv3. In the ^-ideal A\ < G there exists an element e ^ c £ A\ and an index 
io G I such that 

(3) Pi0(c)3 < <pio(c)m^io) < <Pio(b)-lVio(c)<Pio(b) < <Pi0(c)Wc'°)+1) < < ° ( c ) 

and the number ra(c, io) is the minimal natural number of the numbers ra(tD,f), 
where i G I, e ^ w G v4i. By the definition of the number ra(c, io) for every element 
x £ A\ the inequality 

(4) •; x3 <C xm(c'*°) ^ xh 

is fulfilled. Let us consider ^-subgroups H = ^-gp(yli, b), Hi = ^-gp(Ai, 62). It is not 

difficult to prove that b > a for every element a G A\t and consequently H = A\ A (6), 

Hi = All A (62) are lexicographic extensions of A\ by the infinite cyclic groups (b) 
and (62), respectively. As G ^ H ^ Hi we have u/(G) D u.(H) D u/(Hi). The 
inequalities (4) imply that the identity 

(5) (|*| V M ) - 1 (\[x, y]\A \t\)(\x\ V |y|) A (\[x, y}\ A |,|)2m<c''°) = (|[x, y ] | A |<|)2m(c*o) 

is violated on the ^-group H under x = b, y = c, t = b. The inequalities (4) imply 
that this identity is fulfilled on the if-group Hi. The identity (5) is true on the 
^-variety U by definition, and so 

U V m(H) / [ / V t//(Hi), U C U V u/(Hi) CUV m(H) CUV m(G) C VV. 

Direct calculation shows that the identity 

(M V M Y 1 (|[x, y]| A \t\)(\x\ V |y|) A (|[x, y]| A \i\)*ml<™ = (|[x,y]| A \t\)««<M 

is violated on the ^-group Hi under x = b2, y = c, t = b2. However this fact 
contradicts our assumption that the universal class W covers U in the lattice of 
universal classes T. D 

T h e o r e m 1. U is an t-variety without an independent basis of universal formulae. 

P r o o f . Indeed, U C U, where the ^-variety U is an ^-variety with a finite 
basis of identities by definition. If the ^-variety U has an infinite independent basis 
of universal formulae, then in the lattice of universal classes T the if-varietty U has 
infinitely many different covers contained in the ^-variety U ([5]). This is impossible 
by Proposition 1. D 
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