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1. INTRODUCTION

Consider the second-order differential equation

(1) y' —q(t)yy = f(t,y, ¥ 1)

in which ¢ € C°(J), f € C°(J x R? x I), q(t) > 0 for t € J, where J = (t,13),
I = (a,b), —00 < t) < t3 < 00, —00 < a < b < oo, containing a parameter u. Let
t, € R, 1} <ty <tz be an arbitrary fixed number. The problem considered is to
determine sufficient conditions on ¢ and f quaranteeing that it is possible to choose
the parameter p so that there exists a solution y of (1) satisfying either the boundary

conditions

(2) y(th) = y(t2) = y(ts) = 0

or the boundary conditions

(3) y(ti) = y'(th) = y(ts) = 0.

The uniqueness of solutions of the boundary value problems (BVP for short) (1), (2)
and (1), (3) is also discussed.

Sufficient conditions for a two-parameter differential equation y” + (g(¢, A, yt) +

7(t))y = 0 having a nontrivial solution y satisfying (2) are given in [2].
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2. NOTATION, PRELIMINARY RESULTS

Let u, v be solutions of the equation
(a) v'=qt)y (¢€C°(J), q(t) > 0fort € J),
u(t;) =0, v/ (t;) =1, v(t1) = 1, v'(¢t;) =0 and
(4) r(t,s) := u(t)v(s) — u(s)v(t) for (t,s) € J>
Then the following lemma can be proved.
Lemma 1. Let r be defined by (4). Then
5) r(t,s)>0 for t;<s<t<ts, r(t,s)<0 for t;<t<s<t3

and

(ri(t,s) :=) gt (t,s)>1 for (t,s)€J?, t#s.

Proof. Let s € J be an arbitrary fixed number. Setting z(¢) := r(t, s) for
t € J, then z is a solution of (q), z(s) = 0, z’(s) = 1 and 2/(t) = r{(t,s). Since
q(t) > 0 on J, it is easy to verify that z(t) < 0 for t; < ¢t < s (provided s > t;),
z(t) > 0 for s < t < t3 (provided s < t3) and 2/(t) > 1 for t € J, t # s. This proves

Lemma 1.

Lemma 2. Let h € C°(J) and let y be a solution of the equation

(6) ' —q()y = h(t)

satisfying the boundary conditions

(7) y(t) = y(ta) =0
Then
(8) y(t) = :(ttj ttl)) /t 21'(t1,s)h(.s;)(ls +/t r(t,s)h(s)ds, te€J.

Proof. Setting yo(t) := ft (t,s)h(s)ds for t € J, then yo is a solution of (6),

yo(t2) = yo(t2) = 0, and the functlon

7'([2, t)

r(t1,t2)

y(t) =

yo(ll)-f-yo(t) for teJ,
1s a solution of (6) (which is then unique) satisfying (7).
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Lemma 3. Let h € C°(J x I), let h(t,.) be an increasing function on I for every
fixed t € J and

9) h(t,a)h(t,b) <0 for teJ.
Then there exists a unique jig, pto € J such that the equation
(10) y' —a(t)y = h(t, p)

with pt = po has a solution y (which is then unique) satisfying (2).

Proof. Let y(t, ) be the solution of (10), y(t;, i) = y(t2, ) = 0. By Lemma 2

7’((3,t3)
7‘([2, tl)

y(ts, p) =

t2 t3
/ r(t1, s)h(s, u)ds +/ r(ts, s)h(s,p)ds, pel.
t) to

Since r(ta,t;) > 0, r(t2,t3) < 0, r(t1,s) < 0 for s € (t1,t3) and r(t3,s) > 0 for
s € (t1,t3) by Lemma 1, the function y(ts,.) is an increasing continuous function on
I and by virtue of (9) we have y(t3,a) < 0, y(t3,b) > 0. Consequently, there exists a
unique po, po € I such that y(t3, o) = 0. BVP (q), (2) has only the trivial solution
and thus BVP (10), (2) with g = p0 has a unique solution. a

Let 71, 7o be positive constants, r; > 0, 7o > 0. In what follows we shall assume
that ¢ and f satisfy soine of the following assumptions:

(11) [f(t,y1, y2, )| < q(t)ry for  (t,y1,y2, 1) € D x I,

where D :=J x (—ry, 1) X (=712, 72);

(12) f(t,y1,y2,.) is an increasing function on [

for every fixed (¢, y1,y2) € D;
(13) * f(tvylvyz)(l)f(tiyl)yzyb)SO fOI‘ (t;HI)QQ)ED,

(14) min{(A + 7 max ) (ts —t1), 2/ VA + rimax q(t)} < 7o,
te
where A := max Ly, Y2, 1)l
wgrmax Gy )l
Remark 1. If the function f may be written in the form f(t,y1,y2, ) =
gty y2) + - () with ¢ € C°(J x R?), ¢ € C°J), ¢(t) > 0 on J, then f
satisfies assumption (12) for arbitrary positive constants ry, ro. If, in addition, g
is bounded on J x R?, then assumption (11) is satisfied for an arbitrary positive

constant o and a suflicient large positive constant 7.
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Remark 2. A function a € C*(J) (B € C?(J)) is called an upper (lower)
solution of BVP (1), (2) if «”'(t) — q(t)a(t) < f(t, a(t), (1), p), a(ty) =0, a(ta) > 0,

afts) 2 0 (B7(t) — q(t)B(t) > f(t,B(t), B'(t), 1), Bt1) <0, Blt2) < 0, B(t3) < 0) for
(t, 1) € J x 1. It follows from assumptions (11) that «(t) = r, (B(t) = —ry) is an
upper (lower) solution of BVP (1), (2).

Lemma 4. Assume that assumptions (11)-(14) are satisfied for positive constant
71, ro. Then for every ¢, p € C(J), |<p(i)(t)| < rigy fort € J, 1= 0,1, there exists
a unique o, fto € I such that the equation

(15) Y —q(t)y = f(t,o(t),¢'(t), 1)

with o = pio has a solution y (which is then unique) satisfying (2). For this solution
y the inequalities

(16) V()| < rigr, ted, i=0,1,

hold.

Proof. Let o € C(J), lgo(i)(t)| <rigyfort € J,7=0,1, and h(t,p) :=
f(t,e(t), @' (t), i) for (¢, 1) € J x I. Then |h| < A, from (13) we get

Mt ,a) <0, h(t,b)>20 for teJ,

and h(t,.) 1s an increasing continuous function on J for all fixed ¢ € J by assumption
(12). In this situation we may apply Lemma 3 and thus there exists a unique o,
fo € I such that equation (10) with u = o has a unique solution y satisfying (2).

We now prove inequalities (16). Let |y(t) < |y(§)] > 71 be satisfied for some
€€ (t,ts) and L € J. 16 y(€) > 1 (y(€) < —r1) then y"(€) > 0 (y(€) < 0) by
assumption (11), and therefore y does not have a local maximum (minimum) at the
point ¢ = £, which is a contradiction. Thus |y(¢)| <7 on J.

Let 75 > (A + 7| I’:?JX q(t))(t3 — ty). Since y'(€) = 0, we obtain from the equality

y'(t) = f; (q(s)y(s) + h(s, po))ds that
Y/ (O] < (A +rimaxg(0) ]t = €] < (A +rimaxq(D)(ts = 1) <7

forte J.
Let ro > 2,/ VA + rlmaqu(t) and y'(&;) = 0 for some & € J. Multiplying both
te

sides of the equality
y'(t) = q()y(t) + h(t, po), tEJ,
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by 2¢/(t) and integrating from &; to t (€ .J), we obtain

yA) = ‘2/t(q(3)y(8)y’(8) +h(s, o)y (s)) ds.
Then we get
v <2(A+m r:lealxq(t)) l/j y’(s)(lsl <4ar(A+n rtneajxq(t))
on every interval Jy, J; CJ, & € Ji, ¥ (t) 20 (< 0) for t € Ji, and this yields
Y/ (O] < 2V A+ rimaxg(t) <o for tE .
O

If the function f(t,y1,y2, it) does not depend explicitly on ya, then we may write
equation (1) in the form

(17) y' —a(t)y = fi(t,y,n)

where f; € C°(J x R x I). From Lemma 2 and its proof it immediately follows:

Lemuma 5. Let » > 0 be a positive constant and
(18) |fi(t,y,p0)| < rq(t) for (t,y,pu) € H xI, where H:=Jx (-rr);
(19)  fi(t,y,.) is an increasing function on I for every fixed (,y) € H;
(20) f(t,y,a)f(t,y,b) <0 for (t,y) € H.

Then for every o, p € C(J), |p(t)| < r for t € J there exists a unique g, pio € I
such that the equation

(21) v —q(t)y = fLt,e(t), 1)

with i = yio has a solution y (which is then unique) satisfying (2). For this solution
y the inequality
ly)|<r for teld

holds.

Remark 3. Let the assumptions of Lemina 5 be satisfied,

Ay = nax Ly, 1),
1 (t,y,u)ellxl|fl( Y, 1)l

e € CJ), le(t)] < rfort € J and let y be the solution of BVP (21), (2) with
jt = pro. Then there exists & & € [: Yy () = 0 and from the equality y'(t) =
f;(q(s)y(s) + fi(s,¢(s), o)) ds we get |y (t)] < (A1 + rltnea)xq(l))(t;; —t) fort e J.



3. EXISTENCE THEOREMS

Theorem 1. Suppose that assumptions (11)—(14) are satisfied for positive con-
stants ry, ro. Then there exists pg, pro € I such that BVP (1), (2) with p = o has
a solution y satisfying (16).

Proof. Let X = C!(J) be a Banach space with the norm ||y|| = mebx(ly(l)l +
te

W (t)]) fory € X, K :={y; vy € X,|y(t)] < rigifort € J,i=0,1} and B :=
A+ l:]ea‘lx q(t). K is a closed bounded convex subset of X, K C X. For every

¢, ¢ € K there exists (by Lemma 4) a unique po, pto € I such that equation (15)
with g¢ = o has a unique solution y satisfying (2) and (16). Setting T(¢) = y we
obtain an operator T, T: K — K. We shall prove that T is a completely continuous
operator.

Let {yn}, yn € K be a convergent sequence, lim y, = y, and z, = T(y,),
n—oo

z =T(y). Then (by Lemma 4) there exist a sequence {x, }, s, € I and pp € I such
that

(22) i) = 222l (11, 5)F (5, Un (), Uy (), o)
+ [ (7 (5, (), Uy (5), ) s, tE T
and 2
20 = 220 [ 75, 0(5), (), o) ds

T (e, ) t
¢
+ / r(t,s)f(s,y(s), ¥/ (s), pmo)ds, teJ
ta
If {4t} is not a convergent sequence, then there exist convergent subsequences {y, },
{pr, }, im g, = Ay, lim p, = A2, Ay < A2, Putting n = k, and n = 7, in (22)
n—0o0 n—00

and taking limits on both sides of (22) we obtain

. t2
(23) lim 2z (t) = T(tQ’t)/ r(t1,8)f(s,y(s),y'(s), A1) ds
ne—eo r(ta, 1) Jy,
+/ r(t,s)f(s,y(s), ¥ (s),A)ds
and
) i 2,0 = e [t et /22

+ /1 r(t,s)f(s,y(s), ¥ (s), A2)ds
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uniformly on J, respectively. Since f(¢, y(t),y'(£), A1) < f(t,y(t), ¥’ (t), X2) for t € J

by assumption (12) then it follows from (23), (24) and Lemma 1 that lim z¢, (¢3) <
n—00

lim 2. (t3), which contradicts z,(t3) = 0 for all n € N. Consequently, {ptn}

n—00

is a convergent sequence; let lim g, = y*. Then lim f(t,yn(t),yo(8), ptn) =
n—aoo n—oo

F(t,y(t),y'(t), ;") uniformly on J and taking limits on both sides of (22) we get

r(ta -
(ttz_,vttl)) /t r(t,5)f(s,u(s),y'(5), u7) ds

(z7(t) :=) lim 2,(t) =

n—o00 r

t
+ / r(t,s)f(s,y(s),y'(s), u*)ds

*

uniformly on J. The function z* is a solution of the equation

2= q(t)z = f(ty(t), ¥ (1), 1")

*

and z*(&,) = 2*(t2) = 2*(t3) = 0, consequently by Lemmna 4 we get p* = po, z* = z.
Next, uniformly on J we have

n—oo r

: / : 1'1([, t") 2 /
lim Zn(t) = lim [_ (t t~) / 7'([1,S)f(S,yn(.S‘),y"(S),ﬂn)dS
n—oo 2,01 t)

+ ) (5, (51, Y (9, ) ]

t2
ity [t
7’(t3,ll) th

+ / 1"1(t,s)f(s,y(s),y’(s),;to)ds =2'(t).

r(t1,s)f(s,y(s), ¥ (s), po)ds

Hence lim T'(y,) = T(y) and T is a continuous operator on K.
n—00
Let y € X and z = T(y). Then z € K, z(t;) = z(t2) = z(t3) = 0 and

(25) () = q(O)z(t) + f(t,y(t), ¥ (t), o) for te€J

with some g € I. From (25) it follows that |2”(¢t)] < Bfort € J, thus T(K) C £ :=
{y,y € C2(J), [y < ri, Y (O] < 7, |[¥"(1)] < Bfort € J} C K, and since £ is a
compact subset of X, T'(KX) is a relative compact subset of X

By Schauder’s fixed point theorem there exists y € K: T(y) = y, 1.e. there exists
fto € I such that '

v —aOy(t) = f(Ly(t).y' (1), p0)  for tEJ
and y satisfies (2) and (16). O
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Corollary 1. Assume that assumptions (12), (13) are satisfied for positive con-
stants ry, ro and ri(t3 — t;) maxq(t) < r2. Then there is § > 0 such that for every
teJ

€, 0 < € < 6 there exists j., e € I such that BVP
y' = qt)y =ef(t,y, ¥ 1),
y(t) = ylt2) = y(t3) =0
with g = p. has a solution y satisfying (16).

Proof. Let A:= max If(t‘yl’y%“)l and
(t,y1,y2,u)€EDXI

= mind ™ ming(0), ~ (—2— —
6= mm{A Itneljlq(t)’A(t;,— T maxq(t))}

t teJ
Then ef for 0 < € < 6 satisfies the same assumptions as f in Theorem 1 and thus
Corollary | follows immediately from Theorem 1. a

Example l. Letty € ( ) Consider BVP

(26) ' —a(t)y = cosy + ty™ + pp(t),
1
y(0) = y(t2) = y(g) =0,
where p, ¢ € C°(Jy), 1 < p(t) <2, 3ﬂ <q(t) < 10 for ¢ € (0, 1) =:Jy, nis a positive
integer and p € (—5, §> One can easily checl\ that the assumptions of Theorem 1

are satisfied with #; = &, 7o = 1 and thus there exists pg, pg € (=2, 2) such that
2 Ko, # 909

BVP (26) with it = o has a solution y satisfying [y(t)| < 3, [¢/(t)| < 1 for t € J;.

Corollary 2. Assume that assumptions (11)—(14) are satisfied for positive con-
stants rq, ro. Then there exists po, jto € I such that equation (1) with jo = po has a
solution y satisfying (3) and (16).

Proof. Let {z,}, z, € ({1,t3) be a convergent sequence, lim z, = t;. By
n— 00

Theorem 1 there exists a sequence {u, }, ftn, € I such that equation (1) with g = u,

has a solution y, satisfying

yn(tl) = yn(rn) = ya(tz) =0

and
|y )(t)| riq1 for teJ; i=0,1; neN.

Since {j,} 1s a bounded sequence we may assume, without loss of generality,

that {,} is convergent, lim g, = po. From the equalities y;/(¢) = q(t)yn(l) +
F(t, yn(t), ¥o(t), ptn) we obtain
[y (8)] < m ma‘(q( )+A for teJ and néeN.

248



Let &, € (t1,z,) be such numbers that y;(§,) = 0, n € N. Using Ascoli’s theorem

we may choose a subsequence {yk,(t)} of {yn(t)} such that {yi,]n)(t)} are uniformly

convergent on J for j = 0,1,2. Then y(t) := lim y (t), t € J, is a solution
n-—oo

of (1) with u = po, y(t;) = y(tz) = 0, |y(i)(t)| < rig1 fort € Jand i = 0,1.

Since y'(t) = lim Y, (t) uniformly on J, Ve, (fk,.) =0 and lim &, =t;, we have

yl(tl):O. a

Remark 4. If assumptions of Corollary 2 are satisfied, then it is obvious from
the proof of Corollary 2 that there exists po, po € I such that equation (1) with
1t = po has a solution y satisfying (16) and '

y(t) = ylts) = ¥'(t3) = 0.
For BVP (17), (2) we have the following results:

Theorem 2. Let assumptions (18)—(20) be satisfied with a positive constant r.
Then there exists g, pto € I such that BVP (17), (2) with p = o has a solution y

and
ly) <7, 1Y ()] < (A1 + “}“&xq(‘))(‘3 —ty) for te€J,
where A, := nas t,y, 1)l
! i (:,y,l;{l)aé‘;lxl'fl( Y1)l

Proof. Let By =: Ai+r 1}1eaj\: q(t), let X be the Banach space defined in the
same way as in the proof of Theorem 1 and K} := {y;y € X, |y(t)] < n |y (t)] <
By(tz — t)) for t € J}. K is a closed bounded convex subset of X, K; C X. For
every ¢, ¢ € K| there exists (by Lemma 5) a unique o, pto € I such that equation
(21) with g = po has a unique solution y satisfying (2) and y € K; (by Remark 3).
Setting T'(¢) = y we obtain an operator 7', T': Ky — K}. The next part of the proof

is very similar to that of Theorem 1| and therefore is omitted. _ O

Example 2. Let n be a positive integer, let v, ¢ be constants, v > 0, ¢ > 2
and t5 € (0,1). Consider BVP

(27) v = a()y =ty" +e(t) + p,

¥(0) = y(tz) = y(1) = 0,
where ¢, p € C%J2), q(t) 2 ¢, 0 < p(t) < c—2fort € (0,1) =: Joand p € (1 — ¢, 1).
The assumptions of Theorem 2 are satisfied with » = 1. By Theorem 2 there exists

to, o € (1 — ¢, 1) such that BVP (27) with g = o has a solution y and |y(¢)| < 1,
[V ()] <2c—2+ m?xq(t) for t € Jo.
teJo
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Corollary 3. Assume that assumptions (19) and (20) are satisfied with a positive
constant r. Then there is 6 > 0 such that for every ¢, 0 < £ < & there exists .,
ite € I such that BVP

y' —q)y =efi(t,y, n),
y(t1) = y(t2) = y(t3) = 0,

with yt = p. has a solution y satisfying
Ol <7, 1Y (O < (A +rmaxq(0) (s —t1)  for  teJ,
where A, is defined in Theorem 2.

Proof. Leté:= AL‘mi}l q(t). If 0 < € < 6 then ef satisfies the same assump-
te

tions as f in Theorem 2. Therefore Corollary 3 follows iinmediately from Theorem 2.
a

Corollary 4. Suppose that assumptions (18)—(20) are satisfied for a positive con-
stant r. Then there exists g, fto € I such that equation (17) with u = pg has a

solution y satisfying (3) and
Ol <7 YOI < (A +rmaxq())(ta —ty)  for e,
where A Is defined in Theorem 2.

Proof. Let {z,}, 2, € ({1,t3) be a convergent sequence, lim z, = ;. Then
n—oo

(by Theorem 2) there exists a sequence {ytn}, ptn € I, such that equation (17) with

it = ptn, has a solution y, satisfying

yn(tl) = yn(xn) = y(tB) = 07
lun()] <7, ya(O)] < (Ar+ 7 ltnealxq(t))(ts - 1)

and
(O = [a(@ya () + S (6 (0, pn) | < A+ maxq(t)  for ted, neN.

Since {pn} is a bounded sequence we may assume, without loss of generality, that

{#n} is convergent and l“"cfo”" = po. Let &, € (¢1,z,) be such numbers for which
n—

v (&,) = 0. Then by Ascoli’s theorem we may choose a subsequence {yk"(t)} of

{yn(t)} such that {yi_“(t)} are uniformly convergent on J for j = 0, 1,2. The function

y(t) == lim ye, (t), t € J, is a solution of (17) with o = po, y(t;) = y(t3) = 0,
n—oo

O] <7 PO S (A -+ rimaa(O)(ts = 0) for £ € J. Since /(1) = lim o, (0

uniformly on J, v (&) =0 and lim &, = t;, we have y/(t;) = 0. O
" ' n—oo



Remark 5. If the assumptions of Corollary 4 are satisfied then we can prove
the existence of pg, po € I such that equation (17) with g = po has a solution y
satisfying

y(t) = y(t3) = y'(t3) = 0
and
Ol <r YOI < (A + rmaxg(O) (s =) for te .

4. UNIQUENESS THEOREM

Lemma 6. Let 7y, ro be positive constants, S = {y; y € CI(J),Iy(i)(t)| <
riy) fort € J,i =0, l}. Assurne

(28) [f(t,y1, 92, 1) = (2, 21, 22, )] < ha(O)|y1 — 21| + ha(t)|y2 — 22|
for (¢, y1,y2, 1), (t, 21, 22, 1) € J x (—=r1,71) X (=712, 7r2) X I,

where hy, ha € C°(J) and at least one of the following four assumptions holds:

(29) /1:2 [(exp /tls hQ(T)dT) : /: (q(r) + hi(7)) (lr] ds € 1,

(30) /tl2 [(q(s) + hi(s))(s = t1) + ha(s)]ds < 1,
(31) /tts [(exp /, hg(r)d‘r) /t (q(r) +hl(r))dr]ds <1,
(32) /tts [(g(s) + hi(s))(s = t2) + ha(s)]ds < 1

If BVP (1), (2) with t = po, po € I has a solution y, y € S, then this solution is
unique in S.

Proof. Let y1,y2 € S be solutions of BVP (1), (2) with g = po, po € I and
define w := y;—ys. Since w(t;) = w(ta) = 0 there exists a & € (11, t2): |w(t)] < |w(é)]
for t € (t,,t2).

Let assumptions (29) be satisfied. Using Gronwall’s lemma for the inequality

(33)  |['(t) }/[ $) + hy(s)) [w(s)] + ha(s)[w’(s)]]ds|, ¢ € (t1, 1)

we get

[w' ()] < (exp/f ]lg(S)dS) /5 (q(s) + hi(s)) |w(s)|ds, t € (€, ta).
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For all t € (£,t2) we have

(1) = wi(E / /(s 1(19\/ [(exl)/: hg(r)dr)-/;(q(T)+h1(r))]w(r)|dr]ds

and thus, if w(€) # 0, we obtain

w(e)] = u(ts) - wio)l < *[(ex [ #atrar) - [ a4 me) ol as
< |lw(€)| ,/zt2 [(exp/tS /l‘_)(T)dT) : /ts(q(r) + Izl(r))dr] ds.

Then

1< /ttg {(exp /t’ /lg(T)(lT) -/j (q(r) + h.1(r))dr] ds,

1

which contradicts (29). Therefore w(€) = 0 and y;(t) = ya(t) for t € (ty,ta).
Now, let assumptions (30) be satisfied. From (33) and |w(t) fz |w'(s)|ds for
t € J we get

wion<] [ s+ me) - [ 1wl + rato]os

3
< /t, [(q(s) + hy(s)) ./:l [w'(7)]|dr + hf_)(s)|w’(s)|]dsy tE (ty,ta).

Putting X(t) :=  max [w'(s)| for t € (t1,ta) then, if X(t2) # 0, we obtain

l\\

[w'(t)] < X(tr_;)/ ’ [(q(s) +hi(s))(s —t)) + ,I.Q(S)]ds, t € (ty,ta)

and thus

,\'(tg)(l —/t2[(q(s)+111(s))(s—11)+ho( )](ls) <0,

which contradicts (30). This shows that X (f2) = 0, consequently w'(t) = 0 for
t € (t1,12) and since w(ty) = 0 we get w(t) = 0 on (L1, ts2), that is y;(t) = ya(t) for
L€ (L1, 1s).

By the existence and uniqueness theorem for equation (1) we get y(¢t) = y»(t) for
teJ. .

If assumptions (31) (or (32)) 1s satisfied, then the proof is very similar and therefore

Is omitted. ]
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Remark 6. Itisevident from the proof of Leinma 6 that assumptions (29)-(32)
may be replaced by the assumptions

/1:2 [(exp /st2 /lg(T)dT> ./:2((,(7) + 1,1(7—))(;,.] ds < 1,

/t 2[((,(5) + hi(s))(t2 — s) + hy(s)]ds < 1,

/tza [(exp /st3 IlQ(T)(lT) _/:3((1(7) + 11-1(T))dr] ds < 1,

/ 3 [(q(s) + hi(s))(ts — s) + ha(s)]ds < 1.

Example 3. Consider BVP (26) as in Example 1, where n = 3. Assumption
(28) is satisfied for h;(t) = t3 and ho(t) = 3t with an arbitrary positive constant
ry and 7o = 1. If BVP (26) with g = yo (E (—%,% ) has a solution y satisfying
|y (t)] <1 on <0, %) (by Example 1 such po and y exist if 7; > 5), then this solution
y is unique in the set {y; y € C'2(<0, %>), V(1) <1forte (0, %>} since

t3 1
/ [(q(s) + hl(s)) (s—t1)+ hg(s)]ds = / [(q(s) + 33)5 + 3s]ds
) 0
5 r1\2  1/1\% 3/1\2
<z(3) +50) +3G) <¢
Lemma 6 and its proof immediately yield

Corollary 5. Let » > 0 be a positive constant, S} = {y; y € C°(J),|y(t)] <
rfort € J}. Assume

(34) [ty )= filt,z, )| < h(W)|y—=| for  (ty,p), (L, z,p) €T x(—r,7)x I,
where h € C'°(J) and at least one from the following four assumptions holds:
ta s i2
(35) / / (q(1) + h(r))drds < 1, / (q(s) + h(s)) (s — t1)ds < 1,
TORUT t

/ ’ /S(q(r) + h(r))drds < 1, / J(q(s) + h(s))(s — t2)ds < 1.

If BVP (17), (2) with jt = jio (€ 1) has a solution y, y € Sy, then this solution y is

unique in St .
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Remark 7. Assumptions (34) in Corollary 5 may be replaced by the assump-

/t 2 / 2(rI(T) + II(T))(ITdS <1, /t Q(q(s) + h(s))(tg —s)ds < 1,
/ s / 3(fI(T) + h(r))drds < 1, / a(q(s) + h(s))(ts — s)ds < 1

Example 4. Consider BVP (27) as in Example 2. Assumption (34) holds
for h(t) = n and r = 1. If BVP (27) has for g = po (€ (1 —¢, 1)) a solution y,
y €S2 :={y; y € C%{0,1)), |y(t)] < 1forte(0,1)} (by Example 2 such pq and y
exist) and ty € (0, 1) satisfies at least one from the conditions

tz ps n ta n
/ / qg(r)dr + =12 < 1, / sq(s)ds + =t2 < 1,
o Jo 2° 0 2°

1 s 1
/ / q(t)drds + 2(l —15)2 < 1, / q(s)(s — t2)ds + 2(l —ta)? < 1,
iy Jto 2 to 2

t2 oty n ., t2 n
/ / q(r)drds + —t5 < 1, / q(s)(tz — s)ds + 513 < 1,
0 s 2 0 2

1,1 1 .
/ / q(7)drds + %(1 — )2 < |, / q(s)(l — s)ds + %(1 — )2 <1,
ty Js t2

then this solution y is unique in Ss.

tions

Lemma 7. Let assumption (12) be satisfied for positive constants ry, ro. Let
3 3
2L (1, y1, oo 1), 2L (L, g1, Y2, 1) € CODy) and

a
(36) q(t) + %(t,yn,y‘z,/t) 20 for (t,yi,y2,p) € Do,
1
where Dy = D x I. Define S := {y; y € C'(J), |J(‘)(1 | rigq fort € J and i =
0,1}.

If BVP (1), (2) with i = po, to € I has a solution y, y € S, then o and y are

unique.

Proof. Let y, and y» be solutions of BVP (1), (2) with g = p; and pu = po,
respectively, yy,y2 € S, p1, pt2 € I, iy < p2. Using Taylor’s formula we get
(), v1(8), 1) — F(E y2(8), yu(t), p2) =
(f(t ONAON RN (SAORAGNTI),
(f(t 3 (), 51 (1), e ) Sty (0, 91 (1), i2))
(f(t,ye l) V(1) p2) = [ y2(0), y5(8). pia))
= ([(t,yi(t),y ,#1) Ty (), ¥, (1), p2)
+9() (i (1) ‘J“(’)) (O (1 (1) = (1))’

+
+



with g,h € C°J) and ¢(¢) + g(t) > 0 on J by (36). Setting w := y; — y2 then if
[t < pa, we have

(37) () < (4t) + 9(O) w(®) + h(OW(D) for te
by (12) and if y1 = p2, we have
(38) w'(t) = (q(t) + g(t)) w(t) + h()w'(t) for teJ

Let pt7 < pta. Ifw'(t1) < 0 then using (37) and Tschaplygin’s lemma (see e.g. [1], p.
195) we get w(t) < 0 on (t1,t3), which contradicts w(lz) = w(tz) = 0. If w'(t;) >0
then there exists 7, n € (t,t2) such that w(t) > 0 for t € (t1,7), w(n) = 0 and
w'(n) < 0. Therefore w(t) < 0 on (n,t3), which is a contradiction with w(tz) = 0.

Let p1; = po. Since g(t)+g(t) > Ofort € J, the equation y’ = (q(t)+g(t)) y+h(t)y
is disconjugate on J, consequently in virtue of w(t;) = w(tz) = w(tz) = 0 we have
w = 0 and y; = y». This completes the proof. O

Lemma 8. Let assumptions (19) be satisfied for a positive constant r. Let
%%(t,y,u) € C°(H,) and

0
(39) 10+ GHOu0) >0 for (L) €,
where Hy = H x I. Define Sy = {y; y € C°(J), |y(t)| < r fort € J}.

If BVP (17), (2) with po = po, pto € I has a solution y, y € S1, then po and y are
unique.

The proof is entirely analogous to the proof of Lemma 7.

Theorem 3. Suppose that assumptions (11)—(14) are satisfied for positive con-
stants ry, r9. Let a%Ll(t,yl,yg,;z), gy%(t,y],yg,;z) be continuous on D x I and let S
be defined as in Lemma 7.

If (36) holds then BVP (1), (2) has a solution y, y € S for a single value of the

~
.

parameter p (€ I). Moreover, this solution y is unique in the set S
The proof follows immediately from Theorem | and Lemma 7. |

Exampleb. Consider BVP (26) asin Example 1. Since q(t)+§y-%(t, Y1, Y2, 1) =
q(t)—t3siny, > %— (%)3 > 0for (¢,y1,y2, 1) € <0, I—*> xR2 x <—i i) then Example 1
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and Theorem 3 imply, that BVP (26) has a solution y for a single value of the param-
eter i (€ <—4§, %)). This solution is unique in the set {y; y € 6'2(<0, i)), ly(t)] <
() < 1 fort € (0,5)}.



Theorem 4. Suppose that assumptions (18)~(20) are satisfied for a positive con-
stant r. Let %lyi € COI x I) and let Sy be defined as in Lemma 8.
If (39) holds then BVP (17). (2) has a solution y, y € Sy for a single value of the

parameter y (€ 1). Moreover, this solution y is unique in the set Sy.
The proof follows immediately from Theoremn 2 and Lemma 8.

Example 6. Consider BVP (27) as in Example 2 with the additional assump-
tion that n is an odd integer. Then ¢(t) + %fy—‘(f,y,ﬂ) = q(t) + ntvy*=t > 0 for
(t,y, 1) € (0, 1) x (1, 1) x (I = ¢, 1). Example 2 and Theorem 4 imply that BVP
(27) has a solution y for a single value of parameter p (€ (1 = ¢, 1)). This solution y
is unique in the set {y; y € C*((0, 1)), |y(1)] < 1 for t € (0, 1)}.
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