Czechoslovak Mathematical Journal

Marks Švec
Oscillatory properties of solutions to a differential inclusion of order n

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 1, 35-43
Persistent URL: http://dml.cz/dmlcz/128310

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

OSCILLATORY PROPERTIES OF SOLUTIONS TO A DIFFERENTIAL INCLUSION OF ORDER n

Marko Švec, Bratislava

(Received March 23, 1990)

The aim of this paper is to investigate the oscillatory as well as the nonoscillatory solutions and their asymptotic behaviour, of the differential inclusion

$$
\begin{equation*}
L_{n} x(t) \in F(t, x(\varphi(t))), n>1 \tag{E}
\end{equation*}
$$

where $L_{n} x(t)$ is the n -th quasiderivative of $x(t)$ with respect to the continuous functions $a_{i}(t): J=\left[t_{0}, \infty\right) \rightarrow(0, \infty), i=0,1, \ldots, n, L_{0} x(t)=a_{0}(t) x(t), L_{i} x(t)=$ $a_{i}(t)\left(L_{i-1} x(t)\right)^{\prime}, \int^{\infty} a_{i}^{-1}(t) \mathrm{d} t=\infty ; F(t, x): J \times \mathbf{R} \rightarrow$ \{nonempty convex compact subsets of $\mathbf{R}\}, \mathbf{R}=(-\infty, \infty) ; \varphi: J \rightarrow \mathbf{R}$ a continuous function such that $\lim \varphi(t)=\infty$ as $t \rightarrow \infty$.

Under a solution $x(t)$ of (E) we will understand a solution existing on some ray $\left[T_{x}, \infty\right)$ such that

$$
\sup \left\{|x(t)|: t_{1} \leqslant t<\infty\right\}>0 \text { for any } t_{1}>T_{x}
$$

We will assume existence of such solutions.
Notation. $F(t, x) x>0(<0)$ means $y x>0(<0)$ for each $y \in F(t, x) ;$ if $h: J \times \mathbf{R} \rightarrow \mathbf{R}$, then $F(t, x) \geqslant(\leqslant) h(t, x)$ means: $y \geqslant(\leqslant) h(t, x)$ for each $y \in F(t, x)$. If $B \subset \mathbf{R}$ then $\|B\|=\inf \{|x|: x \in B\}$.

The following basic assumptions will be used:
$1^{\circ} F(t, x)$ is upper semicontinuous on $J \times \mathbf{R}$;
$2^{\circ} F(t, 0)=0$ for each $t \in J$;
$3^{\circ} F(t, x) x<0$ for each $(t, x) \in J \times \mathbf{R}, x \neq 0$;
or $4^{\circ} F(t, x) x>0$ for each $(t, x) \in J \times \mathbf{R}, x \neq 0$.
The notions of oscillatory and nonoscillatory solutions will be used in the usual sense.

Consider the inclusion (E) and assume that the assumptions $1^{\circ}-4^{\circ}$ are satisfied. Let $x(t)$ be a nonoscillatory solution of (E). Then from the assumption $\lim \varphi(t)=\infty$
as $t \rightarrow \infty$ it follows the existence of such $t_{1} \geqslant t_{0}$ that $x(\varphi(t)) \neq 0$ on $\left[t_{1}, \infty\right)$. Taking into consideration the assumptions $1^{0}-4^{\circ}$ we get that $x(t) L_{n} x(t) \neq 0$ on $\left[t_{1}, \infty\right)$. Therefore, $x(t) L_{n} x(t)>0$ if $1^{\circ}, 2^{\circ}, 4^{\circ}$ are satisfied and $x(t) L_{n} x(t)<0$ if $1^{\circ}, 2^{\circ}, 3^{\circ}$ are satisfied on $\left[t_{1}, \infty\right)$. This implies that there exists $t_{2} \geqslant t_{1}$ such that each $L_{i} x(t)$, $i=0,1, \ldots, n$, has a constant sign on $\left[t_{2}, \infty\right)$. Therefore, each $L_{i} x(t), i=0,1, \ldots$, $n-1$, is monotone on $\left[t_{2}, \infty\right)$, and $\lim L_{i} x(t)$ as $t \rightarrow \infty, i=0,1, \ldots, n-1$, exists in the extended sense, i.e. $\lim \left|L_{i} x(t)\right|$ is finite or ∞ as $t \rightarrow \infty$ and $i=0,1, \ldots, n-1$. More detailed considerations [1] lead to the following result: For the nonoscillatory solutions of (E) the following two cases are posible:
a) $\lim _{t \rightarrow \infty}\left|L_{i} x(t)\right|=\infty$ for $i=0,1, \ldots, n-1$;
b) there exists $k \in\{0,1, \ldots, n-1\}$ such that $\lim _{t \rightarrow \infty} L_{k} x(t)$ is finite,

$$
\lim _{t \rightarrow \infty} L_{i} x(t)=\infty \cdot \operatorname{sgn} x(t), i=0,1, \ldots, k^{t \rightarrow \infty}
$$

$$
\lim _{t \rightarrow \infty} L_{i} x(t)=0, i=k+1, \ldots, n-1
$$

Remark 1. The case a) can occour only if the assumptions $1^{\circ}, 2^{\circ}, 4^{\circ}$ are satisfied.

In fact, if the assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$ are satisfied then $x(t) L_{n} x(t)<0$. Therefore, if $x(t)>0$ then $L_{n-1} x(t)$ descreases and must be ultimately positive. If $x(t)<0$ then $L_{n-1} x(t)$ increases and must be ultimately negative. Thus $\left|\lim _{t \rightarrow \infty} L_{n-1} x(t)\right|<\infty$.

These considerations show that the set of all nonoscillatory solutions of (E) can be divided into disjoint classes in the following way.

Definition 1. We will say that a nonoscillatory solution $x(t)$ of (E) belongs to the class V_{n} if the case a) occurs. We will say that a nonoscillatory solution $x(t)$ of (E) belongs to the class $V_{k}, k \in\{0,1, \ldots, n-1\}$, if the case b) occurs.

In the sequel we will use the following notation and lemmas:
Let $t_{0} \leqslant c<t<\infty$. Then

$$
\begin{aligned}
& P_{0}(t, c)=1 \\
& P_{i}(t, c)=\int_{c}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{c}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \ldots \int_{c}^{s_{i-1}} a_{i}^{-1}\left(s_{i}\right) \mathrm{d} s_{i} \ldots \mathrm{~d} s_{1} \\
& i=1,2, \ldots, n-1 ; \\
& Q_{n}(t, c)=1, \\
& Q_{j}(t, c)=\int_{c}^{t} a_{n-1}^{-1}\left(s_{n-1}\right) \int_{c}^{s_{n-1}} a_{n-2}^{-1}\left(s_{n-2}\right) \ldots \int_{c}^{s_{j+1}} a_{j}^{-1}\left(s_{j}\right) \mathrm{d} s_{j} \ldots \mathrm{~d} s_{n-1} \\
& j=1,2, \ldots, n-1
\end{aligned}
$$

It is easy to see that

$$
\lim _{t \rightarrow \infty} P_{i}(t, c)=\infty, \lim _{t \rightarrow \infty} Q_{i}(t, c)=\infty, \text { for } i=1,2, \ldots, n-1
$$

and taking into account the properties of $a_{i}(t)$, by the l'Hospital rule we get

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} P_{i}(t, c) P_{j}^{-1}(t, c)=0 \text { for } 0 \leqslant i<j \leqslant n-1 \\
& \lim _{t \rightarrow \infty} Q_{j}(t, c) Q_{i}^{-1}(t, c)=0 \text { for } 0<i<j \leqslant n-1
\end{aligned}
$$

Lemma 1 ([1], Lemma 4). Let $z(t)$ be such that $z(t) \neq 0$ on $\left[t_{1}, \infty\right)$ and $L_{n} z(t)$ exists on $\left[t_{1}, \infty\right)$. Let $z(t) L_{n} z(t) \leqslant 0$ on $\left[t_{1}, \infty\right)$, where the equality may eventually hold at isolated points. Let $k \in\{0,1, \ldots, n-1\}$ be such that b) is fulfilled. Then there exists a $T_{1} \geqslant t_{1}$ such that $\operatorname{sgn} z(t)=\operatorname{sgn} L_{k} z(t)$ for $t \geqslant T_{1}$.

If $n+k$ is even then $\left|L_{k} z(t)\right|$ increases on $\left[T_{1}, \infty\right)$ and there exist two constants $0<c_{1}<c_{2}$ such that for $t>T_{1}$

$$
0<c_{1}<\left|L_{k} z(t)\right|<c_{2}
$$

and

$$
0<c_{1}<\lim _{t \rightarrow \infty}\left|L_{0} z(t) P_{k}^{-1}(t, c)\right|<c_{2}, \lim _{t \rightarrow \infty} L_{0} z(t) P_{k+1}^{-1}(t, c)=0
$$

If $n+k$ is odd then $\left|L_{k} z(t)\right|$ descreases on $\left[T_{1}, \infty\right)$ and there exists a constant $c>0$ such that we have

$$
\begin{aligned}
& 0<\left|L_{k} z(t)\right|<c \text { for } t>T_{1} \\
& 0 \leqslant \lim _{t \rightarrow \infty}\left|L_{0} z(t) P_{k}^{-1}(t, c)\right|<c, \lim _{t \rightarrow \infty} L_{0} z(t) P_{k+1}^{-1}(t, c)=0
\end{aligned}
$$

Lemma 2 ([1], Lemma 6). Let $z(t)$ be such that $z(t) \neq 0$ and $L_{n} z(t)$ exists, both on $\left[t_{1}, \infty\right)$. Let $z(t) L_{n} z(t) \geqslant 0$ for $t \geqslant t_{1}$, where the equality may hold at isolated points. Let $k \in\{0,1, \ldots, n-1\}$ be such that b) is fulfilled. Then there exists a $T_{1} \geqslant t_{1}$ such that $\operatorname{sgn} z(t)=\operatorname{sgn} L_{k} z(t)$ for $t>T_{1}$.

If $n+k$ is odd then $\left|L_{k} z(t)\right|$ increases on $\left[T_{1}, \infty\right)$ and there exist two constants $0<c_{1}<c_{2}$ such that

$$
0<c_{1}<\left|L_{k} z(t)\right|<c_{2} \text { for } t>T_{1}
$$

and

$$
0<c_{1}<\lim _{t \rightarrow \infty}\left|L_{0} z(t) P_{k}^{-1}(t, c)\right|<c_{2}, \lim _{t \rightarrow \infty} L_{0} z(t) P_{k+1}^{-1}(t, c)=0
$$

If $n+k$ is even then $\left|L_{k} z(t)\right|$ descreases on $\left[T_{1}, \infty\right)$ and there exists a constant $c_{3}>0$ such that

$$
\begin{aligned}
& 0<\left|L_{k} z(t)\right|<c_{3} \text { for } t>T_{1} \\
& 0 \leqslant \lim _{t \rightarrow \infty}\left|L_{0} z(t) P_{k}^{-1}(t, c)\right|<c_{3}, \lim _{t \rightarrow \infty} L z(t) P_{k+1}^{-1}(t, c)=0
\end{aligned}
$$

Lemma 3 ([2], Lemma 3). Let $x(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$. Then

$$
\lim _{t \rightarrow \infty} L_{0} x(t) P_{k}^{-1}(t, c)=\lim _{t \rightarrow \infty} L_{k} x(t)=c_{k}
$$

If $c_{k} \neq 0$ then there exist constants $\alpha_{k}>0, \beta_{k}>0$ and $T_{k}^{\prime}>t_{0}$ such that

$$
\begin{equation*}
\alpha_{k} a_{0}^{-1}(t) P_{k}(t, c) \leqslant|x(t)| \leqslant \beta_{k} a_{0}^{-1}(t) P_{k}(t, c), t>T_{k}^{\prime} \tag{1}
\end{equation*}
$$

We will consider two problems. The first problem is to find conditions which guarantee that $\lim L_{k} x(t)=0$ as $t \rightarrow \infty$ for each $x(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$. The second problem is to state conditions which guarantee that the class $V_{k}, k \in$ $\{0,1, \ldots, n-1\}$, is empty. These problems were discussed in [1], [2], [3] if instead of the inclusion (E) we have a differential equation.

Theorem 1. Let the assumptions $1^{\circ}-4^{\circ}$ be satisfied. Let $G(t, u): J x[0, \infty) \rightarrow$ $[0, \infty)$ be a continuous and nondecreasing function in u for each fixed $t \in J$, such that

$$
G(t,|x|) \leqslant\|F(t, x)\|, x \in \mathbf{R}
$$

Let $k \in\{0,1, \ldots, n-1\}$. Suppose that

$$
\begin{equation*}
\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G\left(s, \alpha a_{0}^{-1}(\varphi(s)) P_{k}(\varphi(s), c)\right) \mathrm{d} s=\infty \tag{2}
\end{equation*}
$$

for all $t \geqslant T_{k}$ such that $\varphi(s)>c$ for $s>T_{k} \geqslant T_{k}^{\prime}, c \geqslant t_{0}$, and for each $\alpha>0$, or

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G\left(s, \alpha a_{0}^{-1}(\varphi(s)) P_{k}(\varphi(s), c)\right) \mathrm{d} s>0 \tag{3}
\end{equation*}
$$

for each $\alpha>0$.
Then for each $x(t) \in V_{k}$ we have $\lim L_{k} x(t)=0$ as $t \rightarrow \infty$.
Proof. Let $x(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$ and let $\lim L_{k} x(t)=c_{k} \neq 0$ as $t \rightarrow \infty$. Then

$$
0 \leqslant G(t,|x(\varphi(t))|) \leqslant\|F(t, x(\varphi(t)))\|, t>T_{k}
$$

and

$$
\begin{equation*}
0 \leqslant G(t,|x(\varphi(t))|) \leqslant\left|L_{n} x(t)\right|, t>T_{k} \tag{4}
\end{equation*}
$$

Assume that T_{k} is such that for $t \geqslant T_{k}, x(t)$ has a constant $\operatorname{sign}, \operatorname{sgn} x(t)=\operatorname{sgn} L_{k} x(t)$ for $t \geqslant T_{k}$ and (1) from Lemma 3 holds. Then the successive integrations on $[t, \infty)$,
$t>T_{k}$, of (4), by virtue of the fact that $\lim L_{i} x(t)=0$ as $t \rightarrow \infty, i=k+1, \ldots$, $n-1$, give

$$
0 \leqslant \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G(s,|x(\varphi(s))|) \mathrm{d} s \leqslant\left|L_{k} x(t)-c_{k}\right|
$$

From Lemma 3 we have

$$
|x(\varphi(t))| \geqslant \alpha_{k} a_{0}^{-1}(\varphi(t)) P_{k}(\varphi(t), c)
$$

Therefore, $G(t, u)$ being nondecreasing, we get

$$
0 \leqslant \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G\left(s, \alpha a_{0}^{-1}(\varphi(s)) P_{k}(\varphi(s), c)\right) \mathrm{d} s \leqslant\left|L_{k} x(t)-c_{k}\right|
$$

The exprossion on the right-hand side is bounded. This leads to a contradiction with (2). If (3) is satisfied then we have once more a contradiction, because $\lim \mid L_{k} x(t)$ $c_{k} \mid=0$ as $t \rightarrow \infty$.

Theorem 2. Let all assumptions of Theorem 1 be satisfied. Then, provided the assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$ are satisfied, the sets V_{k} for $n+k$ even are empty. If the assumptions $1^{\circ}, 2^{\circ}, 4^{\circ}$ are satisfied then the sets V_{k} for $n+k$ odd are empty.

Proof follows from Theorem 1 and from Lemma 1 and 2, respectively. Denote

$$
\gamma(t)=\sup \left\{s \geqslant t_{0}: \varphi(s) \leqslant t\right\} \text { for all } t \geqslant t_{0}
$$

and

$$
m(t)=\max \{\gamma(t), t\}, t \geqslant t_{0}
$$

We see that $m(t) \geqslant t$. From the continuity of $\varphi(t)$ we get $\varphi(s)>t$ for $s>\gamma(t)$ and $\varphi(s) \geqslant t$ for $s \geqslant m(t), t \geqslant t_{0}$. Evidently $\lim m(t)=\infty$ as $t \rightarrow \infty$.

Consider the class $V_{k}, k \in\{0,1, \ldots, n-1\}$. Form the properties of the set V_{k} we get that $\lim L_{n-1} x(t)$ as $t \rightarrow \infty$ is finite for each $x(t) \in V_{k}$. Then by virtue of the assumptions of Theorem 1, (4) yields

$$
\begin{equation*}
0 \leqslant \int_{t}^{\infty} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \mathrm{d} s \leqslant\left|L_{n-1} x(t)\right|<\infty \tag{5}
\end{equation*}
$$

Our forthcoming considerations are based on this fact. Successive integration of (5), together with the fact that $\lim L_{i} x(t)=0$ as $t \rightarrow \infty, i=k, k+1, \ldots, n-1$, give

$$
\begin{equation*}
0 \leqslant \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G(s,|x(\varphi(s))|) \mathrm{d} s \leqslant\left|L_{k} x(t)\right| . \tag{6}
\end{equation*}
$$

a) Assume that $x(t) \in V_{k}, x(t)>0$ for $t>t_{3}, k>0$, where t_{3} is such that $L_{i} x(t), i=0,1, \ldots, n-1$, has a constant sign. Then $L_{k} x(t)>0$ for $t>t_{3}$ and the integration of (6) between u and $v, t_{3} \leqslant u<v$, and the application of Fubini's theorem yield

$$
\begin{align*}
0 \leqslant & \int_{u}^{v} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \int_{u}^{s} a_{k}^{-1}(t) Q_{k+1}(s, t) \mathrm{d} t \mathrm{~d} s \\
& +\int_{u}^{\infty} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \int_{u}^{v} a_{k}^{-1}(t) Q_{k+1}(s, t) \mathrm{d} t \mathrm{~d} s \tag{7}\\
& \leqslant L_{k-1} x(v)-L_{k-1} x(u) \leqslant L_{k-1} x(v)
\end{align*}
$$

)
because $L_{k-1} x(t)>0$ for $t>t_{3}$. It follows from the definiton of $Q_{k+1}(s, t)$ than for $t \leqslant v \leqslant s$

$$
Q_{k+1}(s, t) \geqslant Q_{k+1}(v, t)
$$

Therefore, from (7) we get

$$
\begin{equation*}
0 \leqslant \int_{u}^{v} a_{k}^{-1}(t) Q_{k+1}(v, t) \mathrm{d} t \int_{v}^{\infty} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \mathrm{d} s \leqslant L_{k-1} x(v) \tag{8}
\end{equation*}
$$

Repeating this procedure $(k-1)$-times, we get

$$
0 \leqslant \int_{u}^{v} a_{1}^{-1}\left(t_{1}\right) \int_{u}^{t_{1}} a_{2}^{-1}\left(t_{2}\right) \ldots \int_{u}^{t_{k-1}} a_{k}^{-1}\left(t_{k}\right) Q_{k+1}\left(t_{k-1}, t_{k}\right) \mathrm{d} w_{k}
$$

$$
\begin{equation*}
\int_{v}^{\infty} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \mathrm{d} s \leqslant L_{0} x(v) \tag{9}
\end{equation*}
$$

for $t_{3} \leqslant u<v$, where $\mathrm{d} w_{k}=\mathrm{d} t_{k} \mathrm{~d} t_{k-1} \ldots \mathrm{~d} t_{1}$. Denote

$$
\begin{equation*}
R_{k}(v, u)=\int_{u}^{v} a_{1}^{-1}\left(t_{1}\right) \int_{u}^{t_{1}} a_{2}^{-1}\left(t_{2}\right) \ldots \int_{u}^{t_{k-1}} a_{k}^{-1}\left(t_{k}\right) Q_{k+1}\left(t_{k-1}, t_{k}\right) \mathrm{d} w_{k} \tag{10}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
0 \leqslant R_{k}(v, u) \int_{v}^{\infty} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \mathrm{d} s \leqslant L_{0} x(v), t_{3} \leqslant u<v \tag{11}
\end{equation*}
$$

The monotonicity of G and the properties of $m(t)$ yield

$$
\begin{align*}
\left|L_{0} x(v)\right| & \geqslant R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \mathrm{d} s \\
& =R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} x(\varphi(s))\right|\right) \mathrm{d} s . \tag{12}
\end{align*}
$$

But $\left|L_{0} x(t)\right|$ is nondecreasing, $\varphi(s) \geqslant v$ for $s \geqslant m(v)$ and $G(t, z)$ is nondecreasing in z. Therefore, (12) implies

$$
\begin{equation*}
\left|L_{0} x(v)\right| \geqslant R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} x(v)\right|\right) \mathrm{d} s \tag{13}
\end{equation*}
$$

for $t_{3} \leqslant u<v$. Once more. by virtue of the monotonicity of $G(t, z)$ we get

$$
\begin{aligned}
& \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} x(v)\right|\right) \mathrm{d} s \\
& \quad \geqslant \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(\tau) G\left(\tau, a_{0}^{-1}(\varphi(\tau))\left|L_{0} x(v)\right|\right) \mathrm{d} \tau \mathrm{~d} s\right.
\end{aligned}
$$

Denote

$$
\begin{equation*}
p(v)=\int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} x(v)\right|\right) \mathrm{d} s \tag{14}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
p(v) \geqslant \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u) p(v)\right) \mathrm{d} s \tag{15}
\end{equation*}
$$

From (5) and (14) we obtain

$$
\begin{aligned}
\left|L_{n-1} x(m(v))\right| & \geqslant \int_{m(v)}^{\infty} a_{n}^{-1}(s) G(s,|x(\varphi(s))|) \mathrm{d} s \\
& \geqslant \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} x(v)\right|\right) \mathrm{d} s=p(v) \geqslant 0
\end{aligned}
$$

and

$$
0 \leqslant \lim _{v \rightarrow \infty} p(v) \leqslant \lim _{v \rightarrow \infty} L_{n-1} x(m(v))=0
$$

Thus

$$
\begin{equation*}
\lim _{v \rightarrow \infty} p(v)=0 \tag{16}
\end{equation*}
$$

b) Let $x(t) \in V_{k}, x(t)<0$ for $T \geqslant t_{3}, k>0$. Then $\operatorname{sgn} L_{k} x(t)=\operatorname{sgn} x(t)=-1$ and from (6) we get

$$
0 \leqslant \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G(s,|(\varphi(s))|) \mathrm{d} s \leqslant-L_{k} x(t), t \geqslant t_{3} .
$$

Similar considerations as in the case a) lead to the inequalities (13), (15) and equality (16).

Now we are able to prove the following theorems:

Theorem 3. Let all assumptions of Theorem 1 be satisfied. Moreover, assume $t h a t$ for every fixed $t \geqslant t_{0}$

$$
\begin{equation*}
z^{-1} G(t, z) \text { is nondecreasing for } z>0 \tag{17}
\end{equation*}
$$

and for $k \in\{1,2, \ldots, n-1\}$,

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \sup R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) c^{-1} G\left(s, a_{0}^{-1}(\varphi(s)) c\right) \mathrm{d} s>1 \tag{18}
\end{equation*}
$$

for some $c>0$. Then the set V_{k} is empty.
Proof. Let $x(t) \in V_{k}, k \in\{1,2, \ldots, n-1\}$. Then $\lim _{t \rightarrow \infty}\left|L_{0} x(t)\right|=\infty$. Therefore, for $c>0$ there exists $v_{1}>u \geqslant t_{3}$ such that $\left|L_{0} x(v)\right|>c$ for all $v>v_{1}$. Then from (13) and (17) we obtain

$$
1 \geqslant R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) a_{0}^{-1}(\varphi(s)) \frac{G\left(s, a_{0}^{-1}(\varphi(s)) c\right)}{a_{0}^{-1}(\varphi(s)) c} \mathrm{~d} s
$$

which contradicts (18).

Theorem 4. Let all assumptions of Theorem 1 be satisfied. Moreover, assume that for every fixed $t \geqslant t_{0}$

$$
\begin{equation*}
z^{-1} G(t, z) \text { is nonincreasing for } z>0 \tag{19}
\end{equation*}
$$

and for $k \in\{1,2, \ldots, n-1\}$

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \sup \int_{m(v)}^{\infty} a_{n}^{-1}(s) c^{-1} G\left(s, R_{k}(v, u) a_{0}^{-1}(\varphi(s)) c\right) \mathrm{d} s>1 \tag{20}
\end{equation*}
$$

for some $c>0$. Then the set V_{k} is empty.
Proof. Let $K \in\{1,2, \ldots, n-1\}$ and $x(t) \in V_{k}$. Because $\lim p(v)=0$ as $v \rightarrow \infty$ and $p(v)>0$ for $v>u$, for $c>0$ there exists $v_{2} \geqslant u \geqslant t_{3}$ such that $c>p(v)$ for all $v>v_{2}$. Taking into account (15) and (19) we obtain

$$
1 \geqslant \int_{m(v)}^{\infty} a_{n}^{-1}(s) a_{0}^{-1}(\varphi(s)) R_{k}(v, u) \frac{G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u) c\right)}{a_{0}^{-1}(\varphi(s)) R_{k}(v, u) c} \mathrm{~d} s
$$

for all $v>v_{2}$. This leads to a contradiction with (20).
Definition 2. We will say that the inclusion (E) has property A if, provided n is even, all solutions of (E) are oscillatory and, provided n is odd, each solution $x(t)$ of (E) is either oscillatory or $\lim L_{i} x(t)=0$ as $t \rightarrow \infty$ for $i=0,1, \ldots, n-1$.

Definition 3. We will say that the inclusion (E) has property B if for n even each solution $x(t)$ of (E) is either oscillatory or $\lim L_{i} x(t)=0$ as $t \rightarrow \infty$ for $i=0,1$, $\ldots, n-1$ or it belongs to the class V_{n}, i.e. $\lim \left|L_{i} x(t)\right|=\infty$ as $t \rightarrow \infty$ for $i=0,1$, $\ldots, n-1$, and for n odd each solution $x(t)$ of (E) either is oscillatory or belongs to the class V_{n}.

Now, from the Theorems 1-4 we obtain the final theorem:
Theorem 5. Let all assumptions of Theorem 1 be satisfied.
a) If the assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$ are satisfied and if (17) and (18) (or (19) and (20)) hold for $k=1,2, \ldots, n-1$, then the inclusion (E) has property A.
b) If the assumptions $1^{\circ}, 2^{\circ}, 4^{\circ}$ are satisfied and if (17) and (18) (or (19) and (20)) hold for $k=1,2, \ldots, n-1$, then the inclusion (E) has property B.

References

[1] M. Švec: Behavior of nonoscillatory solutions of some nonlinear differential equations, Acta Mathematica U. C. $X X X I X$ (1980), 115-130.
[2] M. Švec: Oscillatory criteria for differential equations with deviating argument, Hiroshima Math. J. 20 (1990), 185-195.
[3] V. Šeda: Nonoscillatory solutions of differential equations with deviating argument, Czech. Math. J. 36(111) (1986), 93-107.

Author's address: Matematicko-fyzikálna fakulta, Katedra matematickej analýzy, Mlynská dolina, 84215 Bratislava, Czechoslovakia.

