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ON REDUCIBILITY OF DOUBLE LINEAR CONNECTIONS 

ON A DOUBLE VECTOR FIBRATION WITH SOLDERING 

ALENA VANZUROVA, Olomouc 

(Received September 24, 1990) 

In this paper we will answer some questions about reducibility of connections on the 
principal fibrations of double linear frames corresponding to TTM and TT*M using 
the terminology introduced in [10] — [11]. The original concept of the category of 
double vector fibrations and morphisms is due to J. Pradines, [6], [7], and was 
developed by I. Kolaf, [2]. Double linear connections were studied in [11], the 
isomorphisms called solderings were introduced in [2], [11], [12]. 

Under a (generalized) connection on a fibred manifold n: Y-> M we understand 
a smooth section F: Y-> JlY of the natural projection QQ-. JlY-+ Y on a target, 
Do o F = id. If #, p: 9? -> M is a double linear ($)<£ —) fibration with the underlying 
vector fibrations st/, M, ir, then Jl(£ (and more generally, Jr(€ for r = 0) is also 
endowed with a structure of a Q)S£-fibration, the natural projection Q\: JX(6 -> cf> 
(or Qs

r: Jsc€ -> Jr(€) being a morphism of &$£-fibrations. A connection F: (6 -> J l # 
which is at the same time a double linear morphism of ^J2?-fibrations, will be called 
a ^J^-connection. Any .^J^f-connection, as a .^J^J^-morphism, induces three 
underlying linear connections F\: stf -> 1W, F2 J -> J 1 ^ , and F3: iT -> JlY~. 
Similarly to the linear case, any ^J^f-fibration is associated with a principal fibration 
of all double linear (<3)<£—) frames, denoted here by <F. A ^j£?-frame on # , at 
a point x, is a £?J^-isomorphismf: K(n, s, t) -> ^ of the trivial .^J^f-space K(n, s, t) = 
= Rn x /J?s x £?' onto the fibre <6 x through x e M. The structure group Aut(n, s, t) 
of 3* is the group of all ^J^-automorphisms of the trivial ^JS?-space K(n, s, t). The 
associated fibration 3*(K(n, s, t)) is i^^f^"-isomorphic to ^ . 

On the principal fibration ^*, we admit „principal" connections only, i.e. con
nections A satisfying the right invariant property A(f. g) = A(f) . g for any frame 
/ e . f and any element a of the structure group. 

The results obtained here are motivated by the following consideration. The 
second tangent and cotangent spaces TTM, TT*M, T*TM, and T*T*M can be 
regarded as soldered $)<£-fibrations, all associated with the principal fibration H2M 
of second order frames on M, its structure group being llm. Since the functors T*T 
and T*T* are naturally equivalent to TT*, we can omit the last two cases. 

The ^JSf-fibration TTM has the underlying vector fibrations srf = 28 = ir = 
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= (TM, pM9 M), the 7T-solderings Xl9 X2:TM ^ TM being Xt = X2 = id rM. Any 
principal invariant connection A on H2M induces a generalized connection on 7TM, 
denoted by F = 7T(A): TTM -> JlrTTM. Now we can ask when a connection F 
on TTM is of the form 7T(A) for any invariant connection A on H2M. This problem 
was, in a slightly modified version, solved in [8]. 

It can be verified that TT(A) is a ^j£?-connection. Hence double-linearity is a ne
cessary condition for F to be of the above form. Further, we will describe a mono-
morphism h of H2M into the principal subfibration 3Fs of J*~, containing so called 
soldered frames, and characterize the image !F'ss = h(H2M) by vanishing of the 
„structure function" introduced on <Fs. Now any connection on H2M is, in fact, 
a connection on 3FSS9 and can be extended to a connection A' on J^s, and to A" 
on ^ . Since there is an isomorphism i associating any ^if-connection F on a $)<£-
fibration with an invariant connection iT on the principal fibration of £?^-frames, 
we can write A" = uA for a unique i.^-connection A on TTM. By Theorem 1, 
the underlying linear connections of IA satisfy iA± = *A2 = 6A3, since \,A = A" is 
reducible to J^ , and the maps tangent to solderings are TXX = TX2 = id r r v r . 
Consequently, we obtain a condition 

Al = A2 = A3 

for the underlying connections of A. Finally, by Theorem 6, the reducibility of A" 
to the principal subfibration 3*ss is equivalent to the i-invariance of A with respect 
to the canonical involution / on 7TM, Jx(i~l) o A o i = A. Together, we can give 
the following answer: F = 7T(A) if and only if F is double linear, i-invariant, and 
the underlying linear connections coincide. 

In the paper, similar statements for TF*-soldered Q)5£-spaces are deduced. Similar
ly, TT*(A) is a j^JSf-connection, and Theorems 2, 10 describe the situation. Let us 
remark that there is no "canonical" involution on TT*M. To characterize reducibility, 
we use an isomorphism between 3Fs and the principal fibration $Fs of TT*-soldered 
£?if-frames on 7T*M. 

1. PRELIMINARIES 

Let C denote a double vector space (.^J^f-space) over reals with the natural pro
jection n: C -> A x B and with the centre (kernel) V, [10]. If dim A = n, dim B = s, 
dim V = t we set dim C = (n9 s91). Any two double vector spaces are ^if-iso-
morphic iff they have the same dimension. Hence C is isomorphic to the trivial 
.^if-space K(n9 s, t) = Rn x Rs x Rf with the natural projection K -> Rn x Rs 

and centre R*. A ££j£?-frame in C is a .^^-isomorphism / : K(n9 s, t) -+ C, the set 
F(C) of all frames in C forms a Lie group diffeomorphic with the Lie group Aut(«, 5, t) 
of all ^J^-automorphisms of K(n9 ;s, t)9 [11]. Any frame / i n C determines linear 
isomorphisms xj = fx: Rn -> A, T 2 / = f2: Rs -> B, and T 3 / = fJR{ -• V, i.e. frames 
in A, B9 and V, respectively. 
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Let (#, p, M) be a double vector fibration, [11], with the underlying vector fibra
t i o n s ^ , pj, M), (J1, p2, M), (i\ p3, M) . As in the case of vector fibrations (bundles), 
there is a principal fibration of double linear frames associated with c6. The union 
3F = \J F(#v) of all ^J^-frames (on fibres r6x of # over x e M) forms a principal 

xeAf 

fibration (J*\ q. M) over M with the structure group Aut(«, s, t) and projection 
4: J*7 -> M, c/(/) = N where x is such an element of M that / G F(9>X). Any frame 
fe(6x determines elements Ttf T2f, T 3 / which can be regarded as elements of the 
fibres &Ux, &r

2,xi ̂ 3,x of t n e principal fibrations (J^^q i , M, Aut(rc)), (,j^2, q2^ -W, 
Aut(s)), (J^3, a3, M, Aut(t)) corresponding to the underlying vector fibrations 
s/, $, Y of (6. In this way, we obtain smooth morphisms of principal fibrations over 
homomorphisms of structure groups 

T,: (J^. q, M, Aut(/?, s. t)) -> (3Fx, qx. M, Aut(n)) over 

Aut(/z. s, t) -> Aut(/?) , 

and similarly for T2: 3F -> 3F' 2 and T3: & -> J^"3. The morphisms TX, T2, T3 determine 
a morphism of principal fibrations 

x = (Tl, T2, T3): J^ -> ( # , q, M, Aut(n) x Aut(s) x Aut(f)) 

where & = &x x M 2F' 2 x M J*3 denotes the Whitney sum. 
A TT-soldering (or TT*-soldering) on the .5^-space C is a couple of linear iso

morphisms 

Xl: V^A, l2: V->B 

(or / j : V — A, / 2 : V-> B*, respectively), [12]. 
A double linear morphism cp = (cpx, cp2, <p3, o): C -> C of two TT-soldered (or 

7T*-soldered) ^J^f-spaces is called TT- (TT*-) soldered, [11], [12], if the underlying 
linear morphisms cp1: A -> A', c/>2: B -> B', (p3: V-> V' satisfy 

X>3 = <PlXl 
and 

*2</>3 = ^2/2 (or ^ 2 / > 3 = / 2 , respectively) . 

A frame/ in the TT-soldered (or TT*-soldered) ^^f-space C is TT- (or 7T*-)soldered 
if 

Z l T 3 / = T i / 
and 

Z2T3/ = T 2 / (or / 2 T 3 / = ( T 2 / ) * , respectively) . 

A 9 £ -fibration (% p, M) is TT- (or TT*-) soldered if there exists a ^^-space C 
with 7T-(7T*-) soldering such that any point x of M has a neighborhood U such that 
the restriction ((6V, pv, M) of # to U is isomorphic with (U x C, pr t , U) over 
identity. Any TT- (or TT*-) soldering on <€ induces, via linear isomorphisms 

7.1.x' +\x "> «<v , 

X2,x' *~x - • # , (o r *2 f J c : 1TX -> £ * ) , 
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the isomorphisms of the underlying fibrations, [11], 

Xl:(rr,p39M)^(s/,pl9M)9 

X2: (i\ p3, M) - (a, p2, M) (or X2: (V, p3, M) - (#*, p*, M)) . 

2. THE CONNECTIONS ON FT- AND TT*-SOLDERED ^ ^ - F I B R A T I O N S 

Consider a ^^f-fibration (€ with a TT-soldering, and assume a double linear con

nection T: rfi -> J1^ on # , [11], with the underlying linear connections Tt on s4', 

F2 on ,^, and F3 on /'". The set of all TT-soldered frames on rf> forms a principal 

fibration (3? s, qs, M), qs = q\3r
s, a subfibration of (2F, q, M). The structure group 

or ,FS is the group Auts(/jr x #T x l^m) of all TT-soldered ®S£-automorphisms of 

the trivial £/-^-space R3m with the canonical TT-soldering yy = y2 = id,/?. = dim AI. 

Denote by 3~ the set 

•** = { (L , j2. j3)e#; x, j3 = j „ X2/3 = / 2 ; . 

jT is a closed submanifold in 3F, and the following is satisfied: 

Lemma 1. fe 3's if and only if xf = 3T'. 

Similarly as in the linear case, there is a one-to-one map between the set of double 

linear connections on # and the set of right invariant connections on the principal 

fibration 3*. In both linear and double linear cases, let us denote this map by i. Now 

a natural question arises under what conditions the invariant connection iT on 3* 

corresponding to F on r€ can be reduced to 3*s. 

Theorem 1. The invariant connection iT is reducible to the principal subfibration 

(3*s, qs, M) if and only if the horizontal subspaces H{. H2, and H3 of connections 

LTX, I,T2, and i.T3 satisfy 

(1) (TXl)H3 = Hi, (TX2)H3 = H2. 

Proof , (a) Suppose that iT is reducible to 3r
s. Let f3 e •3r

3, and let r3 e ( H 3 ) / g 

be any element of the horizontal space of *F3 at the point f 3 . Define f, = Kif3, 

f2 = ^2f3^ a n ^ choose fe J*7" so tha t f = ( f i , f2 , f3) . T h e n f e - i ^ . In the horizontal 

space Hf with respect to F, assume any vector v e Hf with the property ( T T 3 ) V = v3. 

Choose an AF-horizontal curve y: ( —e, e) -> .3* such that 

dt 

Since y(0) = fe 3r
s and iT is reducible to Ws we have y(t) e 3' s for all t e ( —e, e). 

By Lemma 1, ry(t) e 3~ for t e ( — e, e), which means 

* i T 3 y(t) = Tt y(t), K2r3 y(t) = T2 y(t) 

for t e ( —e, e). This implies 

(TX{) i>3 = i>. , (TX2) f3 = v2 
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where 

d(r, y(0)) d(r2y(0)) 
v, = 6 r i i , Vj = En?. 

dt dr 
This proves (l). 

(b) Conversely, let (1) be fulfilled. Let fe J^s, and let y: ( —e, e) -• 3F be a hori
zontal curve of *F. Denote /• = T,/, / = 1, 2, 3. The curve r-y is a horizontal lift 
of the curve gy with respect to *Ft through the point Tt y(0) = / t . Similarly, T 3 / is 
a horizontal lift of qy with respect to *F3 through the point T3 y(0) = / 3 . But Xlfi = 
= / , , and (TX{) H3 = Hx. That is why Xlr3 is also a horizontal lift of qy through/, 
with respect to *F,. We obtain XXT3 y(t) = Tt y(t) for te( —s, 8). In a similar way, 
X 2 T 3 y(t) = T2 y(t) for te(-e, e). Thus T y(f) G 9~ for all t € ( -£ , s), and y(t) G FS 

for t G ( —e, e). Therefore £F is reducible to J*v 

Now consider a i?Jzf-fibration <6 on M with TT*-soldering given by 

Xt: ( r , p3, Af) - ( ^ , P l , M) , X2: (y , p3, M) - (J?*, p*, M ) . 

All TT*-soldered frames in J* corresponding to # constitute again a principal 
fibration J%, a subfibration of $F. Its structure group is the group Auts(R

m* x 
x Rm x 0T*) of all TT*-soldered ^if-automorphisms of the space Rm* x Rm x 
x Rm* with its canonical TT*-soldering yx = id, y2 = id. 

The map T: ^F -• & = ZFx x <F2 x £F 3 is again a surjective submersion. Let us 
define a closed submanifold ZT* in J^ by 

r* = {(fxJi*h)e$r, XJ3=f^ X2f3=fl}. 

The frame/ in J^ is soldered iff xf belongs to ZT*. Let F, Ft, <F-^ i = 1, 2, 3, and iF 
be as above. Denote by 3F*2 the principal fibration corresponding to the vector 
fibration jfi*. A map associating any frame with its dual coframe gives an iso
morphism :¥2 -> 3*'X of principal fibrations over M. This isomorphism maps the 
invariant connection iT2 on 3F2 onto an invariant connection LT% on $F%. 

Theorem 2. The right invariant connection LT on the TT*-soldered Q^-fibration rf> 
is reducible to the subfibration &s of TT*-soldered frames if and only if the hori
zontal spaces Hj, H2, H3 of the connections tFj, tF2, LT3 satisfy 

(TX,)W3 = W,. (TX2)H3 = H2. 

The proof is similar as in the case of Theorem 1. 

3. THE STRUCTURE FUNCTION AND REDUCTIONS 

Given an m-dimensional manifold M, let H2M = inv Jl(Rm, M) denote the 
principal fibration of second order frames on M with the structure group lltn, the 
group of all invertible 2-jets on Rm with source and target 0, l}m = inv Jl(Rm, Rm)0. 
This structure group can be regarded as a semidirect product of the linear group 
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Ll
m = GL(m, R) and the abelian group of all symmetric bilinear maps Rm x Rm -• 

-> Rm, L2
m = Ll

m x Homsym(Rm x Rm, Rm), [10]. So we can write its elements as 
couples (<p, a) with <p e l}m and a a symmetric bilinear homomorphism on Rm. 
Furthermore, L2

m is isomorphic with the group Gss = Autss(TT0R
m) of all strongly 

soldered automorphisms of the £^JS?-space TT0R
m, [12], via the map 

x: L2
m - Autss(TT0R

m), x(q>, a) = (<p, <p, <p, a). 

We shall identify the both groups. 
Consider now the principal fibration & or 2Fs, of frames or TT-soldered frames, 

respectively, on TTM. We shall construct a morphism 

h: H2M -> JF 

of principal fibrations as follows. An element O e H2M is of the form O = j0x where 
a: U c Rm -+ M is a local diffeomorphism 

Froa: TT0!jT -> TT^M , 

a restriction of the map TTa to the fibre of TTOW through the origin 0 e Rm. This 
definition is independent of the choice of a diffeomorphism a with the property 

Q = jl<x. Since 7T0a respects the natural TT-solderings on TT0R
m and TTVM we 

have h(o)elFs for any geH2M. Hence we obtain a monomorphism of principal 
fibrations 

h: H2M -> J%. 

For any g e L2
m and O e H2M, h(O#) = h(g) . *(#). 

Now we introduce a structure function 0 on #"s which enables us to characterize 
the frames belonging to h(H2M). For simplicity we use the notation Gs for the group 
Auts(TT0^w) of all TF-soldered .^-automorphisms of TT0R

m. Any element 
(<p, <p, cp, a) e Gs is uniquely expressible in the form (<p, <p, <p, a) = (<p. </>, <p, b) . 
.(\, 1, 1, a) where beHomsym(^w x Rm,Rm), and a is an element of the vector 
space Homant(!£T x Rm, Rm) of all antisymmetric bilinear maps on Rm. Any frame 
/ e J^s x is a soldered ^^-isomorphism 

(2) / : TT0R
m -> TTXM . 

Let a, a': U a Rm -> M be local diffeomorphisms with a(0) = a'(0) = x. The 
element (TT0a)~1 fe Gs has a unique decomposition 

(TT0a)"1/= 0 . (1 , 1, l , a ) , geGss, a G H o m l n t ( r x r , r ) . 

Similarly for (TT 0 a ' ) _ 1 / = g' . (\, 1, 1, a'). A simple evaluation shows that g' = 
= (TT0(a'_1 o a)) g, and a = a'. So we can define a structure function 

0: &s -• H o m a n t ( r x Rm, Rm) on the principal fibration J?s of TT-soldered 
frames on TTM by 

6>(/) = a. 
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Theorem 3. The structure function O has the following properties: 

(3) O is differentiate map. 

(4) If g e Gs with the decomposition g = cp, (p, <p, b) . (1, 1, 1, a) then 
Q(fg) = ip-{ 0(f) (<?,</>) + a. 

Proof. The verification of (3) is standard, (4) follows by a direct evaluation. 

The frames from !Fss = h(H2M) can be now characterized as follows: 

Theorem 4. The frame f belongs to 3F ss if and only if@(f) = 0. 

Now consider the second tangent bundle on M as a double vector fibration f€ = 
= TTM with s/ = 3 = V = TM, and with projections p: TTM -> M, 7rx: TTM -> 
-» TM, n2: TTM -> TM, [11]. Let /: TTM -> TTM denote the canonical involution, 
and denote by q2 the projection q2: J%s -> M. 

Lemma 2. Let z, z' be elements of TTM, let kbe a real number. Then the following 
is satisfied: 

(4) If nxz = nxz' then i(z + t z') = (iz) + 2 (/z') . 

(5) If 7r2z = 7r2z' then i(z + 2 z') = (/z) + x (iz') . 

(6) / ( / . 1 z ) = A . 2 ( /z ) , 

(7) /(A.2z) = A. 1 ( /z ) . 

Proof. We shall prove (4). Choose a frame f e &ss = h(H2M) with q2(f) = 
= p(z) = p(z'). Since f is of the form (2) and TT0R

m is isomorphic to R3m, there 
are uniquely determined elements (a, b, v), (a', b', v') from R3m such that 

z = f(a, b, v), z' = / (a ' , b', v') . 

Let / be an element of Zss(R
m x Rm x /y?m) determining the canonical involution / 

on TTM. Here Zss denotes the set of all differentiable maps of the given .^J^f-space 
into itself commuting with all its strongly TT-soldered .^J^f-automorphisms, [12]. 
We have 

i(z + ! z') = if (a, b + b', v + v') = f(7(a, b + b', v + v')) = 

= f(b + b', a, v + v') = f(7(a, b, v)) +2f(7(a, b', v')) = 

= ( /z )+ 2 ( /z ' ) . 

Similarly in the other cases. 

Assume a framefe &, i.e. a ^J^-isomorphismf: R3m -> TTXM. It is easily checked 
that //7: /^3m -> FTXM is again a .^J2f-isomorphism. The map 

f-^If= /f7, 1:3? ->F 

will be called the canonical involution on «^r. 
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Theorem 5. The canonical involution I on ^ satisfies 

(8) I2 = id , 

(9) I(jg = J % , 

(10) If = f for fe^ss. 

(11) If fe3Fs then G(lf) = - Of. 

Proof. (8) is clear. Letfe 3F s. Since J% corresponding to TTM has the group 
Auts(!jtf

3m) = Auts(Tr0-^m) = Gs as its structure group we can choose fe^ss and 
g = (<p, cp, <p, a) e Gs such that f = fg. Evaluation of If on an arbitrary (a, b, v) e 
e R3m shows that 

If = f(<p, <p, <p, <y) 

where d: Rm x Rm -> Rm is a bilinear map given by d(x, y) = cr(y, x). Hence 
(cp, cp, <p, d) e Gs, and IfeJ^ which proves (9). (10) follows immediately by the 
equality ifi(a, b,v) = fi2(a, b, v) for fe^ss. Further, given fe^s let /e«fS J 

be a unique form with the property f = f(l, 1,1, a) where a e H o m a n t ( r x Rm, Rm). 
Evaluation shows that If = f(i, 1, 1, -a). By (4) and Theorem 4, 0(f) = 0(f) + 
+ a = a, 0(lf) = 0(f) - a= -a. 

Remark. The frames from $F satisfying (10) are also ,,soldered'* in some sense, 
but it can be verified that &'ss 4= {fe &, If = f). 

Theorem 6. Let T be a Q)$£-connection on TTM such that the invariant connection 
iT on 3F is reducible to 3F &. Then iT is reducible to &'ss if and only if F is invariant 
with respect to the canonical involution i on TTM. 

Proof, (a) First suppose that iT is reducible to J% = h(H2M). Let ze TTXM. 
Choose a vector Z e H2 from the horizontal space with respect to F and a frame 
fe h(HlM). Clearly there exists a unique element c e R3m such that z = fc, a value 
of the map f on c which is an element of the associated fibration TTM determined 
by an element f of the principal fibration $FSS c J%, and an element c of the standard 
fibre R3m. Choose a curve S: ( — s, s) -* M such that 

S(0) = x, (1 ) J(t) = (Tp)Z 

where p: TTM -> M is a projection, and consider its horizontal lift with respect 
to tT, y: (-s,s)-+ 3F with y(0) = f. Then 

ľ(0)c = z, ( І ) Jy(t)c) = z 

and y(t) e &'ss for te(-s, s) because of the reducibility of iT to &'„. Using again an 
element 7 e Zss(R3m) and a horizontal curve (with respect to F) y(t) (7c) we obtain 
(Ti)Z = (dldt)t = 0 (y(t) (lc)) e Hiz, which proves the i-invariance. 

(b) Now suppose the i-invariance of F on TTM. Letfe J%s and Z e Hf where Hf 
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is horizontal to iT. Assume a horizontal curve y: ( — e, s) -> 8F with y(0) = f 
(d/dr) /=0 y(t) = Z, and choose y: ( - e , e) -> J%s such that q2y = qsy, y(0) = f 
There is a uniquely determined curve g:( — £,e)-^Gs such that y(t) = y(t) g(t) for 
t e ( — s, s), g(0) = idjjsm. For any c e R3m, the curve yc: ( — e, e) -> TTM is horizontal 
to F. Since F is f-invariant, i(yc) is a horizontal curve, and we have 

(12) i(y(t)c) = y(*)(i(9(t)c)). 

Further, y(7c): ( — e, s) -> 7TM is another horizontal curve satisfying y(t) (7c) = 
= y(t)(a(t)(7c)). We have 

p(i(yc)) = p(yc) = q2y = p(y(lc)), 

i(y(0)c) = 7(0)(7c). 

By the unicity of a horizontal lift, i(yc) = y(7c). By (12), (13) we obtain 

i(g(t) c) = g(t) (7c) for t e ( - 8, e) . 

Rewriting this equality for components of g(t) = (<pt, <pt, <pt, <rt) and c = (vl9 v2, v3) 
and comparing them yields <rt(vl9 v2) = <rt(vl91^). Since c was arbitrary we obtain 
<rteHomsym(Rm x Rm,Rm) for te(-s, s). Consequently, g(t) e Gss for te(-e, e). 
Hence y(t) = y(t) g(t) e h(H2M) and 

Z = ( ! ) , . * ) « * , . ) . 

which proves the reducibility of <sF to $Fss. 
In the case of the functor TT*, similar statements can be proved. Let 3F or 9*s 

denote the fibration of frames or of TT*-soldered frames, respectively, on TT*M. 
We introduce a morphism 

h: H2M -> # 

similarly as above. For Q = j0a e H2M, a(0) = x, define R(Q) = 7T0*a_1: TT*Rm -* 
-> TT*M. This definition depends only on the 2-jet of the local diffeomorphism 
a: U c Rm -> M, and since TT0*a respects the natural soldering, h takes its values 
in <FS% Again, h: H2M -> «^s is a monomorphism of principal fibrations, h(Dg) = 
= h(o)x(g) for O e H2M, g E L2

n. Here i?: L2„, -> Auts(TT0*/J?m) is an isomorphism 
identifying this both groups given by 

x(<p, a) = (cp*~\ <p, cp*~\ $) , 

where a bilinear map \j/ is defined by the equality 

(q>~ l<r(vt, <p~ 1(v2), a> = - <v2, \j/(a, vt)> . 

Let Gs (or Gss) denote the group of all 7T*-soldered (or strongly TT*-soldered, 
respectively) ^J^-automorphisms of TT*Rm, [13]. 

Lemma 3. Any element (cp*'1, <p, cp*'1, ij/) e Gs has a unique decomposition 

(cp*-\ <p, <p*~\ i/s) = (cp*~\ <p, cp*-\ e) (id*"1, id, id*"1, fi) 
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where c: Rm* x Rm -> Rm* is a cp-symmetric bilinear map, and ft: Rm* x Rm -> 
—• #vrm* is an id-antisymmetric bilinear map. 

Remark . In our case, s is <p-symmetric (</>antisymmetric) if 

<v, s(a, <p~l(w)y = <w, e(a,<p~x(v)y (or <v, e(a, <p~x(w) = 

= - O , s(a, <p~*(v)y) for v, weRm , ae Rm* . 

Proof. The unicity of the decomposition is based on the fact that both the cp-
symmetric and <p-antisymmetric parts of the bilinear map \j/ = E + <p*~xp are 
determined uniquely. Let us prove the existence. Define a bilinear o: Rm x Rm -+ 
-> Rm by 

(cp~xo(vi, cp~x(v2)),ay = -<v2 ,^(O , r t )> , 

and denote by o', o" its symmetric or antisymmetric parts, tespectively. Further, let 
bilinear maps s, ft: Rm* x Rm -> Rm* be introduced by 

((p~1of(v1, (p~x(v2), ay = -<v 2 ,e(a , vi)> , 

<(p~lof,(v1,<p~x(v2)), ay = -<[v2,ft(a, vt)y . 

It can be checked that s is <B-symmetric, ft is <p-antisymmetric, ft = <p*ft is id-anti
symmetric, and 

(<p*-1,<B,<B*-1,e)(id*"1,id, id*"1,/?) = (<p*-x,<p,cp*~x,e + ft). 
Further, , _w ,. 

-<v 2 , (a + /?)(a, v,)> = 

= <[(p-xo'(vl,<p-x(v2)),ay + <<p_1<7"(vi, <p_1(v2), a> = 

= - < ^ i A ( ^ i ) > • 

Therefore £ + ft = ij/, which proves the existence. 

Now we shall describe frames from h(H2M) = &'ss by means of a structure 

function Q. £rs_> H o m a n t ( r * x Rm, Rm*) . 

Let fe£~sx, and let a e U c Rm -» M be a local diffeomorphism with a(0) = x. 
Then (TTQ^~X) f e Gs, and there is a unique decomposition (TT*cc~x)f = 
= a(id*_1, id, id*"1, />) where a e <3--, and an id-antisymmetric ft e Homant(/£P* x 
x Rm, Rm*) is independent of the choice of a with the above property. Hence we 

can put 

&if) = p. 
Theorem 7. The structure function 0 has the properties 

(14) 0 is differentiate. 

(15) If g e Gs with the decomposition g = (<p*-1, cp, <p*~x,b) . 
.(id*"1 , id, id*"1 J ) then 

&(/§) = q>* 9(f) (<P*-1,0) + P. 

The proof uses similar arguments as the proof of Theorem 3. 
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Theorem 8.fe h(H2M) if and only if9(f) = 0. 

The following lemma can be proved. 

Lemma 4, A map p: Gs —> Gs given by the formula 

p(<p, cp, <p,a) = (<p*~l, <p, <p*~\s) 

where r. Rm* x Rm -> Rm* is a bilinear map given by 

(cp~xo(v{,<p~x(v2)),ay = -<v2 ,e(a , vi)> for v^v2eRm, 
a e Rm* 

is a group isomorphism. Moreover, p maps the subgroup Gss <= Gs isomorphically 
onto Gss a Gs. 

A map hh~]: dFss -> <Fss is an isomorphism of principal fibrations over a structure 
group morphism // | Gss: Gss -» Gss. We will construct an extension of hh~x as 
follows. Let f e ^sx, and choose f0 e £Fss x. Then there is a single element g e Gs 

such that f = f0g. Define 

y.(f) = (hh-\f0))n(g). 

It can be verified that this definition is independent of the choice off0. For fe.Wss, 
we have x(f) = hh~1(f). So we have proved 

Theorem 9. The map x: £Fs - » SFs is an isomorphism of principal fibrations over 
the structure group isomorphism p: Gs —• Gs, and x maps a principal subfibration 
/Fss onto &ss. 

Invariant connections T on 3Fs and T on 3FS will be called conjugated \$(Tx) F = 
= T. The existence of a conjugated connection to a given connection on 3F's or 3*s, 
respectively, is clear. 

Theorem 10. Let T be an invariant connection on £Fs. Then T is reducible onto 
h(H2M) if and only if the corresponding conjugated connection F is reducible 
to h(H2M). 
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