Valter Šeda; Zbyněk Kubáček
On the connectedness of the set of fixed points of a compact operator in the Fréchet space $C^m (\langle b, \infty \rangle, \mathbb{R}^n)$

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 4, 577–588

Persistent URL: http://dml.cz/dmlcz/128365

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ON THE CONNECTEDNESS OF THE SET OF FIXED POINTS OF A COMPACT OPERATOR IN THE FRÉCHET SPACE $C^m((b,\infty),\mathbb{R}^n)$

VALTER ŠEDA and ZBYNĚK KUBÁČEK, Bratislava

(Received April 4, 1990)

INTRODUCTION

Several authors (e.g. N. Aronszajn in [2], M. Hukuhara in [7], M. A. Krasnosel’skij and A. I. Perov in [8], G. Stampacchia in [14], F. E. Browder and G. P. Gupta in [4], G. Vidossich in [19], S. Szufia in [15]–[18], R. R. Achmerov, M. I. Kamenskij, A. S. Potapov in [1], M. A. Krasnosel’skij, P. P. Zabrejko in [9] and B. N. Sadovskij in [13]) have investigated the compactness as well as the connectedness of the set of all fixed points of a compact operator or an operator of a more general type mostly in a Banach space. Only few of them have been interested in this problem in a more general space (P. Morales in [12], Š. Belohorec in [3], Z. Kubáček in [10] and K. Czarnowski, T. Pruszko in [5]). Here the results from a Banach space will be extended to a Fréchet space. Our considerations will be based on the following results which are given as Lemmas.

Lemma 1 ([10], p. 422). Let X be a Hasdorff topological vector space, M a non-empty closed subset of X, $F : M \to X$ a compact mapping, and let B denote the neighborhood base of the point 0 consisting of balanced sets. Let the following conditions be satisfied:

(i) for each set $U \in B$ there exists a compact mapping $F_U : M \to X$ such that

$$F(x) - F_U(x) \in U \text{ for each } x \in M;$$

(ii) for each $U \in B$ and for each $x \in U$ the equation

$$y - F_U(y) = x$$

577
has a unique solution \(y \in M \).

Then the set \(S \) of fixed points of the mapping \(F \) is nonempty, compact and connected.

Lemma 2 ([6], pp. 89–90, [20], pp. 55–56). Let \((X, \| \cdot \|)\) be a real Banach space, \(\Omega \) a non-empty open and bounded subset of \(X \), \(F : \bar{\Omega} \rightarrow X \) a compact mapping which satisfies the strengthened Leray – Schauder condition:

there exists an \(x_0 \in \Omega \) such that

\[
F(x) - x_0 \neq \lambda (x - x_0) \quad \text{for each} \ x \in \partial \Omega \ \text{and each} \ \lambda \geq 1.
\]

Further, let there exist a sequence of compact mappings \(F_p : \bar{\Omega} \rightarrow X, \ p = 1, 2, \ldots \) with the properties

a) \(\delta_p = \sup \{ \| F_p(x) - F(x) \| : x \in \bar{\Omega} \} \rightarrow 0 \) for \(p \rightarrow \infty \);

b) the equation (in \(y \))

\[
y - F_p(y) = F(x) - F_p(x)
\]

has at most one solution in \(\bar{\Omega} \) for each \(x \in \Omega \).

Then the set \(S \) of fixed points of the mapping \(F \) is non-empty, compact and connected.

The next Lemma is a consequence of the theorem in [11], p. 111.

Lemma 3. Let \((X, d)\) be a metric space and \(\{ S_m : m = 1, 2, \ldots \} \) a sequence of non-empty compact and connected sets such that

\[
S_{m+1} \subset S_m \quad \text{for} \ m = 1, 2, \ldots.
\]

Then \(\bigcap_{m=1}^{\infty} S_m \) is a non-empty compact and connected set.

We shall use the following notation.

Let \(-\infty < b < \infty \) and let \(n > 0, \ k \geq 0 \) be integers, \(I_b = (b, \infty) \), \(| \cdot | \) a norm in \(\mathbb{R}^n \).

Let

\[
X = C^k(I_b, \mathbb{R}^n), p_m(x) = \max \{|x(t)| + \ldots + |x^{(k)}(t)| : b \leq t \leq b + m\}
\]

for each \(x \in X \) and each \(m = 1, 2, \ldots \). The space \((X, \{p_m\})\) is a real Fréchet space and the convergence in this space means the uniform convergence of the functions and their first \(k \) derivatives on each interval \((b, b + m), m = 1, 2, \ldots\).

Further, let

\[
X_m = C^k((b, b + m), \mathbb{R}^n) \quad \text{for each} \ m = 1, 2, \ldots
\]
Then p_m is a norm in X_m and (X_m, p_m) is a real Banach space.

Let $h > 0$ and $\psi \in C^k((-h, 0), \mathbb{R}^n)$. Let $\varphi, \varphi_p \in C(I_b, (0, \infty))$, $p = 1, 2, \ldots$ where the sequence $\{\varphi_p\}$ is nonincreasing in I_b and $\lim_{p \to \infty} \varphi_p(t) = 0$ for each $t \in I_b$.

Denote

$$M = \{x \in X: |x(t) - \psi(0)| + \ldots + |x^{(k)}(t) - \psi^{(k)}(0)| \leq \psi(t)$$
for each $t \in I_b$ and $x^{(j)}(b) = \psi^{(j)}(0), j = 0, 1, \ldots, k\},$

$$M_m = \{x \in X_m: |x(t) - \psi(0)| + \ldots + |x^{(k)}(t) - \psi^{(k)}(0)| \leq \varphi(t),$$
t $\in (b, b + m)$ and $x^{(j)}(b) = \psi^{(j)}(0), j = 0, 1, \ldots, k\}, \quad m = 1, 2, \ldots.$

$M(M_m)$ is a closed, convex and bounded set in X (in $X_m, m = 1, 2, \ldots$). Clearly, if $x \in M$ or $x \in M_{m+p}$, then $x\big|_{(b, b + m)} \in M_m$ for each $m = 1, 2, \ldots, p = 1, 2, \ldots$.

Here and in the sequel $f\big|_{(a, b)}$ denotes the restriction of the function f to the interval (a, b).

Main results

The approximation Lemma which follows represents the main tool in obtaining the new results.

Lemma 4. Let the spaces $X, X_m, m = 1, 2, \ldots$, the functions ψ, φ and the sets $M, M_m, m = 1, 2, \ldots$ be as above. Let there exist mappings $T: M \to X, T_m: M_m \to X_m, m = 1, 2, \ldots$ with the properties

1. $x\big|_{(b, b + m)} = y\big|_{(b, b + m)} \Rightarrow T(x)\big|_{(b, b + m)} = T(y)\big|_{(b, b + m)}$ for each $x, y \in M, m = 1, 2, \ldots$;
2. $T_m(x\big|_{(b, b + m)}) = T(x)\big|_{(b, b + m)}$ for each $x \in M, M = 1, 2, \ldots$;
3. $x\big|_{(b, b + m)} = y\big|_{(b, b + m)} \Rightarrow T_{m+p}(x)\big|_{(b, b + m)} = T_{m+p}(y)\big|_{(b, b + m)}$ for each $x, y \in M_{m+p}, m = 1, 2, \ldots, p = 1, 2, \ldots$;
4. $T_m(x\big|_{(b, b + m)}) = T_{m+p}(x)\big|_{(b, b + m)}$ for each $x \in M_{m+p}, m = 1, 2, \ldots, p = 1, 2, \ldots$.

Further, let the set $S_m^*\alpha$ of all fixed points of the operator T_m be nonempty, compact and connected in the space X_m. Then the set S of all fixed points of the operator T is nonempty, compact and connected in the space X.

Proof. Let $m_0 \geq 1$ be a fixed integer. Let

$$S_m = \{x\big|_{(b, b + m_0)} : x \in S_m^*\} \text{ for all } m \geq m_0.$$
Fix an arbitrary $m \geq m_0$. Clearly $S_m \neq \emptyset$. Since the mapping from X_m to X_{m_0} which to each function $x \in X_m$ assigns the restriction $x|_{(b, b + m_0)}$ is continuous, S_m is compact and connected. Since $m \geq m_0$ is arbitrary, by Lemma 3 we get that

$$P_{m_0} = \bigcap_{m=m_0}^{\infty} S_m \neq \emptyset,$$

and it is a compact and connected set.

Denote by S the set of all fixed points of the operator T. If $x \in S$, then in view of (6)

$$y_m = x|_{(b, b + m)} \in S_m^* \text{ for each } m \geq m_0$$

and hence

$$y = y_m|_{(b, b + m_0)} = x|_{(b, b + m_0)} \in P_{m_0}.$$

Conversely, let $y \in P_{m_0}$. Then for each $m \geq m_0$ there is a $y_m \in S_m^*$ such that $y_m|_{(b, b + m_0)} = y$. We shall show that there is an $x \in S$ such that $y = x|_{(b, b + m_0)}$.

Consider the sequence $\{y_m\}_{m=m_0+1}^{\infty}$. As by (4) the sequence $\{y_m|_{(b, b + m_0 + 1)}\} \subseteq S_{m_0+1}^*$ and the last set is compact, there exists a subsequence $\{y_{m_r}\}$ of the sequence $\{y_m\}$ and a point $y_1 \in S_{m_0+1}^*$ such that the sequence $\{y_{m_j}|_{(b, b + m_0 + 1)}\}$ converges uniformly to $y_1^{(j)}$ on $(b, b + m_0 + 1)$, $j = 0, \ldots, k$. By mathematical induction we get a sequence of sequences

$$\{y_{m_1}\}, \{y_{m_2}\}, \ldots, \{y_{m_r}\}, \ldots$$

such that

(i) the sequence $\{y_{m_1}\}$ is a subsequence of the sequence $\{y_m\}$;

(ii) $\{y_{m_{r+1}}\}$ is a subsequence of the sequence $\{y_{m_r}\}$ for $r = 1, 2, \ldots$;

(iii) the sequence $\{y_{m_{j}}|_{(b + m_0 + r)}\}$ converges uniformly on $(b, b + m_0 + r)$ for $j = 0, \ldots, k$ and $\{y_{m_r}|_{(b, b + m_0 + r)}\} \subseteq S_{m_0+r}^*$.

Then the diagonal sequence $\{y_{m_m}\}$ possesses the property that $\{y_{m_m}^{(j)}\}$ converges uniformly on each interval $(b, b + m_0 + r)$ to $x^{(j)}$ for $j = 0, \ldots, k$ where $x \in X$ is a certain function. As $y_{m_m}|_{(b, b + m_0 + m)} \in S_{m_0+m}^*$, also $x|_{(b + m_0 + m)} \in S_{m_0+m}^*$ and by (2), $x \in S$.

Hence $S \neq \emptyset$ and P_{m_0} is the set of restrictions to $(b, b + m_0)$ of all functions belonging to S, for each $m_0 = 1, 2, \ldots$. Now we prove that S is a compact set in X.

Let $\{x_p\} \subseteq S$ be a sequence of points. Then by the compactness of the sets P_1, P_2, \ldots in the spaces X_1, X_2, \ldots respectively we get that there exist sequences

$$\{x_{p,1}\}, \{x_{p,2}\}, \ldots$$
such that

(i) \(\{x_{p,1}\} \) is a subsequence of the sequence \(\{x_p\} \);
(ii) \(\{x_{p,r+1}\} \) is a subsequence of the sequence \(\{x_{p,r}\} \) for \(r = 1, 2, \ldots \);
(iii) the sequence \(\{x_{p,r}\} \) together with its first \(k \) derivatives converges uniformly on \((b, b + r) \).

Then the diagonal sequence \(\{x_{p,p}\} \) converges in the space \(X \) to a point \(x \in X \)
with the property that \(x \mid (b, b + m) \in S_m^* \) and by (2), \(x \in S \).

Finally, we prove that \(S \) is connected. If not, the set \(S \) can be decomposed into the union

\[
S = \hat{K}_1 \cup \hat{K}_2
\]

where \(\hat{K}_1, \hat{K}_2 \) are two non-empty, disjoint and compact sets. Let \(m \geq 1 \) be a natural number. Denote by \(\hat{K}_{1m} \) and \(\hat{K}_{2m} \) the sets of restrictions to \((b, b + m) \) of the functions from \(\hat{K}_1 \) and \(\hat{K}_2 \), respectively. Hence we have

\[
P_m = \hat{K}_{1m} \cup \hat{K}_{2m}.
\]

The compactness of \(\hat{K}_1, \hat{K}_2 \) implies that \(\hat{K}_{1m}, \hat{K}_{2m} \) are nonempty, compact sets in \(X_m \). If they were disjoint, then \(P_m \) would not be connected in \(X_m \). Hence there exist two elements \(x_m \in \hat{K}_1, y_m \in \hat{K}_2, x_m \neq y_m \) such that their restrictions to \((b, b + m) \) coincide. Thus

\[
x_m \mid (b, b + m) = y_m \mid (b, b + m).
\]

Consider the sequences \(\{x_m\}, \{y_m\} \). As \(\{x_m\} \subset \hat{K}_1, \{y_m\} \subset \hat{K}_2 \) and \(\hat{K}_1, \hat{K}_2 \) are compact in \(X \), there exist two subsequences \(\{x_{m_i}\}, \{y_{m_i}\} \) of the sequences \(\{x_m\}, \{y_m\} \), respectively, and there exist two elements \(x \in \hat{K}_1, y \in \hat{K}_2 \) such that \(\lim_{i \to \infty} x_{m_i} = x, \lim_{i \to \infty} y_{m_i} = y \) in \(X \). Then with respect to (7) we have \(x = y \). This contradicts the fact that \(\hat{K}_1 \cap \hat{K}_2 = \emptyset \). Hence \(S \) is connected. \(\square \)

Now by means of Lemmas 1 and 2 a sufficient condition for the sets \(S_m^* \) in Lemma 4 to be non-empty, compact and connected can be given. This is the content of the next theorem.

Theorem 1. Suppose that all assumptions of Lemma 4 are satisfied except the assumption on the sets \(S_m^* \), \(m = 1, 2, \ldots \) Suppose, further, that for each \(m = 1, 2, \ldots \)

\[
T_m: M_m \subset X_m \to X_m \text{ is a compact mapping},
\]
and there exists a sequence \(\{T_{mp}\}_{p=1}^{\infty} \) of mappings

\[T_{mp} : M_m \rightarrow X_m \]

with the following properties: For each \(p = 1, 2, \ldots \)

9. \(T_{mp} : M_m \subset X_m \rightarrow X_m \) is a compact mapping;

10. \(|T_m(x)(t) - T_{mp}(x)(t)| + \ldots + |(T_m(x))^{(k)}(t) - (T_{mp}(x))^{(k)}(t)| \leq \varphi_p(t) \) for each \(x \in M_m \) and each \(t \in (b, b + m) \),

and either

11. there exists a function \(\varphi^*_p \in C(I_\delta, (0, \infty)) \) such that

\[\varphi^*_p + \varphi_p \leq \varphi \text{ in } I_\delta \]

and

\[|T_{mp}(x)(t) - \psi(0)| + \ldots + |(T_{mp}(x))^{(k)}(t) - \psi^{(k)}(0)| \leq \varphi^*_p(t) \]

for all \(x \in M_m \) and all \(t \in (b, b + m) \);

12. the operator \(H_{mp} : M_m \rightarrow X_m \) which is defined by the relation

\[H_{mp}(x) = x - T_{mp}(x) \]

for all \(x \in M_m \)

is injective on \(M_m \),

or

13. there exists an \(x_m \in \mathcal{M}_m \) (the interior of \(M_m \)) such that

\[T_m(x) - x_m \neq \lambda(x - x_m) \]

for each \(x \in \partial M \) and each \(\lambda \geq 1 \);

14. the equation

\[H_{mp}(y) = x \]

has at most one solution in \(M_m \) for each \(x \in X_m \) such that

\[|x(t)| + \ldots + |x^{(k)}(t)| \leq \varphi_p(t), \quad b \leq t \leq b + m. \]

(Here \(H_{mp} \) has the same meaning as in (12)).

Then the set \(S \) of all fixed points of the operator \(T \) is non-empty, compact and connected in the space \(X \).

Proof. With respect to Lemma 4 it suffices to show that the set \(S_m^* \) of all fixed points of the operator \(T_m \) is non-empty, compact and connected for each \(m = 1, 2, \ldots \). Hence, let \(m \geq 1 \) be an arbitrary but fixed number. Consider the case when
the assumptions (11), (12) are satisfied. Then we apply Lemma 1 to the operator T_m in the space X_m. In this space we have two systems of balanced neighborhoods of 0:

$$U(0, \frac{1}{j}) = \{ x \in X_m : \rho_m(x) < \frac{1}{j} \}, \quad j = 1, 2, \ldots ;$$

$$U_p = \{ x \in X_m : \|x(t)\| + \ldots + \|x^{(k)}(t)\| \leq \varphi_p(t), b \leq t \leq b + m \}, \quad p = 1, 2, \ldots .$$

By the Dini theorem the sequence $\{\varphi_p\}$ converges uniformly to 0 on $(b, b + m)$ and both systems of neighborhoods determine the same topology in X_m. For each U_p there exists a compact mapping $T_{mp} : M_m \subset X_m \to X_m$ such that, in view of (10), $T_m(x) - T_{mp}(x) \in U_p$ for each $x \in M_m$.

As to the assumption (ii) in Lemma 1, by the assumption (12) it suffices to show that the equation

$$H_{mp}(y) = x$$

has at least one solution in M_m for each $x \in U_p$. So let us fix an arbitrary $x \in U_p$. Since M_m is a closed and convex set in X_m, the operator $T_{mp} + x : M_m \subset X_m \to X_m$ is compact and moreover

$$|T_{mp}(y)(t) - \psi(0)| + |x(t)| + \ldots + |(T_{mp}(y))^{(k)}(t) - \psi^{(k)}(0)| + |x^{(k)}(t)|$$

$$\leq \varphi_p(t) + \varphi_p(t) \leq \varphi(t) \quad \text{for each} \quad t \in (b, b + m),$$

which means that $T_{mp} + x : M_m \to M_m$, by the Schauder fixed point theorem the equation (15) has a solution in M_m and the statement of the theorem follows.

When the assumptions (13) and (14) are fulfilled, then we use Lemma 2. We take (X_m, ρ_m) for the real Banach space, \hat{M}_m for Ω and $T_m : M_m \subset X_m \to X_m$ for the compact mapping F. By (13) T_m satisfies the strengthened Leray-Schauder condition. When $\{T_{mp}\}_{p=1}^{\infty}$ is a sequence of compact mappings which approximates the mapping T_m, then by (10)

$$\delta_p = \sup \{\rho_m(T_{mp}(x) - T_m(x)) : x \in M_m\}$$

$$= \max \{\varphi_p(t) : b \leq t \leq b + m\} \to 0 \quad \text{for} \quad p \to \infty .$$

Let $x \in \hat{M}_m$. Then again by (10) $T_m(x) - T_{mp}(x) \in U_p$ and then (14) implies that the assumption b) of Lemma 2 is satisfied, too. By this Lemma the theorem is true. □
Theorem 1 will be applied to the initial value problem for a functional differential equation. First we consider a similar problem for an ordinary differential equation.

Let \(\omega \in C(I_b, (0, \infty)) \), let \(F \in C((0, \infty), (0, \infty)) \) be a non-decreasing function and let \(c \geq 0 \). Then one can find that a necessary and sufficient condition for the problem

\[
y'(t) = \omega(t)F(y + c), \quad y(b) = 0
\]

to have a unique solution on \((b, \infty)\) is that

\[
\int_b^\infty \omega(s) \, ds \leq \int_0^\infty \frac{dv}{F(v + c)}.
\]

Further, denote \(H = C((-h, 0), \mathbb{R}^n) \), \(||x|| = \max\{|x(s)| : -h \leq s \leq 0\} \) for each \(x \in H \). Then \((H, ||\cdot||)\) is a Banach space. If \(x : (b - h, \infty) \to \mathbb{R}^n \) is a continuous function, then \(x \in H \) is defined by \(x_t(s) = x(t + s), -h \leq s \leq 0 \), for each \(t \in I_b \). In the space \(X^* = C((b - h, \infty), \mathbb{R}^n) \) let the topology be defined by the seminorms \(q_m(x) = \max\{|x(t)| : b - h \leq t \leq b + m\}, m = 1, 2, \ldots, x \in X^* \). Clearly \((X^*, \{q_m\}_{m=1}^{\infty})\) is a Fréchet space.

Theorem 2. Let \(\psi \in H, f \in C(I_b \times H, \mathbb{R}^n) \). Let \(\omega \in C(I_b, (0, \infty)) \), let \(F \in C((0, \infty), (0, \infty)) \) be a non-decreasing function and

\[
\int_b^\infty \omega(s) \, ds \leq \int_0^\infty \frac{dv}{F(v + |\psi(0)|)}.
\]

Let

\[
|f(t, x)| \leq \omega(t)F(||x||) \quad \text{for each } (t, x) \in I_b \times M^{**},
\]

where

\[
M^{**} = \{x_t \in H : x \in C((b - h, \infty), \mathbb{R}^n), |x(t) - \psi(0)| \leq \varphi(t) \text{ for each } t \in I_b, x_b = \psi\}
\]

and \(\varphi \) is the solution of (16) on \(I_b \) with \(c = |\psi(0)| \).

Then the problem

\[
x'(t) = f(t, x_t), \quad b \leq t < \infty
\]

\[
x_b = \psi
\]
has a solution satisfying the inequality

\[(21)\quad |x(t) - \psi(0)| \leq \varphi(t) \quad \text{for each } t \in I_b.\]

The set of all such solutions is compact and connected in the space \(X^*\).

Proof. Consider the Fréchet space \((X, \{p_m\}_{m=1}^\infty)\) where \(X = C(I_b, \mathbb{R}^n)\), and the seminorms \(p_m(x) = \max\{|x(t)|: b \leq t \leq b + m\}, m = 1, 2, \ldots, x \in X\). This space corresponds to the case \(k = 0\) mentioned above. By virtue of (21) the problem (19), (20) is equivalent to the fixed point (f.p. for short) problem for the operator \(T^*: M^* \to X^*\) which is defined by

\[T^*(x)(t) = \begin{cases} \psi(0) + \int_b^t f(s, x_s) \, ds, & b \leq t < \infty, \\ \psi(t - b), & b - h \leq t \leq b \end{cases}\]

on the set \(M^* = \{x \in X^*: x_b = \psi \text{ and } |x(t) - \psi(0)| \leq \varphi(t) \text{ for each } t \in I_b\}\).

Let

\[V = \{x \in X: x(b) = \psi(0)\}, \]
\[V^* = \{x \in X^*: x_b = \psi\}.

Define the mapping \(P: V \to V^*\) by

\[P(x)(t) = \begin{cases} x(t), & b \leq t < \infty, \\ \psi(t - b), & b - h \leq t \leq b, \end{cases}\quad \text{for each } x \in V.

Then \(P\) is a bijection of \(V\) onto \(V^*\) and since \(x_p \to x\) in \(V \subset X\) for \(p \to \infty\) is equivalent to \(P(x_p) \to P(x)\) in \(V^* \subset X^*\) for \(p \to \infty\), \(P\) is a homeomorphism of \(V\) onto \(V^*\). Clearly the inverse mapping \(P^{-1}\) of \(P\) is defined by

\[P^{-1}(x) = x|_{(b, \infty)} \quad \text{for each } x \in V^*.

Let \(M = \{x \in X: |x(t) - \psi(0)| \leq \varphi(t) \text{ for each } t \in I_b \text{ and } x(b) = \psi(0)\}\). Consider now the mapping \(T = P^{-1} \circ T^* \circ P|_M\). Then \(T: M \to X\) and

\[(22)\quad T(x)(t) = \psi(0) + \int_b^t f(s, x_s) \, ds, \quad b \leq t < \infty, \quad x \in M, \quad x_b = \psi.

(In fact, the operator \(T\) should be defined by

\[T(x)(t) = \psi(0) + \int_b^t f(s, (P(x))_s) \, ds, \quad b \leq t < \infty, \quad x \in M,

585
but it is clear what (22) means. The same notation will be used for the operators \(T_p, T_m \) and \(T_{mp} \), which will be defined on \(M \) in a similar way.)

Clearly \(u \in M \) is a f.p. of \(T \) iff \(P(u) \in M^* \) is a f.p. of \(T^* \), and in view of the property of \(P \), the set of all f.p. of \(T^* \) in \(M^* \) is non-empty, compact and connected in \(M^* \) iff the set of all f.p. of \(T \) in \(M \) has the same property. Thus we can apply Theorem 1 to the operator \(T \).

The set \(M \) is closed in the Fréchet space \(X \). Define operators \(T_p : M \to X \) by

\[
T_p(x)(t) = \begin{cases}
\psi(0), & b \leq t \leq b + \frac{1}{p}, \\
\psi(0) + \int_b^{t-1/p} f(s, x_s) \, ds, & b + \frac{1}{p} \leq t < \infty, x \in M, \ x_b = \psi.
\end{cases}
\]

Then (18) yields

\[
|T(x)(t) - T_p(x)(t)| \leq \begin{cases}
\int_b^t \omega(s) F(\varphi(s) + |\psi(0)|) \, ds, & b \leq t \leq b + \frac{1}{p}, \\
\int_{t-1/p}^t \omega(s) F(\varphi(s) + |\psi(0)|) \, ds, & b + \frac{1}{p} \leq t < \infty, x \in M, \ x_b = \psi.
\end{cases}
\]

Denote by \(\varphi_p(t) \) the right-hand side of the last inequality. Hence

\[
\varphi_p(t) = \begin{cases}
\int_b^t \omega(s) F(\varphi(s) + |\psi(0)|) \, ds, & b \leq t \leq b + \frac{1}{p}, \\
\int_{t-1/p}^t \omega(s) F(\varphi(s) + |\psi(0)|) \, ds, & b + \frac{1}{p} \leq t < \infty, p = 1, 2, \ldots
\end{cases}
\]

Clearly \(\{ \varphi_p \} \) is a nonincreasing sequence on \(I_b \) and \(\lim_{p \to \infty} \varphi_p(t) = 0 \) for each \(t \in (b, \infty) \).

Further, when we define

\[
\varphi_{*p}(t) = \begin{cases}
0, & b \leq t \leq b + \frac{1}{p}, \\
\int_b^{t-1/p} \omega(s) F(\varphi(s) + |\psi(0)|) \, ds, & b + \frac{1}{p} \leq t < \infty, p = 1, 2, \ldots
\end{cases}
\]

then

\[
|T_p(x)(t) - \psi(0)| \leq \varphi_{*p}(t), t \in I_b, \ p = 1, 2, \ldots, x \in M, \ x_b = \psi,
\]

and by (16)

\[
\varphi_{*p}(t) + \varphi_p(t) = \int_b^t \omega(s) F(\varphi(s) + |\psi(0)|) \, ds = \varphi(t),
\]

for each \(t \in I_b \).

Further, the operators \(T_m, T_{mp} : M_m \subset X_m \to X_m \) defined by

\[
T_m(x)(t) = \psi(0) + \int_b^t f(s, x_s) \, ds, b \leq t \leq b + m, x_b = \psi,
\]

\[
T_{mp}(x)(t) = \begin{cases}
\psi(0), & b \leq t \leq b + \frac{1}{p}, \\
\psi(0) + \int_b^{t-1/p} f(s, x_s) \, ds, & b + \frac{1}{p} \leq t \leq b + m \\
\text{for } m = 1, 2, \ldots, p = 1, 2, \ldots
\end{cases}
\]

586
are compact. This can be shown in the usual way.

The last step in checking the assumptions of Theorem 1 consists of proving (12). Let the mapping $H_{mp}: M_m \rightarrow X_m$ be defined by

$$H_{mp}(x) = x - T_{mp}(x) \text{ for all } x \in M_m, \ x_b = \psi, \ m = 1, 2, \ldots, \ p = 1, 2, \ldots.$$

Consider two elements $x, y \in M_m, x \neq y$. Then there exists a $t_0: b < t_0 \leq b + m$ such that $x(t_0) \neq y(t_0)$. Two cases may occur:

a) If $t_0 \in (b, b + \frac{1}{\rho})$, then $H_{mp}(x)(t_0) = x(t_0) - \psi(0) \neq y(t_0) - \psi(0) = H_{mp}(y)(t_0)$;

b) there is a $t_1 \geq b + \frac{1}{\rho}$ such that $T_1 = \sup\{\tau > b: x(t) = y(t) \text{ for } t \in (b, \tau)\}$.

Then there exists a $t_0 \in (t_1, t_1 + \frac{1}{\rho})$ such that $x(t_0) \neq y(t_0)$. This implies that

$$T_{mp}(x)(t_0) = \psi(0) + \int_{b}^{t_0} f(s, x_s) ds = \psi(0) + \int_{b}^{t_0} f(s, y_s) ds = T_{mp}(y)(t_0)$$

and hence $H_{mp}(x)(t_0) \neq H_{mp}(y)(t_0)$.

In both cases the operator H_{mp} is injective on M_m and all assumptions of Theorem 1 are satisfied. By this theorem the statement of Theorem 2 follows.

References

Author’s address: Mlynská dolina, Bratislava, Czechoslovakia (Matematicko-fyzikálna fakulta UK).