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ON MEAN VALUE THEOREMS FOR SMALL GEODESIC SPHERES 

IN RIEMANNIAN MANIFOLDS 

MASANORI KOZAKI, Saga 

(Received June 25, 1991) 

1 . INTRODUCTION 

In this paper we study to what extent the mean value theorems in a Riemannian 
manifold (M,g) characterize the structure of the manifold itself. The mean value 

theorems stand for various relations about the first, the second mean values and the 
stochastic mean values for small geodesic spheres at center m £ M with radius e > 0. 
The works on this subject are recently studied by many authors ([6], [9], [10], [12], 
[17], [22]), characterizing the harmonic, the Einstein and the super-Einstein spaces 
by expanding up to order +oo, 4 and 6 the above three mean values respectively 
(Theorem A below). 

Our results are stated as follows. We first obtain a higher order precision of Theo
rem A, i.e., by expanding the above three mean values up to order 8, we characterize 
the particular classes of 2-stein spaces which should be located between the har
monic and the super-Einstein spaces (Theorem 1). In particular for 3 -$ dimM ^ 6, 
the manifolds (M, g) are spaces satisfying simpler curvature conditions (Theorem 2). 
Theorems 1 and 2 give a partial answer to Kowalski's conjecture given in [10] and 
[11]. We also introduce three new conditions (S2)jb~(S4)ib (see Section 2 for the def
initions) stated on the mean value theorems and prove: (1) for each k = 3, 4, the 
condition (S3)jb is equivalent to (M3)jb-i; (2) each of the conditions (S2)3 and (S4)3 
characterizes the space of constant scalar curvature, and each of the conditions (S2)4 
and (S4).4 characterizes the quasi-super-Einstein space (Theorem 4). We further 
show that the condition (S2)jb is closely related to the independence of the first exit 
time and the first exit position of a Brownian motion from a geodesic ball at center m 

with radius e > 0 (Theorem 3). This independence property is only recently studied 
by M. Kozaki and Y. Ogura [13], M. Liao [15] and M. Pinsky [19]. 
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In Section 2, we state our results precisely. Our main results are stated in Theo
rems 1, 2, 3 and 4. We denote by Mm^f(m) and Lmyif(m) the coefficients of order 
e2x in the asymptotic expansions for the first mean value Mm(e) f) and the second one 
Lm(e> f) respectively. In Section 3, we calculate the difference Mm^f(m) — Lm^f(m) 
for the super-Einstein space and give the proof of Theorem 1 in part. Sections 4 
and 5 are for preparation of the proof of the rest of Theorem 1. Section 5 is also 
for preparation of the proof of Theorem 4. In Section 4, we calculate Lm^f(m) 
for the super-Einstein space. In Section 5, we calculate the stochastic mean value 
Emf(X(T€)) and the mean exit time EmTt up to order e8 for the manifold. In 
Sections 6 and 7, we will prove the rest of Theorem 1 and Theorem 2 respectively. 
In the final Section 8, we will prove Theorems 3 and 4. 

2. STATEMENT OF RESULTS 

Let (M,g) be an n-dimensional connected C°° Riemannian manifold with n ^ 2 
and Bm(e) be the geodesic ball in M at center m G M with small radius e > 0. The 
first mean value Mm(e,f) for a real valued continuous function / is defined by 

Mm(eJ)= (vol (dBm(e)))'1 J /(u,)d<r(u;), 

dBm(e) 

where ACT stands for the volume element on the geodesic sphere dBm(e). Similarly, 
the second mean value Lm(e,f) for an / is defined by 

Lm(eJ)=(vo\(Sn-l(\)))'1 J ( /oex P m (eu))du, 

s « - i ( i ) 

where expm is the exponential map at m £ M and dti is the usual volume element 
on the (n — l)-dimensional unit sphere 5 n _ 1 ( l ) . 

In [10] and [11], O. Kowalski conjectured the next 

Conjecture. For an analytic Riemannian manifold (M,g), the following condi
tions are mutually equivalent: 

(i)k for each m 6 M, the mean value formula 

Mm(e, f) = f(m) + 0(e2k+2) (e - 0) 

holds for all harmonic functions f near m; 
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(ii)* for each m € M, the mean value formula 

Lm(e,f) = f(m) + 0(e2k+2) (e - 0) 

holds for all harmonic functions f near m; 
(iii)jb for each m € M, the estimate 

Mm(e,f) = Lm(e,f) + 0(e2k+2) (e - 0) 

holds for all harmonic functions f near m; 

(iv)^ for each m £ M, the estimate 

Mm(e,f) = Lm(e,f) + 0(e2k+2) (e - 0) 

hoids for aii functions f of class C2*+2 near m. 

In the above, ifc is a natural number or -f oo and, in the case of A: = +00, the 

formulae are understood to hold without remainder terms. 

Let X = (X(t), Pm) ( m € M) be a Brownian motion on (M,<z), i.e., the diffusion 

process on (M,</) whose infinitesimal operator is the Laplacian A on (M,g). Let 

also Te be the first exit time from the geodesic ball Bm(e), i.e., Te = inf {t > 0: 

X(t) £ Bm(s)}. The stochastic mean value for an / and the mean exit time from 

Bm(e) are defined by Emf(X(Te)) and EmTe respectively, where Em denotes the 

expectation with respect to the probability measure Pm. 

Also we set Am(e) = vol (dBm(ej) the volume of the geodesic sphere dBm(e) and 

*m(e )= ľ Am\s) ľ Am(t)átás. 
Jo Jo 

Finally a function / is called bi-harmonic near m if it is defined and smooth in a 
neighbourhood of m and A/ is harmonic there. 

In [12], we also introduced the following conditions: 
(Ml)* for each m G M, the estimate 

Mm(eJ) = Emf(X(Te))+0(e2k+2) (e - 0) 

Zio/rfs /or a// functions f of class C2*+2 near m; 
(M2)jk for each m £ M, the mean value formula 

Mm(e, f) = f(m) + (EmTt)Af(m) + 0(e2k+2) (e - 0) 

holds for all bi-harmonic functions f near m; 
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(M3)jb for each m £ M, the mean value formula 

Mm(e, f) = f(m) + *m(e)Af(m) + 0(e2k+7) (e - 0) 

holds for all bi-harmonic functions f near m; 

(M4)jb there exists a sequence of polynomials pj, j = 1. 2, . . . , k without constant 
terms such that, for each m 6 M, the expansion 

k 

Mm(eJ) = f(m) + £>(A)/(m)£2> + 0(e2k+2) (e - 0) 
i=i 

holds for all functions f of class C2*+2 near m. 

The conditions (Ll)*-(L4)i. are defined in the same way as (Ml)jt-(M4)* are done 
respectively with the first mean value Mm(e, f) replaced by the second one Lm(e, / ) . 
The conditions (M4)oo and (L4)oo are understood to hold for all analytic functions 
/ at m. 

For an m £ M, let (U; .r1,^2,... ,x n ) be a normal coordinate system around 
m, and denote by (9%j) and (Rijki) the metric tensor and the curvature tensor with 
respect to the normal frame (^fr, ^ f j , . . . , ^f--), respectively. Throughout we exploit 
Einstein's convention as well as the extended one, i.e., the summation convention for 
repeated indices. The Ricci tensor and the scalar curvature are denoted by (Qij) and 
r respectively; Qij = Ruiuj, T = DJJ. We also denote the length of a tensor T = (T, ;) 
by |T|, i.e., \T\2 = T^T1*. Finally, we denote the covariant derivative by Vt and set 
A = V"VP . 

We call an Einstein space super-Einstein if \R\2 is constant and Rij = RipqrR
pqr = 

^T~9ij • We also call an Einstein space 2-stein if 

3n |# | 2 + 2r2 

(H o H)ijki = n 2 ( w . 2) ^9%i9kt -r 9ik9ji "f 9ii9jk), 

where 

(Ro R)ijki = RijPq(Rkipq + Rlkpq) + RikPq(Rjipq + Rijpq) 

+ RiiPq(Rjkpq + Rkjpq) (Rijki = Rikji)-

Further we call a 2-stein space 2*-stein if |H|2 is constant (or equivalently, if the 
space is super-Einsteinian). Similarly we call a space quasi-super-Einstein if r and 
\R\2 — \Q\2 are constants, and if 

(2.l) Rij = | / ? |2~ | g |2g,-, - ff"RiPjq + 2 ^ - Uea. 
n *w 
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Finally, we call the space (M, g) harmonic if, for each m G M, there exist an e > 0 
and a function F: (0,6:) —• R such that the function f(n) = F(d(m,n)) is harmonic 
in Bm(e) \ {m} , where d is the distance function defined by the Riemannian metric. 

For the proof of our Theorem 1 mentioned below, we use the next theorems. 

Theorem A ([6], [9], [10], [12], [17], [22]). Let (M,g) be an n-dimensional con
nected C" Riemannian manifold with n ^ 3. Then the following assertions hold. 

(1) Each of the conditions (i)oo_(iv)oo, (Ml)oo - (M4)oo and (Ll)0o-(L4)00 is 
necessary and sufficient in order that (M}g) be a harmonic space. 

(2) Each of the conditions (i)2~(iv)2, (Ml)2 - (M4)2 and (L1)2~(L4)2 is necessary 
and sufficient in order that (M, g) be an Einstein space. 

(3) Each of the conditions (i)3~(iv)3, (Ml)3 - (M4)3 and (L1)3~(L4)3 is necessary 
and sufficient in order that (M,g) be a super-Einstein space. 

Theorem B ([11], [12]). Let (Myg) be an n-dimensional connected C°° Rieman

nian manifold with n ^ 3 and fix a k £ {1 ,2 , . . . , oo}. Then the following assertions 

hold. 

(1) The condition (i)* is necessary and sufficient for (Ml)*. 
(2) The condition (ii)* is necessary and sufficient for (LI)*. 
(3) The condition (hi)* is necessary and sufficient for (iv)*. 

R e m a r k . (1) Notice that due to [12], the assertions in Theorem A are valid 

for C°° Riemannian manifolds, except for the sufficiency of (M4)oo and (L4)oo. (2) 
In [11], O. Kowalski proved the assertion (3) of Theorem B for Cw Riemannian 
manifolds. 

We also use the following notation. 

Rij =- RiupqRrsPq R%rS , R = -R*, 
-x- — — _ x *-k 
Rij ~ RiupqRrsPq R%r' > R= Rk. 

Our main objective of this paper is the following 

T h e o r e m 1. Let (M, g) be an n-dimensional connected C°° Riemannian manifold 
with n ^ 3. Then the following assertion holds. Each of the conditions (i)4-(iv)4, 
(M1)4-(M4)4 and (Ll)4 - (L4)4 is necessary and sufficient in order that (M,g) be a 
2*-stein space and satisfy 

(2.2) WiRabcdVjirked - 20fttj + l6RiS = X9ij) 

(2.3) X = - (3 |Vfl | 2 - 20&+ 16/7) = constant. 
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R e m a r k . We divide the assertion of Theorem 1 into following three parts (a), 

(b), (c) and prove (c) in Section 3 and (a)-(b) in Section 6: each of the condi

tions, ( i)4 and (M1) 4 - (M4 ) 4 in (a), (ii)4 and (L1) 4-(L4) 4 in (b), and (i i i )4-( iv)4 in 

(c), is necessary and sufficient in order that (M,g) be a 2*-stein space and satisfy 

(2 .2)-(2 .3) . Note that we can also give a simple proof of the assertion (c) by using 

Theorem 1 in [11], which was suggested by O. Kowalski (private communication). 

A lower dimensional case of Theorem 1 is the following 

T h e o r e m 2 . Let (M, g) be an n-dimensional connected C°° Riemannian manifold 

with 3 -̂  n -<C 6. Then each of the conditions ( i ) 4 - ( iv) 4 , (M1) 4 - (M4 ) 4 and ( L l ) 4 -

(L4)4 is necessary and sufficient in order that the following assertions hold: 

(1) if n = 3, 4, then (M, g) is locally flat or locally isometric to a symmetric space 

of rank one; 

(2) if n = 5, then (M,g) is a 2*-stein space and, satisfies |V /? | 2 = constant and 

(2.4) ViRakcdVjR?"' = ^ ^ * ; ; 

(3) ifn = 6, then (M,g) is a 2*-stein space and satisfies (2.3)-(2 .4). 

In this paper, we also introduce three new conditions, i.e., the conditions (S2)* -

(S4)j. are defined in the same way as (M2),t~(M4)^ are done respectively with the 

first mean value M m (e , / ) replaced by the stochastic mean value Emf(X(T£)). These 

conditions are motivated by the fact that, if (M,g) is a harmonic space, then the 

conditions (S2) 0 0 - (S4 ) 0 0 follow from Theorem A (1). 

Now following [13], we define the following condition: 

(MI)^ for each m £ M, the asymptotically mean independence formula 

(2.5) EmT£f(X(T£)) = (EmTe)(Emf(X(Te))) + 0(e2k+2) (e - 0) 

holds for all functions f of class C2*+2 near m. 

Then we have the following equivalence theorem, which we also use for the proof 

of Theorem 4. 

T h e o r e m 3 . Let (M, g) be an n-dimensional connected C°° Riemannian manifold 

with n ^ 2. Then, for each k = 1,2, . . . , -foo, the condition (S2)* is equivalent to 

th e in dep en den ce con di tion (MI) *. 

Finally we prove the following 

T h e o r e m 4 . Let (M, g) be an n-dimensional connected C°° Riemannian manifold 

with n ^ 2. Then the following assertions hold. 
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(1) Each of the conditions (S2)3 and (S4)3 is necessary and sufficient in order that 

(M,g) be of constant scalar curvature. 

(2) Each of the conditions (S2)4 and (S4)4 is necessary and sufficient in order that 

(M, g) be a quasi-super-Einstein space. 

(3) The conditions (S3)3 and (S3)4 are necessary and sufficient in order that (M, g) 

be an Einstein and a super-Einstein spaces respectively. 

Corollary. Let (M>g) be an n-dimensional Einstein space with n ^ 3. Tien 

each of the conditions (S2)4 and (S4)4 is equivalent to that the space (M,g) is a 

super-Einstein space. 

3. PROOF OF THEOREM 1 

Let (M,g) be an n-dimensional connected C°° Riemannian manifold and an m £ 

M. Let (U ; xl, a:2,..., xn) be a normal coordinate system around m. Let V be the 
Levi-Civita connection of the Riemannian manifold (M, g) and R(X, Y) its curvature 
tensor, i.e., R(X, Y)Z = V[XtY]Z - [Vjr, Vy]Z. We set Rijki = $(/?(&, #;)&,&), 
g*j — (gij)"1 and g = det(_rtJ), where 3, = ^ 7 . We also denote V, = V$i and 
V'-...hii = V 'r • • • Vi .V t l (= I if r = 0). For a tensor T = (Tix...,-_), we denote 
r<1....,yl...jr = Vr

r ^ 7i.. ..,-, and V T = (Ti,...t,J). The inner product 5ll...l-, T....... 

of two tensors 5 = (5,-....,_) and T = (T^....-.) is denoted by (5,T). 
We also use the convention 

ťi,t2,. ..,ťr = 1,2,.. .,n. 

Lemma 3.1. It holds that 

< - rкh __ j _ / ? Ł , Ł . _Гm) X

f c A P (3.1) t/ij = SÍJ - -/?fc.,HJ(m)x*'1 - -Rkihj )P(m)2 

+ l\{- GRkihj,Pq + y RkihuRpjqu}(m)xkh" 

+ gj{ - »Rkihj,pqr + l$RkihuRpjqu}r + ^RkjhuRpiqutr}(m)xkhpqr 

+ Y\\ ~~ lQRkihj,pqrs + %4Rkihu;pqRrjsu + ^RkjhutpqRrisu 

+ 55Rkihu,pRqjru]s ~ IGRkihuRpjqvRrusv } ( m ) x P í r * 

4 

• « jTjl ~" yftkihj\pqrsa + *vKkihu\pqrRsjqu + *§Rkjhu\pqrRsiau 

+ yyKkihu\pqK r j s u ; Q f 4- v\$Kkjhu\pqRrisu\a 

00 Kkihu,pKqjrvKgUav Oo Kkj hu,p Kqirv K$Uav 

- ^RkuhV,pR1irvR,jau}(m)xkh^r"' + o(|x|8). 
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P r o o f . This follows from the same arguments as in [20]. 

Corollary 3.2. It holds that 

8 

(3.2) VS= 1 + X> M , . . i>y i , V '*' +0(|*|9), 
p = 2 

where 

Skh = - z-Qkh, 

Skhp = ~ 7^£*A;p, 

1 / 3 1 2 p / ? \ 
&khpq — TI 1 c ^ ^ i P í + *\QkhQpq ~~7^kuhvMpuqv f? 

1 / 2 5 2 p p l 
&khpqr — ~~~ i "" « Qkh\pqr + ^T^iřh^ptijr "" TIÍfcu/nvI^pu^v;r f > 

1 r 5 8 
&khpqrs = Tj" i "" zQkh\pqrs + "QkhQpq\rs ~~ j^kuhv^pu qv\r$ 

5 15 D 5 
+ X^ib/i;p^r;* — 7T-MruJ.v;p#gurv;« — g£k.H.2pfl.?r.f 

O 1 (\ ^ 

+ ~7Qkh*lpuqv Krusv ~~~~^kuhv^pvqw^rwsu f > 

c - ! / ? ^ , 4
 _L21 

&khpqr$a — —• i *Qkh\pqrsa "T „ QkhQpq\rsa ~r o Qkh\pQqr\sa 

35 7 14 

jrQkhQpqQrs\a + ~;Qkh\pRqurv Hsuav + T-TQkhRpuqv *Wus-

"" T ftkuhvKpuqvfsa ~Z^kuhv\pq^rusv\a 

~~ "Z^kuhv^pvqw^rwsu.a f • 

In the sequel, we define ]£,•._* a« = 0 whenever I < k. 

Lemma 3.3. H ho/ds that 

8 . 

(3.3) vt?/ = /(m) + (V.D(m)x' + £ {-(V?,,.,. ,,/)(*») 
P=2 P ' 

+ (S o / ) ( , , , 2 . . . ,p)(m) + S.,.3. , p (m) / (m)}x '"> «> + o(|*|9), 

wAere 

(3.4) (S o /)(,-,., .. .i.) = £ (^T)!5'«''-••-Vr+".• .J-
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Proof . Due to [9], the expansion for / is represented as 

(3.5) / = f(m) + £ i(V? i l 2 . , , / ) (m)* '^ <> + 0(\x\*). 
p=i P* 

Hence (3.3) follows from (3.2) and (3.4)-(3.5). • 

Let {A/m,i} j=12 fc, { i m j } i = 1 2 tk and {^mj} j = 1 2 fc denote the sequences 
of linear differential operators satisfying the formulae respectively: 

Mm(г, /) = f(m) + £ Mmjf(m)є^ + 0(г2*+2), 
i=i 

* 
M*> /) = f(m) + £ Lm,;/(m)£2' + 0(г2*+2), 

i=i 

Emf(X(Tt)) = /(m) + 5 3 Emjf(m}eV + 0(<г2*+2), 
i = i 

for a function / of class C2*+2 near m (see [9], [11], [17]). 
In order to calculate (Mm,* — Lmik)f(m) for k = 1,2,3,4, we prepare some nota-

tions. 
Due to [8], the volume Am(e) of the geodesic sphere dBm(e) satisfies 

(3.6) 

AM = *^-»{l - ^ + z.J{n + 2)(-l*±r+5r> + 8|«P - 3|*|2) 

+ 6!»(» + 2)(£»6+4)(» + 6) ( ~ P " & # + r|Ä|2 + I« 
6 4 / .̂ B \ 3 2 / M 1 1 0 Ö 200fe 45,„ l2 45,„ l2 - J, <« ® «• ß> + y<«.Ä> " -J3"Ä - -^R + n | V r | 2 + y | V ß | 2 

+ y« (« ) - ^ l v « l 2 + 6 ' - ^ + y <A<?- *> + y <v^> *> - y <**. *> 

_ ^ A 2 r ) } ( m ) + o(£
8), 

where 

Q = ftj ftkQki, (^ ® £, R) = £ijQklfiijkl, 

a(Q) = ViQjkVkQij, (Aß, #) = QijV2
ppQij, 

(AR,R) = Rliib/V
2

pftliW. 
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We further set the inverse of Am (e) 

(3.7) A^e)-1 = £^e1-"{l + X;c>(m)^} + o(e2t+2). 
i=1 

Also we use the following symbol; for a natural number r, 

^(*l*2 • • *2r) = -g-yjj 2sSi*{i)i,(2)6i*(3)i<,(4) • ' ' ^(ar-j)^(2r)» 

where <r runs over all permutations and (2r)!! = 2 • 4 • . . . • (2r). 

Lemma 3.4. It i_oicfs that, for k - 1,2,3,4. 

(3.8) 

( A W - Lm)fc)/(m) = an,fc*(«i*2...*2fc)(5o/)(tit2...t2Jb)(m) 
Jb — 2 

+ £C.(m) {__,*-./ 
« = 1 

+ ttn,*-#^(*l»2 • • • *2*-2*)(-S ° /)(»1*2 • • • *2*-2 . ) } ( m ) 

+ C*-i(m)Lm , i / (m), ( C 0 = 0 ) 

where a n , , = r ( f ){2 f c r ( |H- ib)}- 1 . 

P r o o f . We first note the following formulae given in [9] and [10] respectively; 

(3.9) A*,/(m)= j ^ dldf2...dlf(m) (dfr = 8M 
* 1 , » _ , , - fc 

= l - 3 - . . . 1 ( 2 _ - l ) ^fr*'2 • • • , ' » > V " v . . . _ J ( m ) . 

, , l f tx r f / m x _ an,k I * , , v _ (Amf)(m)  

(3.10) Lmikf(m) - J*-" A m / ( m ) - 2» . „ ! . l ( n + 2 ) . . . ( n + 2„ - 2) ' 

On the other hand, the same technique in [8: Lemma 3.2] yields 

(3.11) Mm(e,f) = Am(e)-1en-1 j fy/g(exPmeu)du. 

S'-'(l) 

Substituting (3.3) and (3.7) into (3.11) and using (3.10), we obtain (3.8). 
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Lemma 3.5. Let (M, g) be a super-Einstein space. Then it holds that 

(3.12) %,(i1i2i3i4)(5 o / K M ^ X m ) = --li--- r(ro)A/(m), 
Yin 

(3.13) Щixi2 .. .iб)(5 o /)(iii2 . . .i6)(ro) 
n + 4 r 15 r o , 5n + 8 , . , 3 . _.* . ,ì . . 

= —вгíтr^ - — r A/ + ï ï | я | A / I ( m ) ' 

(3.14) ìГ(i1i2...i8)(5o/)(i1i2...i8)(m) = - ^ L - j - 1 5 ( " n

+ 6 ) r Д ^ , / 

+ 1 5 ( " ^ ) ( " + 6 ) r 2 Д m / - « g ! > ( З n | Я | 2 + 2r2)ДV 

- 4(Яo Я),itťVf,fc//}(m) + _ j _ | 7 ( n 2 + J n + 1 6 ) ( 3 n r | д | 2 + 2 r 3 ) д / 

(n + 6)(35n2 + 210n + 296) 3 24(n+10) a 

n^ Г A / ÎČ Г | Я | A / 

+ Or-Ş*+Ş*)д/ 
+ (XЬViRаbcdVjRаЬcd - ЗбVpЯiaieVpЯ,^ - 64Я,, + 224Я . , )V?T 

}« + ІVГ(9|VЯ|2 + 2Я - 36Я)Vr/ |(m). 
3 

Proof. (3.12)-(3.14) follow from (3.4). But the details of the proof of (3.14) 
are too long to be written down here, and will be omitted. D 

Now we set, for simplicity 

(1.15) 5 / = 56{i(SoS),7wV?,„/-2«±|!(AV+|,A/)}. 

Proposition 3.6. Let (M}g) be a super-Einstein space. Then it holds that 

1 r — 20 
(Mm,4 - Lm,4)/(m) = g , B ( w + 2 ) ( n + 4 ) ( H + 6 ) [--*/+ jiiWiRrtcViR.™ 

(3.16) - 20Rij + 16R,,)V2,/ - AA/} + ̂ V,AV,/] (m). 
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P r o o f . Since (A/,y) is super-Einsteinian, by (3.6)-(3.7) we have 

(3.17) C, = £ , 

1 / 5 3 4 3 464 3 12 | 2 
C 3 _ 6 ! n ( n + 2)(n + 4)(n + 6)V9T + n T + 63n^T + "n~T|*' 

45. | 2 1 6 0 . 8 8 0 - \ 

Also due to [9] and (3.10), we have 

(3.18) -W/--U/, ^2/=8nTnT2)(A2/+^rA/). 

Now substituting (3.12)-(3.14) and (3.17)-(3.18) into (3.8) with k = 4 and using 

(3.19)-(3.20) in the sequel, we obtain (3.16). D 

Lemma 3.7. Let (M,g) be a super-Einstein space. Then it holds that 

(3.19) VpRubcVpRjabc = — ^ r \ R \ 2
g i j + Ay + 4-fty, 

n* 
(3.20) |Vfl|2 = - - r | f t | 2 + / i + 4fl. 

n 

P r o o f . By A7?,j = 0, we have 

VpRiabc^pRjabc = — ̂ (^RiabcRjabc + Riabc&Rjabc) 

= — ^klRiabkRjabt — V2i.ftjaM.Rja6* 

= ~_r |« | 2
i / l j + H l>+4Sfi. 

Hence (3.19)-(3.20) follow. D 

P r o o f of Theorem 1(c). In the following proof, we assume that (M,g) is a 
super-Einstein space due to Theorem A (3). Note also that (iii)4 is equivalent to 
(iv)4 by Theorem B (3). 

Sufficiency. Suppose that (iv)4 holds. For the normal coordinate system (U ; i 1 . 
x 2 , . . . , jr") around m, setting first f(x) = xtx^xkxt into 

(3.21) (Afm ,4-Im.-i) / (m) = 0> 

530 



it follows from (3.16) that (M,g) is a 2*-stein space. Then by (3.15), we have 
&f(m) = 0. Setting further f(x) = x*V into (3.21), we obtain (2.2) from (3.16) 
with 3if(m) = 0. Setting also f(x) = x% into (3.21), we have (2.3), completing the 
proof. 

Necessity. Suppose that (M,g) is a 2*-stein space and satisfies (2.2)-(2.3). Then 
we have easily (3.21) from (3.16). • 

4. CALCULATION OF Lm^f(m) 

Let (A/, g) be an n-dimensional C°° Riemannian manifold with n ^ 2 and / be any 
smooth function on (A/, g). To calculate Lm>4/(m), we use the following notation. 

D}k = V*iijk, D]k = V?jik, 

Djk = ^jki, D]k = v;iik, 

D% = VJiki, D% = V]kii. 

Now due to (3.9)-(3.10), we have 

M l . I fr-m. = ( A m / ) M y(fi»-a • • •i»)Vfl,-a. . , ./(*») 
l*--J m,4M ; 24 • 4!n(n + 2)(n + 4)(n + 6) 8!n(n + 2 ) (n+ 4)(n + 6 ) ' 

We note that the computation of tf(t'ii2 • •. «s)Vf ,- , , / (m) is reduced to that of 

(4-2) V(iti, ... «8)Vf.,v..,-,/(m) = A', + A'2 + 1Y3. 

where 

/ d = ^( i i i 2 . . .i6)Vfli2. J 6A/(m) = 15A^A/(m), 

3 6 

K2 = 2{ Y, D!jAkkf{m) + ] T LrJfc(.4jfc + ylfcj + Bjk + Sfc; + C jfc)/(m)}, 
p=i P=I 

A'3 = the sum of 24 remainder terms. 

In the formula (4.2), the first term 1\'i is obtained in [9]. The second one K2 is 
computed via Lemmas 4.1-4.2 mentioned below. The third one I\3 is also computed 
as in Lemma 4.3 in the sequel. 

Lemma 4.1 ([9]). It holds that 

Ajkf=D]kf = V]kA 

Bjkf = D]kf = Ajkf + QjtVltf + RijktVitf 

Ajkf = Djj = V? t A/ + V > f f «V/ / + Qk&y, 
2 / • _ , » . . . .T72 

(7,-*/ = D j t / = Sjjt/ + (Vtft-/ - VtQiky7tf + RijttVftf. 
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Lemma 4.2. Let Tikf denote Aikf, Bikf and Cjkf = Ckjf genetically. Then it 
holds that 

D^Akkf = D]jAkkf = D)iAtkf + V. i f taV^n/), 
D)kTikf = D)kTkif = AV)kTikf, 

D)kTikf = D)kTjkf = D)kTikf + V.(«,- VkTikf), 

D)kTkjf = D)kTkif = D)kTkif + V.( f t i VkTkif), 

D)kTjkf = D)kTikf = D)kTikf + Vl(QikTikf) + Vl(RjaikTjkf), 

D)kTkjf = D)kTkif = D)kTkif + Vl(6ikTkif) + Vl(RjaikTkjf), 

D)kTikf = D)kTkif = D)kTjkf + Vi(RiiakVaTikf). 

P r o o f . All formulae above can be verified using the Ricci identity. • 

Lemma 4.3. ft holds that 

^ijktijklf ~ ^tjkttjtkf — ^ijkljiktf = ^ijktjttkf 

= Df.Bikf + V3
ik{eaiV)kaf + RakilV)atf + RaiuV3

aktf}, 

^tjktjkttf — ^tjktjkttf = ^ijktikjtf = ^ijkliktjf 

= DfkBkif + V3
ik{QaiV

3
kjaf + RajuV3

katf + RakitV
3

ajif}, 

(*) — ^ijktjtikf ~ ^ijktjtkif = ^tjklttjkf = ^tjktttkjf 

= DfkCikf + V f ^ ^ . V ^ / + RajitVlktf + fia*«V?ja/}, 

^ijktkijlf = ^ijktkiljf = ^tjklkjttf = ^tjktkjltfi 

= DfkBikf + Vfit{i?a* V?,.a/ + RakitV)atf + RakitV
3

jaf}, 

(**) =- v? j M M < j / = v f i m / , ,L 
= oftc,*/ + V ? t { e a t V ^ / + 2/iat<<V^,/}, 

^ijkltijkf ~ ^ijkttikjf = ^ijktljikf = ^ijkttjktf 

= (*) + -V?ifcť(fia*ť<V?a/) + V,{V,(ňatp<V?a/)flp.>t}, 

^tjkUkijf = ^ijkttkjtf 

= (**) + 2VA
iikt(RakitV)af) + 2V.{ V<(/ř a t p /V? a/)« i i p t}. 

Proof . All formulae are deformed as in the above, using the Ricci identity. 

• 
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Propos i t ion 4.4. Let (IVf, g) be a super-Einstein space. Then it holds that 

(4.3)Lm,4/(m) = _ - _ — l - _ _ _ { l 0 5 A V + — r A 3 / + ^ r 2 A 2 / 8! n(ji + 2)(n + 4)(n + 6) ^ n n2 

+ —|fl|2A2/ + -£(* o R)ijktVfjklf + ^Af 
n J J n*5 

1 fi& ^ 

+ — r | f t | 2 A / - -{ZViRaicdVjR.M - 20ftij + 16fl0)V? / 

+ (82^-^V.A)V,/}(m), 

where <p{ = V,- { ( £ 0 - 2%) - ±(A - 2R)9ij}. 

P r o o f . The formula (4.3) follows from (4.1)—(4.2) via Lemmas 4.1-4.3 and [9: 

Lemma 3.6]. But the details of the calculation are too long to be written down here, 

and will be omitted. • 

5 . STOCHASTIC MEAN VALUE AND MEAN EXIT T1ME 

In this section, we гeview some results in [13] for computation of the stochastic 

mean value Emf(X(T£)) and the mean exit time EmT£ (Lemmas 5.1-5.2 below) and 

obtain the expansion foг them up to ordeг 8 (Proposition 5.4). 

Let (M,g) be an n-dimensional C°° Riemannian manifold with n ^ 2. Note first 

that the Laplacian Д is given by 

д = -^д ť ( л /ӯ î T
ť >ð j) . 

Following [17] and [18], we define the opeгator т€ by тєf(x) - f(j) for each є > 0, 

and denote by ã?T the space of all hoшogeneous polynomials of degree r for each 

nonnegative integeг г. It then follows that for each nonnegative integer k and / of 

class Ck+l 

k 

(5.1) т£-
{Aт£f(x) = є~2A.2f(x) + ] Ţ V Д ; / ( z ) + 0(єk+x) 

i=o 

as є i 0, where Д_2 — _3ľ=i &ì ail(^ Дj a г e s e c o n d ordcr elliptic diflГerential operators 

with Aj(t?r) C ^JĄ-Г for all nonnegative integers r (see [17]). We also denot.e as 

qixi* l'(x) -_ x1^:1' ...xlr, /, ./2 / г = 1 . 2 . . . . // 



(= 1 if r = 0), for each nonnegative integer r . 

Lemma 5.1 ([13]). Let r be a nonnegative integer and k be a natural number. 

Suppose further that the functions U^2 ir (= U^ ifr = 0), /i = 0, 2, 3, . . . , 2k - 1 

(U{1%3 %r(x) = 0 by convention) satisfy 

(5.2) A-tU^3 ir(x) = - ^ • • • • • ' ( * ) , \x\ < 1, 
*>-2 

^ A ^ - 2 l / ; i ' a - " , " r ( * ) + A .2^ ' a - - - ' r (x ) = 0f | x | < l , i/ = 2 , 3 , . . . , 2 4 - 1 , 
14 = 0 

{/•lf'a " ( 0 = 0, K| = l, i/ = 0 , 2 , 3 , . . . , 2 * - l . 

Then it holds that 

(5.3) E, / > « ' ' - ' ' ( X ( O ) d l 
JO 

2 * - l 

= * r + 2 i /»^"(-) + £ ^+r+2t/;«ia •-(-) + o(er+2*+2) 
,4=2 

uniformly in p G Bm(e) as e —* 0. 

We next consider the boundary value problem 

(5.4) A_2u(*) = - / ( * ) , |*| < 1 , 

«(O = 0, KI - .1 . 

We denote the solution of (5.4) by Gof(x). 

Lemma 5.2 ([13]). For each nonnegative integer r and polynomial p G <-^r, it 
holds that 

« s . r ^ - V f i .*(A i^)( j)(1 - 'x '2 ( t + 1 ))+ GQ(A-t'r)(*) 
(5.5) o„P(*) - £ ( - , ) cr(0)cr(l)...cr(*) ' 

where cr(k) = 2(k + \)(n + 2r — 2Jt). Especially, ifr (= 2s) is even, then 

A!_2p(0) 
( 5 6 ) G o P ( 0 ) = 2 ' + « ( s + l ) ! . n ( n + 2 ) . . . ( n + 2 . ) ' 

a/id ifr is odd, then 

(5.7) Gol>(0) = 0. 
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Finally, we list Aj appeared in (5.1). The formulae (5.8)-(5.10) in the following 

were first obtained by A. Gray and M. Pinsky [7] and (5.11) was obtained by [13]. 

Lemma 5.3. The following formulae hold. 

(5.8) A 0 = ^Rkihj(m)xkhdidj - ^Qkj(m)xkdj} 

(5.9) A! = ±RkikjA™)*kk'Mj + (-J**** + J2^j) ("0***»i. 

(5.10) A 2 = ^{GRkihJvq + BRkihuRpiquKm^'didj 

{§4Qjk;hp - 18flibu/ii;pu + ^QkuRhjpu 
3 5 ! 

+ 32Яju*t/Ялupv}(™)z p ð j , 

(5.11) Aз = ^{Rkihj;pqr + ^RkihuRpjqu;r}(m)xkҺ^Гдiдj 

4 

+ лjt OГÍkuhv *tjuqv;p vłtjuhvłtpuqv^k + Ołtkuhvłtpjqv;u 

~ RкuhvRpuqvJ ~ 22Ä*;/ lu£pu;ø + RкjhuQpq;u — lб^Jku-Rpu«7j;Л 

+ 2ЯjkuЛj;puf + 2ЯjkuЛj;p«7U — бQкj;hpq + Qкhjpq — Qkh;pjq 

-ЄkH.rv}('n)xкh"дj. 

Fuгther, Д4 satisfìes 

(5.12) Д ^ ^ ү - ^ - T7î{90ß th ;Pf Г, + 144Я f c u Л t,ЯpU f„ ; r, 

+ 135 Яt U i .„ r Яp U f „ ; , + 32ЯjtU(.„ЯpVftt,ЯГtt,,u}(m)j; P ł Г s . 

P r o o f . Due to (3.1), we obtain 

9ij = Sц + -Я*,лДm).r** + ӯRкihj,P(
m)xкҺp 

+ - j (ЗЯ t .л J ; P f + 4Я t ł f c u Я p i f U )(m)x* A ' , » 

(5.13) + | | { Я t . A ; ; P f г + Wr(RkihuRriЯu)}(m)xкhr<r 

5 
+ үî\2Rкihj;pqrs + ЮV r s (RкihuRpjqu) "" ^Rкihu;rRpjqu,s 

+ ŞяЬfcиЯpi f,Яr l I.,}(m)***мм +0(|* | 7 ) . 

Hence, the foгmuiae of Lemma 5.3 follow from substitution of гelations (3.2) and 

(5.13) into(5.1). D 
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The purpose of this section is to prove 

Proposition 5.4. Let (M, g) be an n-dimensional C°° Riemannian manifold with 

n ^ 2. Then it holds that, for a function f of class C10 near m, 

(5.14) 

2r 
fi./(X(T.)) = /(m) + Í J A / W + j ^ j ^ (JÁV + - I A/)(m) 

+ «..<.+1x. + 4){|MV+£-V+;gž-A/.Vr) 
+ (T- '+J?' ,-:W+:I»I ,W}<") 

+ 

+ 

420 840 
8!n(n + 2)(n + 4)(n + 6) 

140(5n+12) 2 2 56(2n2 + 13n + 24) 

n-(n + 2) 
56 

V Д 7 + 

Ю5Д7 + — т Д 7 + - -- <vд7, Vr) 
n n -f _; 

( б Д r - и 2 + |ß|2)д2/ 
n(n + 2)(n + 4) 

+ „ T 4 *9 ^ 2 A / ' V 2 r > + 3 ^ 2 A / ' A ř > + 2 < V 2 A / - *> + ^ikjtQiMAf 

- 4QijQjkVlAf} + -ii°-{6(VA/, VAr) + ^-L-^^V.rV.A/ 

+ (VAL V(|fí|2 - \Q\2)) + S Í 2 ? T (VA/'VT> } 

(5.15) 

i(n + 2) 

+ 8! n(n + 2)(n + 4)(n + 6)(7б(0)Д/ 

A 2 є 4 

(m) + o(0, 

EmTe = — + 
2n 4 !n 2 (n + 2) 

r(m) 

+ 6!n2(n+£2)(n + 4) ( 6 A ' + n ^ ~ " ' ' ' + *?) <"> + ^ ( 0 ) + ° ^ 

where Ue(0) is given by 

, - , , , . , M f n _ ! r2___3n_f_12) 3 
( 5 , 6 ) ' c ( 0 ) - 8 ! n 2 ( n + 2)(n + 4)(n + 6 ) l 3n-(n + 2) * 

+ 
1.2(5n+.6)(n + 3 ) r ( б Д r _ и 2 + | ß | 2 ) + 8 ( 1 9 n + 20)x 

Зn(n + 2)(n + 4) 
4(37n + 120) 

3(n + 4) 

+ 

3(n + 4) 

48(2n + 15) 

(2<ff, Ä> + 3 (AQ, Q) ) - 1 6 ( " ; +
+

4 " 0 ) ( g ® e, R) 

IÌ -f 4 
-ü (V2r , ff> + 270Д 2r + 1 5 ( 3 ?

+

+ 6 2 ) | V r | 2 - 30|Vß|2 

220 . 400• 
6Ü«( t.)+ l«0(Д/ í ./ř)+ 135|V/Ѓ|2 + — / ? + -ү-Һ}( 
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Corollary 5.5. Let (M, g) be a super-Einstein space. Then it holds that 

(5.17) 

Em,4/(m) = 
1 

Ю 5 Д V + — r Д 3 / n 8!n(n + 2)(n + 4)(n + 6) 

28 r 21n + 4 6 r 2 | 1 r 16(51n +116) 

n(?i + 2 ) l n v ; | ' 1 ; n i 3n2(n + 2) i(n + 2) 

8(21n + 56) 
+ n(n + 2) Г | ß | 2 ~ (3|Vñ|2 - 20Ќ+ 16Ä)}Д/ 

Зn2(n + 2) 

(m). 

P r o o f of Proposition 5.4. We first prove (5.15). We note that, from (5.2), (5.4) 

and (5.7), if r + u is odd, then 

(5.18) l/*1,"--,"'(0) = 0. 

The formula (5.3) with r = 0, k = 4, using (5.18), implies 

(5.19) £mT_ = -2U0(0) + _4U2(0) + -6U4(0) + e8U6(Q) + 0(_ 1 0 ) . 

The first three U2/.(0) (0 ^ /i $ 2) are obtained in [7]. These are also obtained in 

the course of our computation of U6(0). 

We compute (76(0). Note first that U0
ili2 ir(x) (0 <£ r <̂  4) are computed in [13]. 

It follows from Lemmas 5.1-5.3 that 

(5.20) 
1 - l_l2 1 

í l o ( x ) = - ^ L , U0(0)=-, 

(5.21) U2(_) = GoД0í/o(x) 

= б е т { ^ ( m ) x t h ( 1 - | x | 2 ) 

íls(0) = 

+ r(w)___L±_r(m)___i_L}) 

т(m) 

12n2(n + 2) ' 

(5.22) U3(x) = GoAiUo(x) = —±—{gkhp(m)x^P(l - |_|-) 
071(71 + Oj v 

+ 2Vpr(m)_*(i^-lzM;)}, 
V 7i + 2 2(7i + 4)/ J 
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(5.23) 

f/4(.-) = Go(A2vo + Aov2)(.5) 

= 3 . 5 , n | n + 4 ) [l0(e„„fttufcv - 2 e t u e h u + £ttj.)(m)(ltf *(«) - V$hr*(x)) 

+ MiT+T)T{mMm)u^x) 

+ {Wekhen + (n + 4)(9gkk.,p<l + 2RkuhvRpuiv)}(m)U^hpi(x) 

and 

( 5 2 4 ) "«<°> = 6!n.(n+42)(n + 4) ( 6 A r + n"'' " ^ + M ' ) <*»>• 

Finally, substituting (5.20)-(5.23) into the formula 

U6(0) = G0(A4Uo + A2l/2 + A1I/3 + A0[/4)(0) 

and using Lemmas 5.1-5.3, we obtain (5.16). Hence substituting (5.20)-(5.21), (5.24) 
and (5.16) into (5.19), the formula (5.15) follows. 

Next we prove (5.14). Dynkin's formula [5] is the following: 

(5.25) Emf(X(Te)) = f(m) + Em f ' Af(X(t)) dt. 
Jo 

Expanding A / at m [see (3.5)] and using (5.3), (5.25) is reduced to 

Emf(X(Tt)) = f(m) + e2vo(0)A/(m) + e4{{/2(0)A/(m) + fl2A/(m)} 

+ e6{v4(0)A/(m) + B4A/(m)} 

+ £8{U6(0)A/(m) + fl6A/(m)} +o(e10), 

where 

BjAf(m) = j ^ huj]Írir(0)(Vr
ilÍ3.,Af)(m). 

r-л r ! 

On the other hand, the terms BjAf(m)} j = 2,4,6 are computed in [13]. Hence we 
obtain (5.14). • 
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6. PROOF OF THEOREM 1 (CONTINUED) 

First we prepare some curvature properties of the 2*-stein space. 

L e m m a 6 .1 . Let (Myg) be an n-dimensional 2*-stein space. Then it holds that 

2T *. 
(6.1) ViRabcdVjRabcd = VpRiabc^pRjabc = j l ^ l 9*J "*" **** + 4-Rtj-

P r o o f . Since (M, g) is 2*-steinian, we have ^li(RoR)ijkt = 0. Then we obtain 

(6.2) ViRabcd^jRabcd + VpRiabcVpRjabc = J 1̂ 1 -*0" + ̂ /Cy + 8/Jy. 

Hence (6.1) follows from (3.19) and (6.2). • 

Lemma 6.2. Let (M,g) be an n-dimensional 2*-stein space. Then it holds that 

(6.3) <fi = V, {(Rij - 2R\j)-\(R- 2R)9ij} = 0. 

P r o o f . After calculations, we obtain 

(6.4) Vj(V,Rt«<VpRj«c) = WjRij - -^V,(A + 16* - 3|Vfl|2), 

(6.5) V, (V, RaMVjRaicd) = 8 V,Rij - \V,(2ft + 16ft - 3| V / t f ) . 

Applying Vj to (6.1) and using (6.4)-(6.5), we have 

(6.6) Vikii = \Viky 

(6.7) VjRi, = l v i ( 3 A + 16^-3 |V7J | 2 ) . 

Taking account of (6.6)-(6.7) and (3.20), we obtain (6.3). • 

Now we are ready to prove the rest of Theorem 1. In the following proof, we 
assume that (M,g) is a super-Einstein space due to Theorem A (3). 

P r o o f of Theorem 1(b). Sufficiency. We first note that, by (4.3) and (5.17), 

(Lm ,4 - EmA)f(m) = 8 , B ( n + 2 ) ( „ + 4 ) ( „ + 6 ) [*/ - \{^iRaie^jRahea 

(6.8) - 20Rij + 16flti)V? / - AA/} + (82y>, - ^ V . A) V.L (m). 
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Hence the proof of the sufficiency of the condition (L l ) 4 is verified in a similar way to 

that of the sufficiency of Theorem 1(c), because of (6.3). Since each of the conditions 

(L2)4-(L4)4 implies (ii)4, the sufficiency of each of them is clear from Theorem B 

(2)-

Necessity. Suppose that (M,g) is a 2*-stein space and satisfies (2.2)-(2.3). The 

condition (Ll)4 is first shown by (6.3). This with Theorem B (2) implies (ii)4. Then 

it follows from (5.14) and (5.17) that 

(6.9) 

Lm(e,f) = Emf(X(T.)) + 0(e10) = f(m) + ^Af(m) 

+ i r - r x ^ ( 3 A 2 ' + - A ' ) ( m ) 
4!n(n + 2)\ n / 

+ «i t /OM J , „ ( l 5 A 3 / + - r A 2 / + ( ^ r 2 + l | f l | 2 )A/}(m) 
6!n(n + 2 ) ( n + 4) ^ n \n2 n / J 

in* A 4 , 4 2 0
 A 3 ,

 2% f 2 1 n + 46 2 

105A4/ + rA3/ + \ r2 

n n(n + 2) I n 

Є 8 

8!n(n + 2)(n + 4)(n + 6) 

- |(3|V/2|2 - 20ft + 16ft)}A/1 (m) + O{ei0). 

Now the necessity of (L4)4 is clear from (6.9). Further (5.15)-(5.16) and (6.9) 

imply (L2)4. On the other hand, due to (3.6) we have 

(6.10) 

t2 2e4 

*m(e) = -~- + ., ,, . Ox^("0 2n 4! n-(n + 2) 

+ «..(.^)(. + 4 ) K + S ' ' - | " ' , + ',»)'"" 
^ f560(5n+12) 3 

+ 8! n-(n + 2)(n + 4)(n + 6) t 3n-(n + 2) T 

128 — 
- ~~-e - 96(2<e. I?) + 3 (Ap, f>)) + 128 (g ® e, R) - 324 (V2r, $) + 270A2r 

- 2 7 0 | V T | 2 - 135|Ve|2 - 270*0) + 180 (A/?, ft) + 13.r)|V/?|2 + ^ f t 

4 0 0 -

3 
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Under the assumption of the Einsteinity, it follows from (5.15)—(5.16) and (6.10) that 

(6.11) EmTe = *m(e) + o(e10). 

Hence the necessity of (L3)4 is immediate from (L2)4 and (6.11). • 

P r o o f of Theorem 1(a). Sufficiency. By (3.16) and (6.8), we have 

(6.12) 

(Mm,4 - Em,4)f(m) = 8,n(n + 2)(n + 4)(n + 6) [" »/ 

+ ${(WiRaicdVjRaked - 20Rij + 16ft,j)V?T - AA/} 

+ (82W + -^V.A)V./](m) . 

Hence we can prove all the rest in the same way as in the proof of the sufficiency of 
Theorem 1(b). 

Necessity. The proof of the necessity is similar to that of the necessity in Theorem 
1(b) and will be omitted. • 

7. PROOF OF THEOREM 2 

For the proof of Theorem 2, we need the following curvature properties of the 
super-Einstein space. 

Lemma 7.1. Let (M}g) be an n-dimensional super-Einstein space. Then it holds 
that 

(7.1) kij - 2Rij = i ( k - 2R)9ij, forn^ 6, 
n 

(7.2) A - 2 f l = - i { ( l - H + 10)T3 + 3 ^ 1 _ £ N
T | i ? | 2 j ) forn^5. 

P r o o f . Following [16], we define the tensor (£,-?) by 

&ij ~ ya3viil...i29 ^ l -aJ iJ - • • • n-i_p-i«_,.?_-.-iJ2F> 

for any natural number p, where 

C . . C = d e t ( ^ i . ) (*o- . t , josa) . 
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Then for p = 3, we obtain; 

(7.3) E\? = Gwgij - 48{(r2 - 4|<>|2 + \R\2)6ij - 4rQipQjp - 4rQpqRipjq 

+ %QpqQipQjq + &QipQklRjkpl + &QjpQklRikpl + &QpqQqrR>ipjr 

+ 2r.R,;- — 4QipRjp — 4QjpRip - 4RiPjqRpq - 4QpqRiPktRjqkt 

— %QpqRikptRjkqt + SQpqRprq$Rirj$ + 4.0-j — 8/Z,ji j , 

where (7(3) denotes the integrand of the Gauss-Bonnet formula, i.e., 

G(3) = - E ^ = 8{r3 - 12r|^|2 + 3 r |# | 2 + 16£ + 24 (Q ® e, H) 

-24(^,fi!) + 4 f t - 8 f t } . 

Now note that, by definition, £>• ' = 0 hold for n .$ 6. This with the super-Einsteinity 

and (7.3) implies 

,7.4, ft,-^,*-^!^,-^^ 

+ 3 ( l - ^ ) r | f i | 2 L l ; , f o r n ^ 6 . 

Hence by (7.4), we obtain (7.1)-(7.2). D 

Lemma 7.2. Let (M,g) be an n-dimensional 2*-stein space with 3 -̂  n -̂  6. 

Then the following conditions are mutually equivalent, except for the case n = 6 

in (3): 
(1) (M,g) satisfies (2.2) and (2.3); 
(2) (M, g) satisfies (2.4) and (2.3); 
(3) (n -̂  5) (M,g) satisfies (2.4) and |V# | 2 = constant. 

P r o o f . The equivalence of (1) and (2) follows from (2.2), (6.1) and (7.1). The 

equivalence of (2) and (3) follows from (2.3), (3.20) and (7.2). D 

P r o o f of Theorem 2. The assertions (2)-(3) follow immediately from Lemma 
7.2. We prove the assertion (1). But we only show the sufficiency of the assertion in 
the case n = 4, because the other assertions are clear. Assume one of the conditions 
(i)4~(iv)4, (M1)4-(M4)4 and (L1)4~(L4)4. Then by Theorem 1 and Lemma 7.2, it 
follows that |V/?|2 is constant. Consequently we can trace the arguments in [21: 
pp. 213-220], to obtain that the eigenvalues of W £ C°°(End A2M) are constants, 
where W is the Weyl curvature tensor of (M,g). Hence by an unpublished result of 
A. Derdziriski (reported in [21: Proposition 5] and see [3] for the proof), (M,g) is 
locally symmetric. The required result follows as in [2]. D 
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8. PROOF OF THEOREMS 3 AND 4 

Proof of Theorem 3. Suppose that the condition (MI)* holds and choose a 
bi-harmonic function / near m. Due to a generalization of Dynkin's formula [1]: 

T 

Emf(X(Te)) = f(m) + EmTeAf(X(Te)) - Em f ' tA2f(X(t)) d*, 
Jo 

we have 

Emf(X(Tt)) = f(m) + EmTtAf(X(Tt)) 

= f(m) + (EmTt)(EmAf(X(Tt))) + 0(e2k+2) 

= /(m) + (EmTt)Af(m) + 0(e2k+7), 

by applying (2.5) and Dynkin's formula. Hence the condition (S2)* follows. 
Conversely, suppose that the condition (S2)* holds and choose a harmonic function 

h near m. We consider the boundary value problem 

(8.1) Aut(x) = h(x), x€Bm(e), 

MO = fc(0, tzdBm(e). 

The solution ue of (8.1) is bi-harmonic in Bm(e). By a generalization of Dynkin's 
formula [1] again, we have 

(8.2) Emue(X(Tr)) = ue(m) + EmTrh(X(Tr)) 

for all r £ (0,£). But, from the condition (S2)* and (8.1), we have 

(8.3) \Emue(X(Tr)) - {u,(m) + (EmTr)h(m))\ ^ Kr*k+*\ue\c»+,{Bm{e)) 

for all r G (0,e), where 

2*+2 
\ue\C2k+HBm(e)) = j ^ $ ^ sup I f t j f t , . . .ft,.ti.(p)|. 

j = 0 i l f t a . . . . , t , ^ B m ( £ ) 

(8.2)-(8.3) imply 

|£mTrft(X(Tr)) ~(EmTr)h(m)\ < Kr2k+*\ue\c„„{Bfm(e)) 

for all r € (0,e). Letting r | e, we have 

(8.4) \EmTth(X(Tt)) - (EmTt)h(m)\ ^ tfe
2t+2K|c„+,(Bm(c)). 
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In the case of k = +00, we have 

EmTrh(X(Tr)) = (EmTr)h(m), r e (0,e) 

first and then 

EmTth(X(Tt)) = (EmTt)h(m) 

in place of (8.4). These facts show that the independence formula (2.5) holds for a 

harmonic function h near m. Hence due to [13], (MI)* holds. D 

P r o o f of Theorem 4. 

P r o o f of the assertion for (S2)3 and (S2)4. This is a direct consequence of 
Theorem 3 and the following 

Theorem C ([13]). Let (M, </) be an n-dimensional connected C°° Riemannian 

manifold with n ^ 2. Then the following assertions hold. 

(1) The condition (MI)3 is necessary and sufficient in order that (M,g) be of 

constant scalar curvature. 

(2) Tibe condition (MI)4 is necessary and sufficient in order that (M, g) be a quasi-

super-Einstein space. 

a 

R e m a r k . In [15], M. Liao also proved the sufficiency of the assertion (1) in 
Theorem C by a different method from [13]. 

P r o o f of the assertion for (S4)3 and (S4)4. Suppose first that (S4)3 holds. Then 
by (5.14) for each m 6 M, we have 

(8.5) Emf3f(m) = p3(A)/(m) 

for all functions / of class C8 near m. For the normal coordinate (x1, x 2 , . . . , xn) at 

m, choosing functions / so that A / = x \ i = 1, 2, . . . , n in (8.5), we obtain that the 

scalar curvature r is constant. 

Suppose next that (S4)4 holds. Then by (5.14) for each m G M, we have 

(8.6) Em,4f(m) = p4(A)/(m) 

for all functions / of class C 1 0 near m. Similarly, choosing functions / so that 
A / = x*, i = 1, 2, . . . , n in (8.6), we obtain \R\2 — \g\2 = constant. Further choosing 
functions / so that A / = x'x-7, ij = 1, 2, . . . , n in (8.6), we obtain (2.1). Hence 
(M, g) is a quasi-super-Einstein space. 

The necessity of each of (S4)3 and (S4)4 is clear from (5.14). • 
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The assertions ( l ) - ( 2 ) are proved. 

P r o o f of Corollary. Notice that the relations \R\2 — \g\2 = constant and (2.1) 

are reduced to 
\R\2 

\R\2 = constant and 1?tJ = y,j 

respectively, provided (M,g) is an Einstein space. Then the assertions of Corollary 

are clear from those of Theorem 4 (2). D 

P r o o f of the assertion for (S3)3 and (S3)4. Suppose first that (S3)3 holds. Then 

by (5.14) and (6.10) for each m E M, we have 

(8.7) 9 ( V A / , V r ) (m) + 2(n + 2) (\g\2 - — ) ( m ) A / ( m ) = 0 

for all bi-harmonic functions / near m. But due to [4], we can take a harmonic 

coordinate system (U ; x 1 , x2,..., xn). Choosing functions / so tha t A / = xx, i = 1, 

2, . . . , n in (8.7), we obtain that r is constant, and that (\g\2 — — ) ( m ) A / ( m ) = 0. 

Thus (M,g) is an Einstein space. 

Suppose next tha t (S3)4 holds. Since (M,g) is Einsteinian, by (6.3) the condition 

(S2)4 holds. Hence by Corollary, (M,g) is a super-Einstein space. 

The necessity of each of (S3)3 and (S3)4 is clear. D 

The assertion (3) is proved. D 

R e m a r k . There are quasi-super-Einstein spaces which are not Einsteinian. 

Indeed due to [14], the following spaces are in that category; 

Sp(k) x Hp(-k), S3(k) x Rp and H3(-k) x Rp (p ^ 2), 

where Sn(k), Hn( — k) and Rn denote 7i-dimensional spaces of constant sectional 

curvature k > 0, — k < 0 and 0, respectively. 

R e m a r k . Let M be a 4-dimensional compact orientable C7°° manifold. Let ^6 

be the set of all Riemannian metrics g on M such that vol M = 1. We define the 

mapping I: ^ —• R by 

1(9) = I (\R\2-\g\2)dM. 
JM 

We then obtain tha t a metric g G ^ is a critical point of I, if and only if (M,g) 

satisfies 

ktj = | f l | 2 ^ | g | 2
g l J - ^Ripj, + 2 ^ - ^Aeij 

+ j(Ar)9ij + i v ' r . 

In particular, if (M,go) is a quasi-super-Einstein space, then go € ^ is a critical 

point of I. 
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