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Czechoslovak Mathematical Journal , 42 (117) 1992, P raha 

THREE-POINT BOUNDARY VALUE PROBLEM FOR NONLINEAR 

SECOND-ORDER DIFFERENTIAL EQUATION WITH PARAMETER 

SVATOSLAV STANEK, Olomouc 

(Received March 2, 1989) 

1 . INTRODUCTION 

Consider the second-order differential equation 

(1) t/'-q(t)y = f(t,y,i/a') 

in which q e C°(J), f e C°(J x R2 x 1), q(t) > 0 for t G J, where J = (tut3), 

I = (a, 6), — oo < t\ < t3 < oo, —oo < a < 6 < oo, containing a parameter /J. Let 

l2 € R, ii < t-i < t3 be an arbitrary fixed number. The problem considered is to 

determine sufficient conditions on q and / quaranteeing that it is possible to choose 

the parameter /t so that there exists a solution y of (1) satisfying either the boundary 

conditions 

(2) y(t1) = y(h) = y(t3) = 0 

or the boundary conditions 

(3) y(tl) = y'(tl) = y(t3) = 0. 

The uniqueness of solutions of the boundary value problems (BVP for short) (1), (2) 

and (1), (3) is also discussed. 

Sufficient conditions for a two-parameter differential equation y" -f (</(£, A,//.) + 
r(t))y = 0 having a nontrivial solution y satisfying (2) are given in [2]. 
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2 . N O T A T I O N , PRELIMINARY RESULTS 

Let u, v be solutions of the equation 

(q) 2l" = q(t)y (q £ C°(J), q(t) > 0 for t E J), 

u(ti) = 0, u'(*i) = 1, v(ti) = 1, u ' ( l i ) = 0 and 

(4) r(t,s) :=u(t)v(s)-u(s)v(t) for ( l , s ) E J 2 . 

Then the following lemma can be proved. 

L e m m a 1. Let r be defined by (A). Then 

(5) r(t, s) > 0 for tx ^ s < t ^ t3, r(t, s) < 0 for *i ^ * < s ^ l3 

and 

(ri (* ,*) :=) -£(t9s)>l for (t,s)eJ2, t±'s. 

P r o o f . Let s E J be an arbitrary fixed number . Setting z(t) := r(t,s) for 

t E J, then 2 is a solution of (q), z(s) = 0, z'(s) = 1 and z'(0 = r[(t,s). Since 

<?(0 > 0 on J, it is easy to verify that z(t) < 0 for li ^ t < s (provided s > t\), 

z(t) > 0 for s < t ^ t3 (provided .s < t3) and z'(t) > 1 for t E J, t ^ s. This proves 

Lemma 1. D 

L e m m a 2. Let h E C°(J) and let y be a solution of the equation 

(6) y" - q(t)y = h(t) 

satisfying the boundary conditions 

(7) y(*i) = J/(<2) = 0. 

Then 

(8) y ( 0 = 4 ^ T T / r(h, S )h ( S )d S + / r(t, 8)11(8)^ 
r(t2,ti) Jtl Jt2 

t E J. 

P r o o f . Setting go(0 :— ft r(t1s)h(s)ds for t E J, then uo is .a solution of (6), 

2/0(^2) = 2/0(^2) = 0, and the function 

2/(0 := rn2i!\yo(h) + 2/o(0 for l E J, 
r(t\,t2) 

is a solution of (6) (which is then unique) satisfying (7). D 
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L e m m a 3. Let h G C°(J x I), let h(t,.) he an increasing function on I for every 

fixed t £ J and 

(9) li(l,a)b(l,6) <$0 for t G J. 

Then there exists a unique /to, /to £ <I such that the equation 

(10) g''-g(t)u = b(l,/0 

with /t = /io has a solution y (which is then unique) satisfying (2). 

P r o o f . Let y(t, f.i) be the solution of (10), y(t\,/t) = y(t2,f.i) = 0. By Lemma 2 

r(t L \ I*2 l**3 

y ( * 3 , / 0 ~ „ 2 ' A / r(l1 , .s)li(.s,/x)dB+ / r ( l 3 ,B ) / i (B , /0ds , /* G F 
r(t2,t\) Jtl Jt2 

Since r ( l 2 , * i ) > 0, r( l2 ,*3) < 0, r( l i , .s) < 0 for s G (^1,^3) and r ( l 3 ,B ) > 0 for 

s G (^1,^3) by Lemma 1, the function y(t%,.) is an increasing continuous function on 

I and by virtue of (9) we have 2/(l3, a) ^ 0, 2/(l3, 6) ^ 0. Consequently, there exists a 

unique /*o, /*o £ I such that 2/(l3,Lfo) = 0. BVP (q), (2) has only the trivial solution 

and thus BVP (10), (2) with /< = /<o has a unique solution. • 

Let r i , r2 be positive constants, r\ > 0, r2 > 0. In what follows we shall assume 

that q and / satisfy some of the following assumptions: 

(11) |/(*,2/i,2/2,/OI ^ ? ( 0 r i f o r (t,yuy2lfi)e D x I, 

where D := J x (—n, n ) x (—r2, r2) ; 

(12) / (£, 2/1,2/2, •) is an increasing function on I 

for every fixed (t,y\,y2) G F>; 

(13) • f(t,y\,y2,a)f(t,y\,y2,b) <C 0 for (t,y\,y2) G D; 

(14) m i n { ( A + r i m a x r / ( l ) ) ( l 3 - l ! ) , 2y/r[\/A + n m a x ^ ) } ^ r2 , 

where A := max | / ( t , gi, g2,/0I-
( t , y i , y 2 , / - ) e D x / 

R e m a r k 1. If the function / may be written in the form /(£, 2/1,2/2,/0 = 

9(t,yuy2) -r /1 • p(<) with g G C°(J x R 2) , y> G C°(J ) , y>(*) > 0 on J, then / 

satisfies assumption (12) for arbitrary positive constants 7*1, r2 . If, in addition, g 

is bounded on J x IR2, then assumption (11) is satisfied for an arbitrary positive 

constant 7-2 and a sufficient large positive constant 7*1. 
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R e m a r k 2. A function a G C2(J) ((J G C2(J)) is called an upper (lower) 

solution of BVP (1), (2)ifc*"(t)-q(t)a(t) <C / (* , o( l ) , af(t), / /) , a ( ^ ) ^ 0, cv(/2) ^ 0, 

«(<3) £ o (/?"(*) - o(/)/i(l) s> f(r,/L?(0,/^/(05/0, / ? d ) < o, p(t2) <: o, /?(<3) ^ o) for 
( l , / t) G J x I. It follows from assumptions (11) that a(t) = r\ (f3(t) = —r\) is an 

upper (lower) solution of BVP (1), (2). 

L e m m a 4 . Assume that assumptions (11)—(14) are satisfied for positive constant 

7*1, r 2 . Then for every <p, <p G Cl(J), \<p^l\t)\ ^ r .+i f°r * G J, t = 0, V there exists 

a unique /to, /to G I such that the equation 

(15) i/'-q(t)y = f(t,<p(t),<p'(t),ri 

with /t = /to Has a solution y (which is then unique) satisfying (2). For this solution 

y the inequalities 

(16) |y<')(*)| $ r , - + i , lGJ, i = 0, 1, 

Hold. 

P r o o f . Let (p G CV). |v> ( , )(0| ^ ri+i f o r * £ ^ * = 0 > ! > a n d M*>/0 — 
f(t,y?(l),V?'(l),/t) for (*,/i) G J x I. Then |b | <C A, from (13) we get 

b(l,a)<C0, h(t,b)^>0 for l G J, 

and / t( l , . ) is an increasing continuous function on J for all fixed t G J by assumption 

(12). In this situation we may apply Lemma 3 and thus there exists a unique /t0, 

/to G I such that equation (10) with /t = /to has a unique solution y satisfying (2). 

We now prove inequalities (16). Let \y(t) <j |y(f)l > r i be satisfied for some 

cT G ( l i , l 3 ) and l G J. If y(0 > rx (y(£) < -r\) then y"(£) > 0 (y"(0 < 0) by 

assumption (11), and therefore y does not have a local maximum (minimum) at the 

point t = £, which is a contradiction. Thus \y(t)\ ^ r\ on J. 

Let r2 ^ (A + rr maxo ( l ) ) ( l3 — li). Since g'(£) = 0, we obtain from the equality 

y'(t) = f*(q(s)y(s) + h(sai0))ds that 

\yf(t)\ <C (A + n maxg(0) |< - £| ^ (-4 + n maxq(t))(t3 - tx) <C r2 

for l G J. 
Let r2 > 2-Jr\\J A + ri inax(/( l) and y'(£i) = 0 for some £i G J. Multiplying both 

. < G ^ 
sides of the equality 

y"(t) = <i(t)y(t) + h(t,fi0), teJ, 
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by 2y'(t) and integrating from £1 to t (G J), we obtain 

g/2(l) = 2 / (q(s)y(s)y,(s) + h(s^i0)y
f(s))ds. 

J*i 

Then we get 

y,2(t) 5C 2(A - f - r i max<z(0) / 2/(«)ds ^ 4rx (A + rx maxq(t)) 
f6J J^ t 6 J 

on every interval Ji, Ji C J, £1 G Ji, g'(0 ^ 0 (<$ 0) for t G Ji, and this yields 

| g ' ( 0 | ^ 2^ / rT \ /A + r 1 maxo ( / ) <̂  r2 for t G J. 

D 

If the function f(t,y\,y2,/-i>) does not depend explicitly on no, then we may write 

equation (1) in the form 

(17) y"~q(t)y = fi(t,y,n) 

where f\ G C°(J x R x / ) . From Lemma 2 and its proof it immediately follows: 

L e m m a 5. Let r > 0 he a positive constant and 

(18) | / i ( * , t / , / 0 K r ? ( 0 for ( t , t / , / / ) G # x / , where # := J x ( - r , r) ; 

(19) f\(t,y, -) is an increasing function on I for every fixed (t,y) G # ; 

(20) f(t,y,a)f(t,y,b)^0 for ( t , g ) G # . 

Then for every <£>, <£> G C°(J ) , |y?(OI ^ r for t £ J there exists a unique //0, //.0 G / 

such that the equation 

(21) v"-q(t)y = fi(t,<p(t),H) 

with // = //0 has a solution y (which is then unique) satisfying (2). For this solution 

y the inequality 

\y(t)\ <$ r for t G J 

ho/c/s. 

R e in a r k 3. Let the assumptions of Lemma 5 be satisfied, 

A! := max |/j (t, g, / / ) | , 
( t , j / , / i ) e / / x / 

p G C° (J ) , |v?(0l ^ r for l G J and let y be the solution of BVP (21), (2) with 

// = //0. Then there exists £, ( G / : g'(£) = 0 and from the equality y'(t) = 

f*(q(s)y(s) + / l(s,v?(.s),//0))d.s we get | u ' ( 0 | ^ (Ax + rmaxq(t))(t3 - tx) for t G J. 
' c j 
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3. E X I S T E N C E T H E O R E M S 

T h e o r e m 1. Suppose that assumptions (11) —(14) are satisfied for positive con­

stants 7*i, r2. Then there exists po, po G I such that BVP (1), (2) with p = po has 

a solution y satisfying (16). 

P r o o f . Let X = Cl(J) be a Banach space with the norm \\y\\ = max( |g ( l ) | + 
t £ J 

\y'(t)\) for y G X, K := {u; y G X, \y^(t)\ <$ ri+l for t G J, i = 0, 1} and H := 

A -f rimaxo(l). K is a closed bounded convex subset of X, K C A\ For every 

</?, y? G K there exists (by Lemma 4) a unique //o, Po G 1 such that equation (15) 

with p = po has a unique solution y satisfying (2) and (16). Setting T((p) = y we 

obtain an operator T, T: K —+ K. We shall prove that T is a completely continuous 

operator . 

Let {yn}, yn £ £ he a convergent sequence, lim yn = y, and zn = T(yn), 
n—>oo 

2 = T(y) . Then (by Lemma 4) there exist a sequence {pn}, pn G / and po G 1 such 

that 

(22) zn(t) = ^ \ [t2r(tl,s)f(s,yn(s),y'n(s),pn)ds 
r(i2,ti) Jti 

+ r(t,s)f(s,yn(s),y'n(s),pn)ds, t G J, 
Jt2 

and 

Z^=1Tri\ rr(ti,s)f(s,y(s),y'(s),po)ds 
r(t2,ti) Jti 

+ [ r(t,s)f(s,y(s),y'(s),p0)ds, t G J-
J*2 

If {/tn} is not a convergent sequence, then there exist convergent subsequences {pkn}, 

{prn}, hm pkn = Ai, lim prn = A2, Ai < A2. Putt ing n = kn and n = rn in (22) 

and taking limits on both sides of (22) we obtain 

(23) lim zkn(t) = 4 ^ r / ' r(tu s)f(s, y(s), y'(s), A,)ds 
n-00 r(t2,tx) Jtl 

+ I r(t,S)f(s,y(s),y'(s)lXl)ds 
Jt2 

an d 

(24) l im - r „ ( í ) = - ^ ^ - í'r(tus)f(s,y(s),y'(s),X2)dí 
" - " * > ' , ( t 2 , t l ) j í 1 

+ / r(t,S)f(s,y(S),y'(S),Ă2)ds 
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uniformly on J, respectively. Since f(t, 1/(0, / ( l ) , Ai) < / ( * , y(t), y'(t), A2) for t G J 

by assumption (12) then it follows from (23), (24) and Lemma 1 that lim Zkn(t^) < 
n — o o 

lim zrn(t^), which contradicts zn(t^) = 0 for all n G N. Consequently, {//n} 
n—• oo 

is a convergent sequence; let lim /t„ = //*. Then lim f(t,yn(t),yn(t),f.in) = 
n—*oo n—^-oo 

/ ( ^ y(0> / ( 0 ^ /**) uniformly on J and taking limits on both sides of (22) we get 

( ; ' ( < ) : = ) lim zn(t) = - ^ j i / r ( / , , « ) / (* , y(.s), >/(*),/«*)dS 

n-.oo r(t2,t]) Jti 

+ / r ( . , * ) / (« , y(*),j/ '(fi),/i*)ds 
Ji*2 

uniformly on J. The function z* is a solution of the equation 

z"-q(t)z = f(t,y(t),y'(t),fS) 

and z*(li) = z*(to) = ^*(<3) = 0, consequently by Lemma 4 we get /i* = /<0, z* = z. 

Next, uniformly on J we have 

lim 4 ( 0 = lim [ - — f ! [~r(tus)f(s,yn(s),y'n(s),Lin)ds 
n__oo n^ooL r ( / 2 , l 1 ) J t i 

+ / r l ( ^ 5 ) / ( S > ^ i ( 5 ) , / ( 5 ) , / ( n ) d 5 
Jt2

 j 

= - 4 ^ 4 4 Pr(ti, s)f(s, y(s), y'(.s), /(Q)d.s 
'•(<•>, <i) j ( l 

+ / r ' 1 ( / , S ) / ( S , y ( . s ) , j / ' ( S ) , / t 0 )d5 = r ' ( / ) . 
Jt2 

Hence lim T(yn) = T(y) and T is a continuous operator on K. 
n—+oo 

Let yeK and z = T(y) . Then z G K, z(*i) = z(*2) = .z(t3) = 0 and 

(25) z"(t) = q(t)z(t) -f / ( * , y (0 , j / ( 0 ^ o ) for t G J 

with some //,0 G I. From (25) it follows that \z"(t)\ ^ B for t G J, thus T(K) C £ := 

{y,y G C 2 ( J ) , hJ(OI < H , 1/(01 ^ r2 , l / ' ( 0 l ^ B for t G J} C K, and since £ is a 

compact subset of Ar, T(K) is a relative compact subset of X. 

By Schauder's fixed point theorem there exists y G K- T(y) = y, i.e. there exists 

//0 G 1 such that 

y"(t)-q(t)y(t) = f(l,y(t), ;</'(/), /.<,) for « 6 i 

and g satisfies (2) and (16). • 
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Corol lary 1. Assume that assumptions (12), (13) are satisfied for positive con­

stants r\, T2 and r\(t% — t\)maxq(t) ^ T2- Then there is 6 > 0 such that for every 

e, 0 < e ^ 6 there exists p£, /t£ G / such that BVP 

y" -q(t)y = £f(t,y,y',p), 

y(ti) = y(h) = y(ts) = 0 

with p = p£ has a solution y satisfying (16). 

P r o o f . Let A := max |f(l, y\, 7/2, /Ol a n c ' 
( t , y i , ! / 2 , / i ) e D x / 

<S := rnin< — m'mq(t), — ( Ti maxa ( l ) ) >. 
\A teJ v ; A V t o - l , ť GJ ^ v V J 

1 
Vi3 - ti 

Then £f for 0 < e ^ 6 satisfies the same assumptions as f in Theorem 1 and thus 

Corollary 1 follows immediately from Theorem 1. • 

E x a m p l e 1. Let l2 £ (0, 5) . Consider BVP 

(26) y" - q(t)y = l3 cos y + ty'n + //p(l), 

2/(0) = 2/(<2) = y ( | ) = 0 , 

where p, q G C° (J i ) , 1 ^ p(t) ^ 2, | - ^ ?(l) ^ ^ for l G (0, | ) = : Ji, n is a positive 

integer and // G ( — | , | ) . One can easily check that the assumptions of Theorem 1 

are satisfied with r\ = £, r2 = 1 and thus there exists /t0, po G (— §, | ) such that 

BVP (26) with /t = /t0 has a solution y satisfying \y(t)\ ^ £, W(t)\ ^ 1 for l G Ji. 

Corol lary 2. Assume that assumptions (11) —(14) are satisfied for positive con­

stants r\, ro. Then there exists /to, /to G / such that equation (1) with p — PQ has a 

solution y satisfying (3) and (16). 

P r o o f . Let {xTl}, xn G ( l i , l3) be a convergent sequence, lim xn = t\. By 
n—*oo 

Theorem 1 there exists a sequence {/tn}, /tn G / such that equation (1) with // = /tr, 

has a solution yn satisfying 

yn(t\) = yn(xn) = yn(*3) = 0 

and 

\yn
i](t)\ <: r i + i for l G J; t = 0, 1; n G N. 

Since {/^n} is a bounded sequence we may assume, without loss of generality, 

that {pn} is convergent, lim pn = /to- From the equalities yn(t) = q(t)yn(t) + 
n—• 00 

f{t,yn(t),y'n(t),pn) we obtain 

b n ( 0 l ^ r i maxg(f) + A for l G J and n G N. 
11J 
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Let £n G (li,.£n) be such numbers that g^(£n) = 0, n G N. Using Ascoli's theorem 

we may choose a subsequence {ykn(t)} of {yn(t)} such that {yk (t)} are uniformly 

convergent on J for j = 0 ,1 ,2 . Then y(t) := lim ykn(t), t G J, is a solution 
n—*-oo 

of (1) with // = //0, y(t\) = y(*3) = 0, \y(i)(t)\ ^ r,-+i for l G J and i = 0 , 1 . 

Since y'(l) = lim y[ (t) uniformly on J, y[. (£jt ) = 0 and lim £& = li, we have 
n — < - O O n n n

 n _ 0 0
n 

2/'(<i) = 0. D 

R e m a r k 4. If assumptions of Corollary 2 are satisfied, then it is obvious from 

the proof of Corollary 2 that there exists //0, /t0 G I such that equation (1) with 

ft = UQ has a solution y satisfying (16) and 

j/(<i) = y(.3) = i/(.3) = 0. 

For BVP (17), (2) we have the following results: 

T h e o r e m 2. Let assumptions (18)—(20) be satisfied with a positive constant r. 

Tlien there exists //Q, /'O G 1 such that BVP (17), (2) with f.t = //o iias a solution y 

and 

\y(t)\ ^ r, |g ' ( l ) | <: (A i + rmaxq(t))(t3 - t\) for t G J, 

vvijere Ai := max \f\(t,y, / /) | . 
( t , y , / i ) e / / x / 

P r o o f . Let I?i = : Ai + rmaxg(^ ) , let A" be the Banach space defined in the 

same way as in the proof of Theorem 1 and K\ := {y\ y G X,\y(t)\ ^ r, |y '( l) | ^ 

B\(t3 — t\) for t G J}. Ki is a closed bounded convex subset of A", K\ C X. For 

every y?, <£> G Ki there exists (by Lemma 5) a unique /to, /'o E / such that equation 

(21) with ft = /t0 has a unique solution y satisfying (2) and y G Ki (by Remark 3). 

Setting T(<f) = y we obtain an operator T, T: K\ —> Ki. The next part of the proof 

is very similar to that of Theorem 1 and therefore is omitted. • 

E x a m p l e 2. Let n be a positive integer, let v, c be constants, v ^> 0, c > 2 

and l2 G (0,1) . Consider BVP 

(27) y" -g(0y = < V + ^ ( 0 + /*. 

y(0) = y( l2) = y( l ) = 0, 

where 9 , <£> G C°(J2), q(t) j> c, 0 < <£>(*) <$ c - 2 for t G (0, 1) = : J2 and // G (1 - c, 1). 

The assumptions of Theorem 2 are satisfied with r — 1. By Theorem 2 there exists 

lto, l'o £ (1 — c, 1) such that BVP (27) with ft = //0 has a solution g and |g ( l ) | ^ 1, 

\y'(t)\ ^ 2c - 2 + inaxg(f) for t G J2. 
t G «I2 
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Corol lary 3 . Assume that assumptions (19) and (20) are satisfied with a positive 

constant r. Then there is 6 > 0 such that for every e, 0 < e ^ S there exists p£, 

p£ G I such that BVP 

y(ti) = y(t2) = y(t3) = 0, 

with // = p£ has a solution y satisfying 

\y(t)\ ^ r, |g ' ( l ) | ^ (Ax + rmaxq(t))(t3 - tx) for t G J, 

where A\ is defined in Theorem 2. 

P r o o f . Let 8 := j-minq(t). If 0 < e ^ 6 then ef satisfies the same assump­

tions as / in Theorem 2. Therefore Corollary 3 follows immediately from Theorem 2. 

• 

Corol lary 4. Suppose that assumptions (18)—(20) are satisfied for a positive con­

stant r. Then there exists //0, //0 G I such that equation (17) with // = //0 iias a 

solution y satisfying (3) and 

\y(t)\ $ r , L y ' ( 0 K ( ^ + r m a x r / ( l ) ) ( l 3 - l i ) for t G J, 
i t . / 

where A\ is defined in Theorem 2. 

P r o o f . Let { x n } , xn G (^,£3) be a convergent sequence, lim xn = t\. Then 
n--»oo 

(by Theorem 2) there exists a sequence {//n}, Pn G / , such that equation (17) with 

// = pn has a solution yn satisfying 

yn(t\) - yn(xn) = y(h) = 0, 

\yn(t)\ <: r, \y'n(t)\ ^ (A, + r maxq{t))(t3 - t{) 
t£j 

and 

k " ( 0 l = k ( 0 y n ( 0 + / i ( ' , 2 /n (0> / 'n ) | ^ -41 + r max ?(*) for / G J, 7/ G N. 
• c j 

Since {//n} is a bounded sequence we may assume, without loss of generality, that 

{//n} is convergent and lim //n = //0. Let £n G ( l i , £ n ) be such numbers for which 
n—KX) 

yn(£n) — 0. Then by AscolFs theorem we may choose a subsequence {ykn(t)} of 

{yn(t)} such that {y£ (t)} are uniformly convergent on J for j = 0, 1,2. The function 

y(t.) := lim ykn(t), l G J, is a solution of (17) with // = //0, y(t\) = ?/(l3) = 0, 
n —<• 0 0 

| j/(/)| < r, |(/'(0I ^ (Ai + rmax V (0 ) (<3 - ti) Cor / G J . Since y'(t) = lim i/j. (t) 
t£j ri —. cxj " 

uniformly on J, ?/[. (£jtTJ) = 0 and lim £n = ti, we have y'(t\) = 0. • 
T< 71 —> CO 
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R e m ark 5. If the assumptions of Corollary 4 are satisfied then we can prove 
the existence of /to, /to E I such that equation (17) with /t = /z0 has a solution y 
satisfying 

y(ti) = y(h) = y'(h) = Q 

and 
\y(t)\ <: r, \y\t)\ <: (A\ + rmsxq(t))(t3 - t\) for t E J. 

11J 

4 . UNIQUENESS THEOREM 

L e m m a 6. Let n , r 2 oe positive constants, S = {y; g E C J (J) , \y^ - (t)\ ^ 
r,-+i for t E J, a'• = 0, 1}. Assume 

(28) | / ( ^ y i , y 2 , / 0 - / ( ^ ^ i ^ 2 , / i ) l $ f t i ( O l y i - ^ i l + MOIy2--2:2| 

for (l,yi,jy2,/t),(l,zi,z2,/0 E J x ( - r i , n ) x ( - r 2 , r 2 ) x I, 

where h\, h2 G C°(J) and at least one of the following four assumptions holds: 

(29) 

(30) 

(31) 

(32) 

d.s ^ 1, / * [(exp f A 2(r)dr) • f (?(r) + A,(r))d 
«jťi Jti ^ t i 

/ 2 [{q(s) + hl(s))(s - ť,) + A2(S)]ds ^ 1, 
Jt, 

/ ' [ (exp f A 2 (r)dr) • f (g(r) + A,(r))dr]ds ^ 1, 
«Jť2 «Iť2 »Iť2 

/ [(«/(*) +A, ( s ) ) ( s - ť 2 ) + A2(*)]d 
Jť2 

Ь < 1. 

If BVP (1), (2) with /t = /i0, /t0 E 1 ijas a solution y, y E 5, tiie/i tin's solution is 

unique in S. 

P r o o f . Let y\,y2 E S be solutions of BVP (1), (2) with /t = /x0, /to E I and 

define iz> := y\ —y2. Since iv(li) = w(t2) = 0 there exists a ( E (li, l2): \w(t)\ ^ IMOI 

for / E (<i,/2). 
Let assumptions (29) be satisfied. Using GlronwalPs lemma for the inequality 

(33) |«/(ť)| ^ |/ [(?(«)+ A,(s))H*)| + A2(s)K(s)|]ds , ťє(ť , , ť 2 ) 

we get 

"'(01 š ( « ф / A2(s)ds) • / (ç(s)+ /»,(*)) |u>(s)|ds, ť Є ( í , ť 2 ) . 
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For all / G (£, £2) w e have 

W 0 - ^ ) U / K ( « ) | d « ^ / [(exp / ' / i 2 ( r ) d r ) . / ' ( ? ( r ) + / n ( r ) ) H r ) | d r ] d « 
j£ j£ J£ J£ >i Jz 

and thus, if iv(£) ^ 0, we obtain 

(01 = \w(t2) - w(0\ š / [(exp f A2(r)dr) • / ' (g(r) + A,(r)) |«,(r)|d7 

(01 / ' [ ( ^ P / S / ' 2 ( r ) d r ) • / ' ( , ( r ) + A1(r))dr]dS. 
>jťi ^ ^ i Jťi 

ds 

< w( 

Then 

1 < J ' [(exp J' h2(т)dт) • J'(q(т) + h^тfìdĄds, 

which c o n t r a d i c t s (29). Therefore tv(£) = 0 and gi(0 — # 2 ( 0 f ° r * £ (^1^2)-
Now, let a s s u m p t i o n s (30) be satisfied. From (33) and | w ( 0 l ^ /• |u/(.s)|d.s for 

t G J we get 

W(t)\ ^ I / [(!7(S) + M * ) ) • j S W(T)\dT + h2(s)\w'(s)\] ds 

< J 2 [(</(.<,) + /.,(«)) • / ' | u / ( r ) | d r + A2(.s)|«/(.s)|] d.s, / G </,, / 2) . 

P u t t i n g A'(l) : = m a x | iv ' ( s ) | for t G (^1,^2) then, if A r ( l 2 ) ^ 0, we obta in 
t i ^ 5 ^ t 

\w'(t)\<X(t2) f2[(q{s) + li{(s))(s-tl) + li2(s)]ds1 lG(/i,l2> 
Jti 

and thus 

A - ( ť 2 ) ( l - í\(q(s) + h,(s))(s-t]) + h2(s)}ds) < 0 , 
J*l 

which cont rad ic t s (30). T h i s shows t h a t A'(/ 2 ) = 0, consequently w'(t) = 0 for 
t G (^1,^2) a » d since w(t\) = 0 we get w(t) = 0 on (t\,to), t h a t is j/\(t) — y2(t) for 
t G ( l i , l 2 ) . 

By t h e existence and uniqueness theorem for equat ion (1) we get gi(0 — # 2 ( 0 f ° r 

teJ. 
If assumptions (31) (or (32)) is satisfied, then the proof is very similar and therefore 

is omitted. • 
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R e m a r k 6. It is evident from the proof of Lemma 6 that assumptions (29)-(32) 

may be replaced by the assumptions 

/

to /* ^ 2 /*to 

' [ ( e x p y M r ) d r ) - y " ( , ( r ) + / . , ( r ) ) d r ] ds <C 1, 

f \(q(s) + h,(s))(t2 - s) + lh(s)]ds ^ I, 
Jti 

/ ' [ ( e x p / 3 h 2 ( r ) d r ) . / \q(T) + A ^ r ^ d r l d * ^ 1, 
Jt-2 J5 JS 

fU 

/ [(q(s) + Ai(B))(l3 " 5) + A2(s)]ds ^ 1. 
Jt2 

E x a m p l e 3. Consider BVP (26) as in Example 1, where n = 3. Assumption 

(28) is satisfied for h\(t) = l3 and A2(t) = 3/ with an arbitrary positive constant 

ri and r2 = 1. If BVP (26) with /t = /*o (£ ( — §, | ) ) has a solution g satisfying 

|y'(fc)| <C 1 on (0, ^) (by Example 1 such /zo and y exist if ri ^ ^ ) , then this solution 

u is unique in the set {y; y E C2((0, ^ ) ) , \y'(t)\ ^ 1 for l £ (0, ^ ) } since 

f ' 3 /*3 
/ [(g(*) + A i ( s ) ) ( s - ^ ) + A 2 ( s ) ]d5= / [(</(*) + s3)s + 3s]ds 

Jti Jo 
5 / 1 \ 2 1 / 1 \ 5 - 3 / l \ 2 

^ ( 3 ) + 5 ( 3 ) + 2 ( 3 ) < L 

Lemma 6 and its proof immediately yield 

Corol lary 5. Let r > 0 be a positive constant, Si = {y\ y E C°(J ) , |y(/) | ^ 

r for l E J}. Assume 

(34) | / i ( < , y , / 0 - / i ( M , / O I ^ A ( l ) | g - z | for (t, y , / 0 , (/, * , /0 G J x ( - r , r) x I, 

vv/jere /i E C°(J) a / ] d a^ /east one from fche following four assumptions holds: 

(35) / " / (? ( r ) + /»(r))drd* $ 1, / \q(s) + h(s))(s - h)ds <C 1, 
J*l J^i Jti 

/ 3 / (? ( r ) + / ! ( r ) ) d r d . s ^ l , f \q(s) + h(s))(s - t2)ds ^ I. 
Jt2 Jto Jt2 

If BVP (17), (2) vvifc/i /i = /jo (E 1) /.as a solution y, y E Si , fc/je/j fc/jis solution y is 

unique in S\. 
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R e m a r k 7. Assumptions (34) in Corollary 5 may be replaced by the assump­
tions 

f2 f2(q(T) + h(T))dTds<C 1, f ~(q(s) + h(s))(t2-s)ds<C 1, 
Jtx Js Jti 

I 3 / 3(q(r) + A(r))drd* s$ 1, f '(q(s) + h(s))(t3 - s)ds <; 1. 
J t-2 J S J t? 

E x a m p l e 4. Consider BVP (27) as in Example 2. Assumption (34) holds 

for h(t) = n and r = 1. If BVP (27) has for ft = p0 (G (1 — c, 1)) a solution g, 

y e S2 := {y\ y G C2((0, 1)), |y(/) | ^ 1 for t G (0, 1)} (by Example 2 such //0 and t/ 

exist) and l2 G (0, 1) satisfies at least one from the conditions 

ft2 fs n f*2 n 
I I q(T)dT+-tl^l, I sq(s)ds+-tl^l, 

f fS q(r)dTds+^(\-t,2)
2^l, [ ( ? ( . s ) ( s - / 2 )d , + ^ ( l - < 2 ) 2 ^ l , 

Jt2 Jt2 * Jt2
 i 

J J r/(r)drd.s + ^t\ <$ 1, / q(s)(t, - s)ds + ^ <C 1, 

f j 9 ( r ) d r d « + ^ ( l - . 2 ) 2 ^ l , j q(s)(\ - s)ds + ^(l - t2f <: 1, 

then this solution y is unique in S2. 

Lemma 7. Let assumption (12) be satisfied for positive constants r\, r2. Let 
^ ( t , 2/i, 2/2,/'), ^ ( 0 2/i, 2/2,/') e C°(o2) anJ 

(36) q(t) + —— (t,yi,y2,p) ^ 0 for (l, g!, g2, /') G D2, 

where D2 = D x I. Define S := {g; g G C ^ J ) , | ;y ( °(0 | ^ ?',-+i fort G J and i = 

0 , 1 } . 

If BVP (1), (2) with ft = / 'o, /'o £ / /ias a solution y, y £ 5 , f/ien /<o and y are 

unique. 

P r o o f . Let y\ and y2 be solutions of BVP (1), (2) with // = /«i and // = //2 , 

respectively, j / i , j / 2 £ ,5', / ' i , / ' 2 € / , /fi ^ /'2- Using Taylor's formula we get 

/ ( t , 2 / . ( t ) , 2 / 1 ( t ) , / ' i ) - / ( t , 2 / 2 ( t ) , y 2 ( 0 , / ' 2 ) = 

= ( / ( t ,2 / i ( t ) , . ' / l (0 , / ' i ) - / ( t ,2 / . ( t ) ,2 / ' , (<) , / '2 ) ) 

+ ( / ( < , I / . ( 0 , » i ( 0 , / ' 2 ) - / ( . , 2 / 2 ( 0 , 2 t i ( 0 , / . 2 ) ) 

+ (/(.,y2(0,2/U0,/-2) - / ( / ,2/2(0,y 2(0. / - 2)) 

= ( / ( ' , 2/1 (0,2/',(t), / ' i ) - /( ' ,2/1 ( 0 , 2/', (0 , / ' 2 ) ) 

+ g(t)(yi(t) - 2/2(0) + ' ' ( 0 ( J / I ( 0 - ?/2(0)' 
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with gji G C°(J) and q(t) + g(t) ^ 0 on J by (36). Setting w := yx - y2 then if 

pi < p2, we have 

(37) w"(t) < (q(t) + g(t))w(t) + h(t)w'(t) for t G J 

by (12) and if p\ = p2, we have 

(38) iv"(t) = (q(t) + g(t))w(t) + h(t)w'(t) for t G J 

Let pi < p2. If tv ' ( / i ) ^ 0 then using (37) and Tschaplygin's lemma (see e.g. [1], p. 

195) we get w(t) < 0 on (ti,t3), which contradicts tv(/2) = w(t3) = 0. If iv ' ( l i) > 0 

then there exists ?;, 7/ G (^1,^2) s u c n that w(t) > 0 for t G (̂  1, ^7), u>(i]) — 0 and 

w'(j}) ^ 0. Therefore w(t) < 0 on (77, £3), which is a contradiction with w(t3) = 0. 

Let pi = p2. Since q(t)+g(t) ^ 0 for t G J, the equation H" = {q(t)+g(t))y+h(t)y' 

is disconjugate on J, consequently in virtue of tv(^i) = w(t2) = w(t3) = 0 we have 

w = 0 and gi = g2- This completes the proof. • 

L e m m a 8. Let assumptions (19) be satisfied for a positive constant r. Let 
d-^(t,y,p)eCQ(Hx)and 

(39) q(t) + ^ - ( * , y , / 0 ^ 0 for (l,H,/t) G Hi, 

wnere Hi = H x I. De/me Si = {g; H G C°(J ) , \y(t)\ <C r for t G J}. 

If BVP (17), (2) wifcH. /i = /to, /*o G I i.as a solution y, y G S i , fcnen /in and H are 

unique. 

The proof is entirely analogous to the proof of Lemma 7. 

T h e o r e m 3. Suppose that assumptions (11)-(14) are satisfied for positive con­

stants r\, r2. Let Q~(t, Hi, y2, p), Q-(t,y\,y2,p) be continuous on D x I and let S 

be defined as in Lemma 7. 

If (36) holds then BVP (I), (2) has a solution y, y G S for a single value of the 

parameter p (£ I). Moreover, this solution y is unique in the set S. 

The proof follows immediately from Theorem 1 and Lemma 7. 

E x a m p l e 5. Consider BVP (26) as in Example 1. Since q(t)+-^-(t, y\, 2l2,/0 = 

q(t)-t3siny{ :> A - ( I ) 3 > 0 f o r ( l , g i , g 2 , / 0 e ( 0 , l ) x R 2 x ( - f , f ) then Example 1 

and Theorem 3 imply, that BVP (26) has a solution y for a single value of the param­

eter // (G (— f, f ) ) . This solution is unique in the set [y\ y G C2((0, \)), |g( l) | ^ 

§, \y'(t)\<:\ f o r t G ( 0 , i ) } . 
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T h e o r e m 4. Suppose that assumptions (l<S)-(20) are satisfied for a positive con­
stant r. Let | ^ G C o ( / / x 7 ) a / R / h t Si hc ilefmcil .ls in Lemma S. 

If (39) holds then BVP (17), (2) has a solution y, y G S\ for a single value of the 

parameter // (G I). Moreover, this solution y is unicpie in the set S\. 

The proof follows immediately from Theorem 2 and Lemma 8. 

E x a m p l e 6. Consider 13VP (27) as in Example 2 with the additional assump­

tion that ?i is an odd integer. Then </(/) -f (^-(t,y,p) = </(/) + iWyn-[ > 0 for 

(<.2/>/0 G (0, 1) x ( - 1 , 1) x (1 - r, 1). Example 2 and Theorem 4 imply that BVP 

(27) has a solution y for a single value of parameter // (G (1 - c, 1)). This solution y 

is unique in the set {y; y G C2((0, 1)), |//(/)| ^ 1 for / G (0, 1)}. 

/ te/err fires 
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