Lajos Molnár
Modular bases in a Hilbert A-module

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 4, 649–656

Persistent URL: http://dml.cz/dmlcz/128361

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
MODULAR BASES IN A HILBERT A-MODULE

LAJOS MOLNÁR, Debrecen

(Received May 20, 1991)

Summary. Following Ozawa [4] we introduce the concept of a modular base in a Hilbert A-module and prove that the cardinalities of any two such bases are the same.

Keywords: H^*-algebra, primitive projection, projection base, Hilbert A-module, modular base, modular dimension

AMS classification: 46H25

INTRODUCTION

Throughout this paper A denotes a proper H^*-algebra with an inner product and norm $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$, respectively ([1]). A nonzero selfadjoint idempotent in A is called a projection. If a projection cannot be expressed as a sum of two pairwise orthogonal projections, then it is said to be primitive. A maximal family of pairwise orthogonal primitive projections is called a projection base. Denote by $\tau(A)$ the trace class of A, i.e. let $\tau(A) = \{ xy: x, y \in A \}$ and let tr be the trace functional on $\tau(A)$. tr has the following properties: $\text{tr} xy = \langle y, x^* \rangle = \langle x, y^* \rangle = \text{tr} yx$ ($x, y \in A$). For each $a \in A$ there exists a unique positive element $[a] \in A$ (i.e. such that $\langle [a]x, x \rangle \geq 0$ ($x \in A$)) such that $[a]^2 = a^*a$, moreover $a \in \tau(A)$ if and only if $[a] \in \tau(A)$. Then a norm can be defined on $\tau(A)$ by setting $\tau(a) = \text{tr}[a]$ ($a \in \tau(A)$), for which the following relations hold: $|\text{tr}(\cdot)| \leq \tau(\cdot), \| \cdot \| \leq \tau(\cdot)$ and $\tau(xy) \leq \|x\| \|y\|$ ($x, y \in A$) ([6]). It was shown in [7] that $\tau(A)$ is a Banach *-algebra. In [8] Smith proved that every nonzero positive element $a \in A$ has a unique spectral representation $a = \sum_n \lambda_n e_n$, where the λ_n-s are positive real numbers with $\lambda_i > \lambda_j$ if $i < j$, and the e_n-s are mutually orthogonal projections.
Now let \(H \) be a (right) \(A \)-module on which there is a generalized inner product \([,] \), i.e. \([,] : H \times H \to \tau(A)\) such that

1. \([f, f] \geq 0\) and \([f, f] = 0\) if and only if \(f = 0\);
2. \([f, g + h] = [f, g] + [f, h]\);
3. \([f, ga] = [f, g]a\);
4. \([f, g]^* = [g, f]\)

holds for every \(f, g, h \in H \) and \(a \in A \). \([,]\) satisfies the so called strong Schwartz inequality, i.e.

\[
(\tau[f, g])^2 \leq \tau[f, f] \tau[g, g] \quad (f, g \in H).
\]

For a more general statement cf. [3].

In the rest of the paper let \(H \) be a Hilbert \(A \)-module, i.e. suppose that \(H \) is complete in the metric \(d \) defined by

\[
d(f, g) = \sqrt{\tau[f - g, f - g]} \quad (f, g \in H).
\]

As Saworotnow showed in [5], on \(H \) a linear structure can be introduced such that \(\lambda(fa) = (\lambda f)a = f(\lambda a) \) (\(\lambda \in \mathbb{C}, a \in A, f \in H \)) and

\[
\langle f, g \rangle = \text{tr}[g, f] \quad (f, g \in H)
\]

defines an inner product on \(H \). Denote by \(|| \cdot || \) the norm corresponding to this inner product.

It is easy to see that \(A \) is a Hilbert \(A \)-module if we define the generalized inner product by \([x, y] = x^*y \) (\(x, y \in A \)). Similar considerations can be performed for every \(eA \), where \(e \in A \) is a projection. The norms arising from these generalized inner products are equal to the original one.

If \(H_1 \) and \(H_2 \) are Hilbert \(A \)-modules, then a mapping \(U : H_1 \to H_2 \) is called an \(A \)-unitary operator if it is surjective and

1. \(U(f + g) = Uf + Ug \),
2. \(U(fa) = (Uf)a \),
3. \([Uf, Ug] = [f, g] \)

for every \(f, g \in H_1 \) and \(a \in A \). In this case \(U \) is a unitary operator between the Hilbert spaces \(H_1 \) and \(H_2 \). Finally, it was also proved in [4] that

\[
f = \sum_{\alpha} fe_{\alpha}
\]

holds for every \(f \in H \) and projection base \(\{e_{\alpha}\}_{\alpha \in A} \).
Results

We begin with the following basic lemma.

Lemma 1. Let $f \in H$ be such that $[f, f]$ is a projection. Then the submodule fA is isomorphic an isometric to $[f, f]A$, consequently fA is closed. Moreover, we have $f[f, f] = f$.

Proof. Let $f \in H$ and consider the function $T(fa) = [f, fa] = [f, f]a$ ($a \in A$). Then T is a linear operator preserving the module operation with the range $[f, f]A$. Since

$$[fa, fa] = a^*[f, f]^*[f, f]a = ([f, f]a, [f, f]a) \quad (a \in A),$$

taking traces we get that T is an isometry. Since $[f, f]A$ is closed so is fA. Now let $[f, f] = e_1 + \ldots + e_n$ be the decomposition of $[f, f]$ into pairwise orthogonal primitive projections (cf. [1, Theorem 3.2]). Extend the set $\{e_1, \ldots, e_n\}$ by $\{e'_\alpha\}_{\alpha \in \Lambda}$ to a projection base. Then

$$f = f[f, f] + \sum_{\alpha} f e'_\alpha.$$

Since $[fe'_\alpha, fe'_\alpha] = e'_\alpha[f, f]e'_\alpha = 0$ ($\alpha \in \Lambda$), it follows that $f[f, f] = f$. \hfill \Box

Definition. The family $\{f_\alpha\}_{\alpha \in \Lambda} \subset H$ is said to be modular orthonormal if

1. $[f_\alpha, f_\beta] = 0$ if $\alpha \neq \beta$;
2. $[f_\alpha, f_\alpha]$ is primitive projection in A for every $\alpha \in \Lambda$.

A maximal modular orthonormal family is called a modular base.

Remark 1. If $\{f_\alpha\}_{\alpha \in \Lambda} \subset H$ is a modular orthonormal family, $a_\alpha \in A$ ($\alpha \in \Lambda$) and $F \subset \Lambda$ is a finite set, then, using the above lemma, simple calculation shows that $[f - \sum\limits_{\alpha \in F} f_\alpha a_\alpha, f - \sum\limits_{\alpha \in F} f_\alpha a_\alpha]$ equals

$$[f, f] + \sum\limits_{\alpha \in F} ([f_\alpha, f] - [f_\alpha, f_\alpha] a_\alpha)^*([f_\alpha, f] - [f_\alpha, f_\alpha] a_\alpha) - \sum\limits_{\alpha \in F} [f, f_\alpha][f_\alpha, f].$$

As a consequence we have

$$[f, f] \geq \sum\limits_{\alpha \in F} [f, f_\alpha][f_\alpha, f].$$

Theorem 1. Let $\{f_\alpha\}_{\alpha \in \Lambda}$ be a modular orthonormal family in H. Then the following assertions are equivalent:

(i) $\{f_\alpha\}_{\alpha \in \Lambda}$ is a modular base.
(ii) If $f \in H$ is such that $[f_\alpha, f] = 0$ ($\alpha \in \Lambda$), then $f = 0$.

651
(iii) The orthogonal sum (in the Hilbert space sense) of the closed subspaces $H_\alpha = f_\alpha A$ ($\alpha \in \Lambda$) is H.

(iv) $f = \sum_\alpha f_\alpha [f_\alpha, f]$ for every $f \in H$.

(v) $[f, g] = \sum_\alpha [f, f_\alpha][f_\alpha, g]$ holds for any $f, g \in H$, where the sum is unconditionally convergent in the norm τ.

(vi) $||f||^2 = \sum_\alpha ||[f_\alpha, f_\alpha]||^2$ for every $f \in H$.

Proof. (i) \Rightarrow (ii). Suppose that $f \in H$ and $[f_\alpha, f] = 0$ ($\alpha \in \Lambda$). If $f \neq 0$, then let $[f, f] = \sum_\alpha \lambda_n e_n$ be the spectral representation of $[f, f]$. Now for $f' = \frac{1}{\sqrt{\lambda_1}} f e_1$ we have $[f', f'] = e_1$ and $[f_\alpha, f'] = 0$ ($\alpha \in \Lambda$), which is a contradiction.

(ii) \Rightarrow (iii). By the previous lemma H_α is a closed submodule which is a subspace as well ($\alpha \in \Lambda$). Now the implication follows from [5, Lemma 3].

(iii) \Rightarrow (iv). If $f \in H$, then for every $\alpha \in \Lambda$ there exists an $a_\alpha \in A$ such that $f = \sum_\alpha f_\alpha a_\alpha$. This implies that

$$[f_\alpha, f] = [f_\alpha, f_\alpha] a_\alpha \quad (\alpha \in \Lambda).$$

Since $f_\alpha [f_\alpha, f_\alpha] = f_\alpha$ ($\alpha \in \Lambda$), we have (iv).

(iv) \Rightarrow (v). We have to prove only the unconditional convergence. By the properties of the norm τ we have

$$\tau([f, f_\alpha][f_\alpha, g]) \leq ||[f_\alpha, f]|| ||[f_\alpha, g]|| \quad (\alpha \in \Lambda).$$

But from the proof of Lemma 1 we know that

$$||[f, f_\alpha]||^2 = ||f_\alpha [f_\alpha, f]||^2 \quad \text{and} \quad ||[f_\alpha, g]||^2 = ||f_\alpha [f_\alpha, g]||^2 \quad (\alpha \in \Lambda).$$

Now (v) follows.

(v) \Rightarrow (vi). Let $f \in H$. Then

$$[f, f] = \sum_\alpha [f, f_\alpha][f_\alpha, f].$$

By the above remark, using the fact that τ is additive on the positive elements of $\tau(A)$, we have

$$\tau([f, f] - \sum_\alpha [f, f_\alpha][f_\alpha, f]) = \tau([f, f] - \sum_{\alpha \in F} [f_\alpha, f_\alpha] [f_\alpha, f]) = ||f||^2 - \sum_{\alpha \in F} ||[f_\alpha, f_\alpha]||^2$$

for every $F \subset \Lambda$, which implies (vi).

The implications (vi) \Rightarrow (ii) \Rightarrow (i) are trivial. \square
Remark 2. In Corollary 1 below which can be called a generalized Bessel inequality we need the following simple statement.

If \((e_\varepsilon)_{\varepsilon \in \mathcal{E}}\) is a net of selfadjoint elements of \(\tau(A)\) converging in the norm \(\tau\) to an \(a \in \tau(A)\) such that there is an \(x \in A\) for which \(x = x^*\) and

\[a_\varepsilon \leq x \quad (\varepsilon \in \mathcal{E}), \]

then \(a \leq x\).

To prove it we note that the convergence in \(\tau\) implies the convergence in \(||\cdot||\).

Corollary 1. Let \(\{f_\alpha\}_{\alpha \in \Lambda}\) be a modular orthonormal family in \(H\). Then

\[[f, f] \geq \sum_\alpha [f, f_\alpha][f_\alpha, f], \]

where the sum is unconditionally convergent in \(\tau(A)\).

Proof. By Theorem 1 (vi) we have

\[\sum_\alpha \tau([f, f_\alpha][f_\alpha, f]) = \sum_\alpha ||[f_\alpha, f]||^2 < \infty. \]

Now the statement follows from Remarks 1 and 2. \(\square\)

In the proof of our main theorem we use

Lemma 2. Let \(n, m \in \mathbb{N}\) be such that \(n \neq m\). Suppose that \(e_1, \ldots, e_{n+m}\) are primitive projections in \(A\). Then

\[e_1 + \ldots + e_n \neq e_{n+1} + \ldots + e_{n+m}. \]

Proof. Using the second structure theorem for \(H^*\)-algebras ([1, Theorem 4.2 and 4.3]) \(A\) can be identified with the direct sum of Hilbert-Schmidt operator algebras \(\bigoplus_{\gamma \in \Gamma} \text{HS}(\mathcal{H}_\gamma)\), where the \(\mathcal{H}_\gamma\)-s are suitably chosen Hilbert spaces and the inner product on \(\text{HS}(\mathcal{H}_\gamma)\) may differ from the standard one at most by a real constant which is not less than 1. In this representation every \(e_j\) can be considered as a vector \((P^j_\gamma)_{\gamma \in \Gamma}\) such that there is exactly one \(\gamma \in \Gamma\) for which \(P^j_\gamma \neq 0\) and for this \(\gamma\) \(P^j_\gamma\) is one dimensional projection on \(\mathcal{H}_\gamma\). Now suppose that \(e_1 + \ldots + e_n = e_{n+1} + \ldots + e_{n+m}\). It is easy to see that there is a \(\gamma_0 \in \Gamma\) such that

\[\text{card}\{k \in \{1, \ldots, n\}: P^k_{\gamma_0} \neq 0\} \neq \text{card}\{l \in \{n+1, \ldots, n+m\}: P^l_{\gamma_0} \neq 0\}. \]

653
If we take the trace corresponding to the Hilbert space \mathcal{H}_{γ_0} in the equation

$$\sum_{k=1}^{n} P_{\gamma_0}^k = \sum_{l=n+1}^{n+m} P_{\gamma_0}^l,$$

we arrive at a contradiction. \hfill \Box

Theorem 2. If $\{f_{\alpha}\}_{\alpha \in \Lambda}$ and $\{g_i\}_{i \in I}$ are modular bases in H, then $\text{card } \Lambda = \text{card } I$.

Proof. If Λ and I are infinite sets, then the proof is standard. In fact, for every $\alpha \in \Lambda$ consider the set

$$S_{\alpha} = \{i \in I: [f_{\alpha}, g_i] \neq 0\}.$$

By Theorem 1 (vi) S_{α} is countable. (ii) of the same theorem implies that every $i \in I$ belongs to at least one set S_{α} ($\alpha \in \Lambda$). Then we have

$$\text{card } I \leq \text{card } \Lambda \cdot \aleph_0 = \text{card } \Lambda.$$

Changing the role of Λ and I we get the other inequality.

Now we prove that if one of these bases is finite, then so is the other. To this end suppose that Λ is finite and I is infinite. Since $|\text{tr}(.)| \leq \tau(.)$, thus, by Theorem 1 (v), we have

$$\infty > \text{tr} \sum_{\alpha} [f_{\alpha}, f_{\alpha}] = \text{tr} \sum_{\alpha} \sum_{i} [f_{\alpha}, g_i][g_i, f_{\alpha}]$$

$$= \sum_{\alpha} \sum_{i} \text{tr}[f_{\alpha}, g_i][g_i, f_{\alpha}]$$

$$= \sum_{i} \sum_{\alpha} \text{tr}[g_i, f_{\alpha}][f_{\alpha}, g_i]$$

$$= \sum_{i} \text{tr}[g_i, g_i] = \infty,$$

where we have used the fact that the trace of a projection is not less than 1.

Finally, assume that Λ and I are finite. Then we have

$$\sum_{\alpha} [f_{\alpha}, f_{\alpha}] = \sum_{i} [g_i, g_i]$$

and Lemma 2 implies that $\text{card } \Lambda = \text{card } I$. \hfill \Box
As a consequence we can state

Corollary 2. All projection bases in A have the same cardinality.

Proof. Consider A as a Hilbert A-module. The only thing which has to be proved is that every projection base $\{e_\alpha\}_{\alpha \in A}$ is a modular base in A. By Theorem 1 (ii) we have to show that $e_\alpha x = 0$ ($\alpha \in A$) implies that $x = 0$. But this follows from the first structure theorem for H^*-algebras ([1, Theorem 4.1]).

Remark 3. By the second structure theorem for H^*-algebras it is to see that the relation between $\text{Dim} A$ and $\text{dim} A$ (the Hilbert space dimension of A) is quite complicated. However, it is easy to see that $\text{Dim} A < \infty$ if and only if $\text{dim} A < \infty$.

Just as in [4], $\text{card} A$ occurring in Theorem 2 is called the *modular dimension* of H and denoted by $\text{Dim} H$.

Remark 4. It is natural to ask whether any two Hilbert A-modules H_1 and H_2 are A-unitarily equivalent (i.e. there is an A-unitary operator between H_1 and H_2) if and only if $\text{Dim} H_1 = \text{Dim} H_2$. The “only if” part is obvious while the “if” part does not hold in general. To show it let $A = C \oplus C \oplus M_{2 \times 2}(C)$ (where $M_{2 \times 2}(C)$ is the algebra of 2×2-type complex matrices) with the natural operations and inner product. Let

\[
e_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},
\]

where $I \in M_{2 \times 2}(C)$ is the identity matrix. Then $H_1 = e_1 A$ and $H_2 = e_2 A$ can be considered Hilbert A-modules. It is trivial that $\text{Dim} H_1 = \text{Dim} H_2 = 2$, but, if H_1 and H_2 were A-unitarily equivalent, then they would be unitarily equivalent Hilbert spaces as well which is a contradiction.

As for our final result we need the following lemma which shows that the topological simplicity of A is a necessary and sufficient condition of the validity of the statement formulated in the above remark.

Lemma 3. The minimal right ideals of A are A-unitarily equivalent if and only if A is topologically simple.

Proof. In the proof we use [2, Proposition 7 and Theorem 8 on pp. 47–48].

To prove the necessity let $I_1 = Ae_1 A$, $I_2 = Ae_2 A$ be two different minimal closed ideals of A, where $e_1, e_2 \in A$ are primitive projections. Then $R_1 = e_1 A \subset I_1$ and $R_2 = e_2 A \subset I_2$ are minimal right ideals for which $R_1^* R_1 \subset I_1$, $R_2^* R_2 \subset I_2$ since I_1, I_2 are selfadjoint. But $I_1 \neq I_2$ implies that $I_1 \perp I_2$, consequently we get that there
is no A-unitary operator between R_1 and R_2. Now it follows that A is topologically simple.

To prove the sufficiency we may assume that $A = \text{HS}(\mathcal{H})$, where \mathcal{H} is a Hilbert space and the inner product on $\text{HS}(\mathcal{H})$ is the standard one. Let P_1 and P_2 be one dimensional projections on \mathcal{H}. Suppose that φ_1 and φ_2 are vectors from \mathcal{H} of norm 1 generating the range of P_1 and P_2, respectively. If S is the operator defined by $Sx = (x, \varphi_1) \varphi_2$ ($x \in \mathcal{H}$), then let

$$U(P_1T) = SP_1T \quad (T \in \text{HS}(\mathcal{H})).$$

Simple calculation shows that U is an $\text{HS}(\mathcal{H})$-unitary operator from $P_1 \text{HS}(\mathcal{H})$ onto $P_2 \text{HS}(\mathcal{H})$. \quad \Box

From this lemma, by Lemma 1 and Theorem 1 (iii) and (iv), we have

Theorem 3. Let A be topologically simple. If H_1 and H_2 are Hilbert A-modules, then H_1 and H_2 are A-unitarily equivalent if and only if $\dim H_1 = \dim H_2$.

References

Author's address: Institute of Mathematics, Lajos Kossuth University, 4010 Debrecen, P.O.Box 12, Hungary.