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1. INTRODUCTION 

Although Browder and Gupta [1] and Minty [3] have contributed enormously to 

the solvability of nonlinear functional equations in reflexive Banach spaces, it seems 

that Zarantonello [7] was the first to apply the concept of numerical range of nonlin­

ear operators to the solvability of nonlinear functional equations in a Hilbert space 

setting. The aim of this paper is to extend some of the results of Zarantonello to 

nonlinear Banach space operators, and relate them to approximation-solvability [4]. 

Let us consider an approximation scheme ITQ = {Xn, En, Rn> Yn, Q n } , represented 

by a diagram 

T 
A 

( i ) 

X ----> Y 

\Џn ІQn 

Xn 

An v 

* *n 

where T: X —• Y from an infinite-dimensional normed linear space X to another 

infinite-dimensional linear space Y is a nonlinear mapping corresponding to the equa­

tion 

(2) Tx = b for x e K, b e Y, 

where all An = QnTEn are continuous. Here Xn and Yn are normed spaces with 

dimKn = dim y n < oo and, the operators En: Xn —• X and Qn: Y -• Yn are 

continuous and linear with 

sup HKnll < oo and sup ||C?n|| < oo. 
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The operator Rn: X —• Xn is a restriction operator. 

As far as the solvability of the equation (2) is concerned, we consider not just 
the usual solvability—the existence of a solution of the equation (2) is somehow 
established, but an approximation-solvability—a solution of the equation is obtained 
as a limit (or at least one limit point) of solutions xn of simpler finite-dimensional 
problems 

(3) Anxn = Qnb for xneXny Qnb e Yn. 

At this point, we are faced with the problem: For what type of a linear or nonlinear 
mapping T, is it possible to construct a solution of the equation (2) as a strong 
limit of solutions xn of the equations (3)? Browder and Petryshyn [2] came up 

with the answer—A-proper mappings. The notion of the A-proper mappings is 
closely connected with the approximation-solvability of the equation (2), and further 
does extend and unify results concerning the Galerkin type methods for linear and 
nonlinear equations in the theory of strongly monotone and accretive operators, 
operators of the type (S),- P7-compact, ball condensing and other mappings. 

The concept of A-proper mappings extends also to the case of the stability of 
the projectional method in the sense of Mikhlin, and relates rather naturally to the 
solvability of elliptic partial differential equations. 

Next, we consider an approximation scheme w\ = {Kn, Kn, Rn, X*, J?*} in reflex­
ive Banach spaces. The symbol K is used to denote either the field real or the field 
complex. 

We consider the operator equation 

(4) Tx = 6, x e X, 

and related approximate equations 

(5) EnTEnxn = E'nb 

for xn € Xn, n = 1, 2, . . . , under the following approximation scheme ir\ = 
{Xn, En, Rn,Xn, £"*}: 

T 
X -^ X* 

(6) Rn[]En [En 

Xn ^ Xn 

where An = EnTEn. We make the following assumptions corresponding to approx­
imation scheme n\ = {Xn, En, .ftn,X*, F*}, represented by the diagram (6): 

504 



(A 1) X is a separable reflexive Banach space over field K with dimX = oo. Let 
(Xn) be a Galerkin scheme in X with 

Xn = {ein , . . . , e n * n } , n = 1 , 2 , — 

(A2) Let En: Xn —• X be the embedding operator such that Xn C X. The 
operator Rn: X —• Xn is defined as follows. For each x G X, there exists at least 
one element RnX € Xn such that 

l l x - i ^ x ^ d i s ^ x , * , , ) . 

For n = 1, 2, . . . , the approximate equations (5) are equivalent to the Galerkin 

equations 

[Txn ,e i n] = [6,e jn], 

where [•, •] is a pairing between Xn and Kn, and j = 1, 2, . . . , n'. 

(A3) The operator T: X —• K* is pseudo-monotone and continuous. That means, 
T is pseudo-monotone if there exists a cf > 0 such that 

(7) | [ T x - T y , . r - y ] | ^ d | | x - y | | 2 for all x, y € X, 

or, 

(7') ltQT.Tr - Xy, .r - y]| ^ d|||x|| - |ty||| ||x - y|| 

for all x,r/ £ X, 

Let us recall some of the definitions closely related to the present investigation. 

Definition 1.1 (Compatibility). An approximation scheme ir\ = {XnyEn, 

RnyXn)En} is said to be compatible if 

(8) lim H^iir.x - X||A- = 0 for all x € X. 
n—*oo 

Definition 1.2 (Admissible Inner Approximation). The approximation scheme 
*i = {Xn, En , Rn,Xn,En} represented by the diagram (6) is an admissible inner 

approximation iff 

(i) X and X* are infinite-dimensional normed spaces over field K\ 

(ii) Xn and Xn are normed spaces over K with dim Aw = dimX* < oo for all n; 

(iii) for all n, the operator En: Xn —• X and En: X* —• Xn are linear and 
continuous with supH^H < oo and sup||2?*|| < oo. The operator R^: X —• Xn is 
called a restriction operator; and 

(iv) the compatibility condition is satisfied. 
We note that under the assumptions (A1)-(A3), the diagram (6) represents an 

admissible inner approximation scheme in the sense of the above definition. 
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Definition 1.3 (Consistency). An approximation scheme AT = {Xn,EniRn} 

X*, En} is said to be consistent if, for all x G K, we have 

(9) lim \\EZTx-AnRnx\\xi=0. 
n-+oo m 

Definition 1.4 (Stability). An approximation scheme n\ = {Xny En%RnyX^% 

En] is called 5*a6/e if there exists an no such that, for d > 0, 

(10) \\Anx-Any\\x.>d\\x-y\\x„ 

for all x , j /GX n and all n ^ no. 

Definition 1.5 (Approximation-Solvability). The equation (4) is said to be 
uniquely approximation-solvable, if, for each 6 G K*, 

(i) equation Tar = 6, x G K, has a unique solution; 

(ii) for each n ^ no, the approximation equation EnTEnxn = 2?*6, xn G Xn, has 

a unique solution; and 

(iii) the sequence (xn) converges to the solution x of the equation Tx = b in the 

sense that 

lim | |£ n x n - x\\x = 0 
n—*oo 

Definition 1.6 (.4-Properness). The operator T: X —• X* is said to be A-proper 

with respect to approximation scheme ir\ = {Kn, En, Rn,Xn, En) if the following 
holds. Let (n') be any subsequence of the sequence of natural numbers. If (xn/) is a 
sequence with xn> G Xni for all n' and if 

lim ||i4n/arn/ - Enb\\X\ = 0 for some b G X* 
n—*oo * 

and sup||xn/| |xn/ < oo, then there exists a subsequence (xnn) such that, for x G K, 

lim \\En"Xnn — x\\x = 0 and Tx = 6. 
fl—•oo 

In what follows, the symbols "—•" and "—•" above shall denote strong and weak 
convergence, respectively. 

Definition 1.7 (Duality Mapping). We recall that a continuous function /i: 

R+ = {t: t ^ 0} —• R+ is called a gauge function if /i(0) = 0, and \i is strictly 

increasing. Let X be a reflexive Banach space over R and K* its dual. A mapping 
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J: X —• X* is said to be a duality mapping between X and X* with respect to gauge 
function fi if 

[Jx, x) = fifll'IDII'll. and ||.fe|| = /i(||x||) for x&X. 

Note that if fi(t) = t, J is called a 'normalized duality' mapping. If X* is strictly 
convex, then J is uniquely determined by /i, and if X is also reflexive, then J is a 
single-valued demicontinuous mapping of X onto X*, which is bounded and posi­
tively homogeneous; furthermore, J is monotone and satisfies the property 

(11) [Jz-Jy,z-y] = [Jx,x-y]-[Jy,x-y]>\v(\\x\\)-n(\\y\\)\\\x-y\\ 

for all x,y € X. 

For J a normalized duality, (11) reduces to 

(12) [Jx-Jy,x-y)2\\\x\\-\\y\\\\\x-y\\ 

for all x, y G .K. 

In addition, if X is strictly convex, then the operator J: X —• X* is strictly 

monotone and bijective. The inverse operator 

J-l:X* — K 

equals the duality mapping of the dual space X* provided that X is reflexive. 
Furthermore, it follows from 

(13) [Jxn - Jx,xn - x] —• 0 as n —• oo, 

that xn ---• x € K as n —• oo. If, in addition, X is locally uniformly convex, then 

(13) implies that xn —• x as n —• oo, that is, J satisfies Condition (S). 

To show that Condition (13) implies that xn ---V x as n —• oo, if we write 

[jXn - Jx, - . „ - - ] = (||>„|| -1 |* | | ) 2 + ( | M | M l - [Jxn,x]) + (HcH ||2|| - [jx,«„]), 

then, since each of the three terms on the right hand side is non-negative, we have 

IMI — ||*|| and [Jx, xn] — ||x||2 as n -> oo. 

Since X is reflexive, there is a subsequence, again denoted by (xn), such that 

(14) xn^+y as n —• oo. 
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It can be easily shown that y = x. 

If, in addition, X is locally uniformly convex, then it follows from 

xn ---> x and | |xn | | —> ||x|| as n —• oo 

that xn —• x as n —• oo. 

J: X —• X* is continuous when X* is locally uniformly convex. 
Definition 1.8 (Numerical Range). Let X be a reflexive Banach space and K* 

its dual. The numerical range of an operator A: X —> X*, denoted by V[A], is 

defined to be the set 

\/tA^ f[Ax-Ay,x-y] \ 
^A]={[JX-Jy,X-y):X'yeX'X^V\' 

where [•, •] is the pairing between K* and X. Here J: X —• X* is strictly monotone 

normalized duality. Clearly, V[A] is a subset of the field K, and V[A] coincides with 

the Zarantonello numerical range [7] when X is a Hilbert space. The Zarantonello 

numerical range of A, denoted by N[-4], is defined to be the set 

where (•, •) is the standard inner product on X. Furthermore, V[A] coincides with 

the usual numerical range when A is linear. 

Next, we state the following result, crucial to the approximation-solvability. 

Lemma 1.9 ([8], Theor. 34 A). Let all operators An : Xn —+ Kn be continuous. If 

the approximation scheme represented by diagram (6) is an admissible inner approx­

imation with consistency and stability, then the following conditions are equivalent: 

(CI) Solvability. 

(C2) Unique approximation-solvability. 

(C3) A-properness. 

That means, if the approximation scheme iri = {Xn,Eny Rn, X*, E„} is consistent 

and stable, then the equation Tx = 6, x £ X, is uniquely approximation-solvable iff 

the operator T is A-proper. 
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2. MAIN RESULTS 

This section deals with the results on the solvability and approximation-solvability. 

Before proceeding to the main results on the solvability (approximation-solvability), 

we discuss some results relating to the elementary properties of the numerical range 

V[A). 

Theorem 2 .1 . Let A,B: X —* X* be mappings from a reflexive Banach space 

X to its dual X*, and \ € K, (field). Then 

(i)V[\A) = \V[A); 

(ii) V[A + B]C V[A] + V[B]; and 

(iii)V[A-\J] = V[A]-{\), 

where J: X —• X* is strictly monotone normalized duality. 

P r o o f . The proof follows from the definition. D 

Theorem 2.2. Suppose that the operator A: X —• X* is continuous from a 

separable reflexive complex Banach space X to its dual X*. If X and X* are locally 

uniformly convex, X € K (field) has a positive distance from the numerical range 

V[A] of A, i.e., 

d = inf{\X-fi\:fieV[A]}>0, 

and J: X —> X* is normalized duality, then the equation 

Ax — XJx = b 

has a unique solution for every b G X*. 

If, in addition, dimX = oo, then the equation 

Ax — XJx = b 

is uniquely approximation-solvable for each b 6 X*. 

P r o o f . Since J: X —• X* is strictly monotone, we obtain the key inequality, 
for all x, y E X with x ^ y, 

\[(A - XJ)x -(A- AJ)y, x - y]\ = \[Ax -Ay,x-y]- X[Jx - Jy,x - y]\ 

\[Ax - Ay,x - y] | . . 
= \[JX-Jy,X-y)-X\\[Jx-Jy'X-y]\ 
> d Re[Jx — Jy, x — y). 
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This, in turn, implies that 

(15) \[(A - \J)z -(A- \J)y, z-y]\>d \\\z\\ - \\y\\\ \\z - y\\, 

and consequently, 

(16) \\(A-\J)z-{A-\JM2d\\\z\\-M\\ forallx.yeX. 

Let us first consider the case when dimX < oo. By inequality (16), it is immediate 
that (_4-AJ) is one-to-one. Let us take d(r) = dr-\\(A- AJ)(0)||. Then, for x G X, 
we find 

\[(A - \J)z,z]\ > \[(A - \J)z -(A- \J)(0), z]\ - | p - AJ)(0), x]| 

>d\\z\\2-\\(A-\J)(0)\\\\z\\ 

= d(NI)||*||, 

so that ||(v4-AJ)x|| ^ d(\\x\\) for x ^ 0. For each M > 0, therefore, there exists k(M) 

such that if ||(i4 - AJ)x|| ^ M then ||x|| ^ k(M). Thus, (A - AJ)"1 carries bounded 

subsets of R(A — AJ) into bounded subsets of X, and is continuous from R(A — AJ) 

to X. By Brouwer theorem on invariance of domain, R(A — AJ) is open. Now, it 

only remains to show that R(A — AJ) is closed. To this end, let (A — AJ)xm —• b 

as m —• oo. Thus, ((A — AJ)xm) is a Cauchy sequence, and it is immediate that, for 

some x G K, 

(A — AJ)xm — (A — AJ)x —• b — (A — AJ)x as m —• oo. 

Since X is reflexive, there exists a subsequence, again denoted by (xm) , such that, 

for some x G K, 
w 

xm —* x as m —• oo. 

It follows from the inequality (15) and above arguments that, as m —• oo, 
llkmll - ||*||| ||*m - *|| ^ d~l\[(A - AJ)xm - (A - AJ)x,xm - x] I - 0, • 

and thus, | |xm | | —• ||x|| as m —• oo. 

Since X is locally uniformly convex, xm -^ x and ||xm | | —• ||x|| as m —• oo implies 
that xm —> x as m —• oo. It follows from the continuity of A (and hence A — AJ) 
that (A — AJ)x = 6 and, consequently, 6 G R(A - AJ). 

Thus, the non-empty set R(A — AJ) is both open and closed in X*, and hence 
R(A — AJ) = K*, and A — AJ is bijective. This completes the proof of the first part 
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when X is finite-dimensional. Next, consider the case when dim A" = oo. We need 
to show first that diagram (6) represents an admissible inner approximation scheme. 

Since \\En\\ = 1, this implies that \\E*\\ = 1 for all n, and since (Xn) is a Galerkin 
scheme, we have dist(x, Xn) —* 0 as n —• oo for all x £ X. Thus, \\RnX — x|| —• 0 as 
n —• oo, and the compatibility condition is satisfied. 

Since A (and hence (A — XJ)) is continuous, the consistency condition is as follows: 
Since ||(.A - XJ)EnRnx - (A - AJ)x|| — 0 and \\En\\ < oo, we arrive at the 

consistency condition, 

\\En{A - \J)x - AnRnx\\ = \\En{A - \J)x - E*n{A - \J)EnRn*\\ 

< | |£n | | ||(,4 - \J)x -{A- \J)EnRnx\\ - 0 

as n —• oo. 
The stability condition follows from the inequality (15), for if x, y G Xn, we have 

\\Anx - Any\\ \\x - y\\ ^ \[Anx - Any, x - y]\ 

= \[En{A - \J)Enx - En{A - \J)Eny,x- y]\ 

= |[(,4 - \J)x -{A- \J)y, Enx - Eny]\ 

= \[{A-\J)x-{A-\J)y,x-y]\ 

Ml*-tfl|||*ll-||vll| 

and so 

\\Anx - Any\\ > d\ \\x\\ - \\y\\ | for all x,y£X„. 

Finally, we need to show that A — XJ is ./4-proper with respect to the approximation 

scheme n\ = {Kn, .6^, /?n , .K*, .£"*}, represented by the diagram (6). Let sup ||xn|| < 

oo for some xn 6 Xn such that 

\\Anxn - E'nb\\ = \\En{A - \J)xn - Enb\\ - 0 as n - oo. 

Since X is reflexive and separable, there exists a subsequence, again denoted by (xn)> 

such that, for some x 6 K, 

xn —• x in X as n —• oo. 

We also have \\Rnx — x|| —• 0 as n —• oo, that is, Rnx —• x, and so xn —• x as n —• oo 

implies that 

(17) xn — /?nx -^ 0 as n —• oo. 
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Thus, as n —• oo, 

ETn((A-XJ)xn-(A-XJ)Rnx) 

(18) = (E'n(A - XJ)xn - E'nb) + (Enb - E*(A - XJ)R„x) 

-+ETnb-Ern(A-XJ)x. 

It would suffice to show that x n — • x G X a s n — ^ 0 0 , and (A — AJ)x = 6. From (17) 

and (18), it follows, for some xn G Xn as above, that, as n —• 00, 

d|||xn|| - \\Rnx\\\ ||xn - Rnx\\ ^ \[Anxn - AnRnx1 xn - Rnx)\ 

= \[En(A - AJ)xn - En(A - XJ)Rnx} xn - I^xJl - 0. 

This implies that either | | |xn | | - ||.ftnx||| —• 0 or ||xn - Rnx\\ —• 0 as n —• 00. As the 

second case is trivial, we consider the first one. Since \\Rnx — x|| —• 0 as n —• 00, it 

follows from 

| l k n | | - | | f i n x | | | - 0 a s n - ^ o o 

that | |xn | | —-> ||x|| as n —• 00. Since X is reflexive and locally uniformly convex, and 

| |xn | | —• ||x|| as n —• 00, this implies that xn —* x as n —• 00. Hence, (A — AJ)x = 6 

by the continuity of A (and hence A — AJ), and the theorem follows from Lemma 

1.9. D 

Corollary 2.3. If X is Hilbert space, Theorem 2.2 reduces to the following result 

(18], Theorem 34C): 

Suppose A: X —• X is continuous on the separable Hilbert space X over K,. If the 

A in K, has a positive distance from the numerical range N[A] of Af i.e., 

rf=dist(A,N[A])>0, 

then the equation 
Ax — Ax = b 

has a unique solution for every b £ X. 

If, in addition, dimK = 00, then equation Ax — Ax = b is uniquely approximation-

solvable for each b G X. 

Remark 2.4. If we drop the separability for space X in Theorem 2.2., it still 

holds by proving the convergence of the Galerkin method by Af — 5 sequences as 

follows. Let A = {G} be the system of all finite-dimensional subspaces G of X. We 
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define order relation G ^ H iff G C H. Then A is a directed set, and (XQ) is a M — S 

sequence which is bounded in the reflexive Banach space X. Since each closed ball 

in X is weakly compact, there exists a M-S subsequence (#G') such that 

XQI —• x. 
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