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Czechoslovak Matheшatical Joumal, 43 (118) 1993, Praha 

NEWS AND NOTICES 

E D U A R D CECH, 1893-1960 

BOHUSLAV BALCAR, VÁCLAV KOUTNÍK, P E T R SIMON, Praha 

This year we observe the 100th anniversary of the birthday of Eduard Cech, one 

of the leading world specialists in topology and differential geometry. To these fields 

he contributed works of fundamental importance. 

He was born on June 29, 1893 in Stracov in northeastern Bohemia. During his 

high school studies in Hradec Kralove he became interested in mathematics and in 

1912 he entered the Philosophical Faculty of Charles University in Prague. At that 

t ime there were very few opportunities for mathematicians other than to become 

a high school teacher. For a position of a high school teacher two fields of study 

were required. Since Cech was not much interested in physics, the standard second 

subject, he chose descriptive geometry. During his studies at the university he spent 

a lot of t ime in the library of the Union of Czech Mathematicians and Physicists and 

read many mathemat ical books of his own choice. 

In 1914 the First World War broke out and in 1915, after three years of study, 

Cech had to leave the university for the army of the Austro-Hungarian Empire. He 

stayed in the army for three years and used this lost time to learn languages, namely 

German, Italian and Russian. He completed his studies in the school year 1918— 

1919 and passed the state examination which entitled him to teach mathematics at 

high schools. In the years 1919-1923 he taught mathematics at several Prague high 

schools. In 1920 he received a Ph.D. from Charles University. 

In the year 1921 his first paper appeared and so began the first Cecil's research 

period devoted to projective differential geometry. It lasted till 1930. It is an im

por tant feature of Cecil's research activity that he always worked in new, developing 

fields. Of course, a lot of other people did the same; however, Cech always very soon 

obtained major results whose importance is not diminished by passing years. 

Upon request Cech obtained some funds from the Ministry of Education, took a 

leave of absence, and spent the school year 1921-1922 in Torino with Guido Fubini. 

Cech must have impressed Fubini considerably since he offered Cech to become a 

coauthor of a book on projective differential geometry. Bear in mind that it was an 
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offer made by a well-known scientist to a young Ph .D . who was only a provisional 

high school teacher at that time. The cooperation between Cech and Fubini was 

very fruitful. 

After his return from Italy Cech submitted his habilitation thesis and in 1922 

he became a docent of Charles University. This was just an academic title so he 

continued teaching at a Prague high school. 

At this t ime Professor Lerch of Masaryk university in Brno died. Brno is the second 

largest city of the Czech republic, the capital of Moravia, and after the Czechs gained 

independence from Austria in 1918 the second Czech university was established there 

in 1919, named after the first president of the republic Tomas Garrigue Masaryk. 

Eduard Cech was offered and accepted the vacant position and in 1923 became 

extraordinary professor at the Faculty of Natural Sciences of Masaryk University; he 

became a full professor in 1928. Lerch had held the chair of analysis and the chair of 

geometry was held by Professor Seifert. Hence, although geometry was Cecil's field 

of research, Cech had to take over courses in analysis and algebra. He proceeded to 

master these two fields. 

We may observe here one of Cecil's basic characteristics. Whenever he was doing 

something in mathematics , he always strived to achieve thorough understanding of 

the subject. The result was that even outside of his fields of research he had extensive 

knowledge and deep insight in many other areas of mathematics.This feature of his 

personality had also some other consequences. While he was not conceited and talked 

easily to people with little formal education, he expected in his fellow professors the 

same qualities he himself possessed. This did not contribute to smooth relations 

with some people as he was not diplomatic, but, on the contrary, quite forthright in 

expressing his opinions. 

His study of algebra and analysis brought his attention to other fields of mathemat 

ics. In particular, he became interested in topology. From 1930 to 1947 he worked 

in topology and published 31 papers, 19 in algebraic and 12 in general topology. 

Let us mention his participation at the International Congress of Mathematicians in 

Zurich in 1932. In 1935 he was invited to attend the prestigious Moscow conference 

on combinatorial topology and the school year 1935-1936 he spent at the Institute 

for Advanced Study in Princeton. 

After he returned from the U.S.A. he started his famous topological seminar in 

1936. Why famous? Up to Cecil's seminar, seminars in Czechoslovakia were held 

only for undergraduate students as part of their studies and mathematical research 

was done by individuals. The now standard form of small groups working together 

was started here by Cech. The seminar on general topology was very successful; its 

part icipants published 27 papers in the three years it existed. Its work ended in 1939 

when the Nazis closed the Czech universities. Cech then continued to meet with the 
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two principal participants, B. Pospisil and J. Novak, in Pospisil's flat until Pospisil 

was arrested by the Gestapo in 1941. Pospisil died soon after his release from Nazi 

prison in 1944. Thus Cech lost his best student. 

During the war, Cech worked on his book Topologicke prostory (Topological Spaces) 

which was later rewritten and published in 1959. At this time he also became deeply 

interested in high school mathematics . He held seminar for high school teachers 

and he wrote several high school textbooks on algebra and geometry which are even 

now remembered for their superior qualities. After the war he became very much 

involved in a school reform which introduced a unified high school similar to the 

English comprehensive school. He chaired the commission charged with instruction 

in mathemat ics . 

After the war Cech moved to Prague and was appointed professor at Charles 

University in 1945. He remained at the University till the end with the exception of 

the years 1950-1953 when he was granted a leave of absence. 

He became the leading personality in Czech mathematics. In 1947 the Czech 

Academy of Sciences and Arts established the Mathematical Insti tute and Cech was 

appointed its director. This institute had only a secretary and one research assistant, 

the members of the Institute were employed by the University or by the Czech 

Technical University. In 1950 the government created the Central Mathematical 

Inst i tute and Cech again became its director. This institute replaced the former one 

but this t ime it was a regular research institute with many research workers and 

graduate students. When the Czechoslovak Academy of Sciences was founded in 

1952, this insti tute became the Mathematical Institute of the Academy. 

In 1953 Cech realized he could not do much more for the Institute and returned 

to the University. He has indeed done enough. The Institute was well established, 

its structure and purpose fully determined, and many of the students who would 

later on become leading Czech scientists already admitted to graduate study at the 

Insti tute. 

In 1950 Cech started publishing again and he returned to his most favored topic, 

differential geometry. He published during this last period 21 papers. Tha t does not 

mean he neglected the welfare of Czech mathematics. Already in 1953 he initiated 

the creation of the Mathematical Institute of Charles University; the insti tute was 

established in 1956 with Eduard Cech as its first director. Unfortunately, his health 

started to deteriorate and he died on March 15, 1960. Even when already gravely ill, 

he performed another two important services for Czech mathematics . He founded 

the journal Commentat iones Mathematicae Universitatis Carolinae, the first issue 

appeared in 1960, and he came with the idea to organize in Prague an international 

topological conference. The conference took place in 1961 under the name Sympo-
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sium on Cieneral Topology and its Relations to Modern Analysis and Algebra. Since 

then, every five years there has been a Prague Topological Symposium. 

Another feature of Cech's personality is that philology was his hobby. He greatly 

influenced Czech mathematical terminology and he learned many languages. He 

wrote papers in French, Italian, German, English and Russian and he continued 

the study of languages till the very end; before his death he started to learn the 

Romanian language. 

At the very end let us mention some of the honors that came his way: he was a 

member of the Polish Academy of Sciences, he received honorary doctorates from 

the University of Warsaw and the University of Bologna, he was a member of the 

Royal Czech Society of Sciences, Czech Academy of Sciences and Arts, Czechoslovak 

Academy of Sciences and honorary member of the Union of Czechoslovak mathe

maticians and physicists. He twice received the State Prize and was awarded the 

Order of the Republic. 

As you may have noticed there are few things in present Czech mathematics which 

are not due to the activity of Professor Eduard Cech. There are two reasons for 

his unique position in the history of Czech mathematics, his deep and extensive 

understanding of modern mathematics and the fact that his decisions were based on 

the needs of Czech mathematics and not on his personal preferences. 

Cech's scientific work consists of 94 original research papers and 11 monographs 

and textbooks. Although Cech loved geometry and devoted to this field the largest 

number of his papers, it was his contribution to topology that turned out to be the 

most significant. 

Cech worked in topology for a relatively short period. With a single exception, all 

his topological papers date to the period 1930-1938. 

The specialists in general topology have undoubtedly considered Cech's paper On 

bicompact spaces fundamental. Thus, let us start with it. 

The importance of compact spaces in general topology was pointed out by 

P. S. Alexandrov and P. S. Urysohn in the mid-twenties in their Memoir, where 

they defined compactness via covers, thus eliminating the metrical context. In 1930, 

A . N . Tikhonov proved his theorem on the product of compact topological spaces, 

introduced completely regular spaces and characterized the class of completely regu

lar T\ spaces (Tikhonov spaces in the present terminology) as the class of subspaces 

of compact Hausdorff spaces. His proof made use of the embedding of the given 

completely regular T\ space into the product of closed intervals. 

Cech followed up in an impressive manner. First he introduced the completely 

regular T\ modification of an arbitrary topological space, which represented the first 

example of projective generation in the sense of the present category theory, and 

presented a general proof of the Tikhonov theorem making use of the Alexandrov-
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Urysohn's characterization of compactness "every infinite subset has a complete ac

cumulation point, i.e. a point each neighbourhood of which intersects the subset 

in the set of the same cardinality". The next result is the theorem on existence 

and uniqueness of the maximal compactification fi(S) of a Tikhonov space 5 , now 

called the Cech-Stone compactification. Cech characterized (3(S) as a compact space 

containing S as a dense part and such that all bounded real continuous functions 

defined on S can be continuously extended to it. He proved that c\psT = /3T for 

T C S C /3S iff T is G* embedded in S, and characterized [3S for a normal space 

S without mentioning continuous functions (/3S is such a compactification that any 

two disjoint closed subsets of the space S have disjoint closures in the extension) . 

Cech showed that a closed G^-set in /3S \ S for a space S which is not countably 

compact has a cardinality at least continuum. As an easy consequence he obtained 

that no point in /?N is the limit of a convergent sequence, which solved a tantalizing 

problem from the Memoir . As concerns the spaces with the first axiom of countabil-

ity, he showed that they may be recognized in their /^-compactification. In fact, he 

proved that in this case S is equal to the set of those points from /3S which have 

countable character in (3S. Cech also dealt with the two most important cases, /JN 

and /3LJ\, the compactification of the discrete set of natural numbers and the com

pactification of the space of all countable ordinal numbers with the order topology. 

The remainder /3u>i \LJ\ is a singleton, and for the cardinality \/3N\ Cech showed that 

2Ko ^ |/?N| ^ 22*0 ; the equality |/?N| = 22*° is due to his student B. Pospisil and 

can be found in the immediately following paper in the same issue of the Annals of 

Mathematics . 

However, this is not all. A new class of spaces is introduced in the third part of the 

paper . Topologically complete, now Cech complete spaces are defined as GVsubsets 

in some of their compactifications. Cech showed that this is the same as to be a 

GVset in its own /3-compactification. All fundamental theorems on Cech complete 

spaces follow: the property to be Cech-complete is hereditary to closed subsets, the 

Baire theorem holds true in Cech complete spaces, a Cech complete subspace of a 

given space is the intersection of a closed and a GVset, the converse being valid 

for a Cech complete subspace of a Cech complete space. The main theorem asserts 

that this notion is well justified, since a metrizable space is Cech complete iff it is 

metrically complete for a suitable topologically equivalent metric . Hence the Cech 

complete spaces are a natural generalization of complete metric, as well as of compact 

or locally compact spaces. 

Even now, more than half a century later, reading the paper is a rewarding expe

rience. 

Let us mention that in the same year M. H. Stone independently publishes Ap-

plications of Boolean rings to general topology in the Transactions of the American 
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Mathematical Society. Here the Cech-Stone compactification is introduced in con

nection with the theory of Stone's representation of Boolean algebras. As opposed to 

Cech, Stone characterizes @S as a compactification to which any continuous mapping 

defined on S with values in a compact space can be continuously extended . 

In three papers on the dimension theory, published in the years 1931-1933, Ed-

uard Cech laid the foundations of the theory. Although the first results on the 

dimension of Euclidean spaces belong to Lebesgue, Brouwer, Menger and Urysohn 

(1911-1925), a correct definition of the inductive dimension appears only in the 

years 1925-1928. This dimension is now known as the small inductive or Menger-

Urysohn dimension, denoted by ind. Cecil's large inductive dimension, called also 

Cech-Brouwer's dimension and denoted Ind, is its generalization. The covering prop

erty of the n-dimensional Euclidean space formulated in Lebesgue's lemma was used 

by Cech to define the presently most common dimension dim, also called covering or 

Cech-Lebesgue's dimension. 

Let us recall both Cech's definitions. If C is a covering of a set M, we say tha t the 

order of the covering C is <̂  n if every element of the set M is contained in at most 

n -f 1 sets of the set C. 

A topological space S has a covering dimension <̂  n (JI = — 1, 0, 1, 2, . . . ) if every 

finite covering of the space S has a finite open refinement of an order <̂  n. dim S = n 

if dim S <̂  n but dim 5 <̂  n — 1 is not true. 

Let us note that the above mentioned Lebesgue's lemma from 1911 asserts tha t , 

in the sense of this definition, dim[0, l ] n = n. 

The large inductive dimension is defined by induction. Ind0 = — 1. Ind S <̂  n if 

for every closed F C S and for every open U D F there exists an open V such tha t 

F C V C cl V C U and its boundary bd V = cl V \ V satisfies Ind bd V <: n - 1. 

Ind S = n if Ind S ^ n but Ind S <̂  n — 1 does not hold. In both cases the dimension 

of a space is infinite if it is <C n for no n. 

For both dimensions Cech proved the sum theorem: if S = UJ^F J , the sets F, 

are closed and the dimension of F, is <C 71, then the dimension of S is <C n as well. 

Again for both the dimensions Cech proved that the dimension of a space is greater 

or equal to the dimension of its closed subspace. The theorems for dim were proved 

for normal spaces, while for Ind they were established for perfectly normal ones. Let 

us recall tha t a space is called perfectly normal if it is normal and each of its closed 

subsets is G&. 

Cech conjectured that dim S = Ind S if 5 is perfectly normal. All counterexamples 

given until now were constructed only under the Continuum Hypothesis . 

Simultaneously with his work in general topology Cech publishes equally important 

papers in algebraic topology. In the early thirties the homology theory for finite 
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complexes was essentially completed and attention was turning to more complex 

objects (J. W. Alexander, S. Lefschetz, P. S. Alexandrov, L. S. Pontryagin). 

In his work Theorie generate de Vhomologie dans un espace quelconque Cech de

veloped the first comprehensive sufficiently general homology theory. 

Already E. Vietoris and P. S. Alexandrov had used a limit process to define ho

mology groups. However, their techniques were applicable only to compact metric 

spaces. The start ing notion of E. Cech was a finite cover of a general set, to which 

he assigned an abstract simplicial complex. He studied in detail the interrelations of 

complexes associated with the covers, one of which refines the other, and showed that 

all projections for a given refining pair of covers determine the same homomorphism 

of the corresponding homology groups of complexes. 

In the context of topological spaces Cech considered the family of all finite open 

covers directed by the relation of refinement, Cech's homology group being then the 

inverse limit of homology groups assigned to the individual covers. He developed this 

theory to considerable depth, constructing homology groups of pairs consisting of a 

space and its closed subspace and establishing the dependence of the Betti numbers 

of the union R\UR2 = Ron the Betti numbers of R\, R2, R\C\R2 for closed subspaces 

# 1 , H2- Moreover, he proved tha t in the case of a hereditarily normal space we can 

start from closed covers and arrive at the same homologies. The paper in which 

Cech established a new approach to homology was followed in the years 1933-1936 

by further articles devoted to applications and further development of the theory. 

Further Cech's papers deal with the theory of manifolds. His main aim was to 

introduce a general notion of a manifold which would include all connected spaces 

locally homeomorphic to the n-dimensional Euclidean space En. The manifold was 

to be uniquely defined by general topological properties and assumptions expressed 

in terms of the general homology theory. It was also desirable for these general 

manifolds to satisfy, after necessary modifications, the duality theorems. This goal 

was actually achieved, and in addition new results were obtained also for classical 

duality (for sets in En or in Sn). Let us note that S. Lefschetz arrived at analogous 

results approximately at the same time. Later R. Wilder and other authors started 

to develop Cech's results, simplifying them by using new methods . 

At tha t t ime, the cohomology theory did not exist yet. Cech was the first to study 

cohomological notions under the name of dual cycles. The explicit definition was 

later introduced by J. W. Alexander and A. N. Kolmogorov. 

In the Proceedings of the International Congress of Mathematicians in Zurich 

in 1932 Cech published a very brief note Hoherdimensionale Homotopiegruppen, in 

which he defined higher homotopy groups . In 1961, after Cech's death, P . S. Alexan

drov, who had participated in the Zurich congress, commented Cech's contribution 

in the following way: 
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"This definition did not meet with the attention it merited; in fact, the com-

mutat ivi ty of these groups for dimensions exceeding one was criticised (this was 

unfounded, as we now know) . 

Thus, Professor Cecil's definition of the homotopy groups was, in 1932, simply 

not understood—a situation extremely rare in modern mathematics . We must ex

press our admirat ion at the intuition and talent of Professor Cech, who defined the 

homotopy groups several years before W. Hurewicz." 

Eduard Cech was one of the founders of projective differential geometry, and 

almost all his papers from geometry belong to this domain. He worked in geometry 

during two periods of his life, first in the years 1921 through 1930 and then since the 

end of World War II till his death. 

In geometry he dealt with difficult topics. In his work he used his exceptional 

geometric intuition as well as the ability to carry out extraordinarily complicated 

calculations. Cecil's approach to the study of geometric objects is characterized by 

three aspects: a systematical study of correspondences between two objects of the 

same type, special attention devoted to the contact of manifolds and systematical 

investigation of dual elements. 

Immediately at the beginning of his scientific career E. Cech was deeply influenced 

by the work of Guido Fubini. During Cecil's stay in Torino Fubini took advantage of 

the abilities of young Cech suggesting to him a series of problems. In his papers from 

this period Cech described a number of geometric properties of various geometric 

objects. For example he showed that the osculation planes of three Segre curves 

intersect each other in one straight line, which is now called Cecil's line. In another 

paper he described in detail surfaces whose Segre curves are planar, which was then 

considered a very difficult problem. This characterization belongs to fundamental 

results obtained in this area. Through the years 1921-1924 Cech published 25 papers 

on differential geometry; majority of them concerned curves and surfaces in three-

dimensional space. Moreover, together with Fubini they later wrote a joint book 

on differential geometry Geometria proiettiva differenziale, two volumes of which 

appeared in Bologna in the years 1926 and 1927. In this book great attention is paid 

to the problem of projective deformation. This problem, formulated by Fubini, was 

later generalized and studied by Elie Cartan, who obtained a number of interesting 

results in this direction by using the method of exterior differential systems. 

We should mention that Cech and Fubini also published a book in French Intro

duction a la geometrie projective differentiate des surfaces in Paris 1931. It is of 

interest tha t its last two chapters, on which Fubini did not collaborate, contain Car-

tan 's methods. Cech compiled here a readable survey of the subject and gave precise 

formulations of the equations of differential systems in two variables, and also used 

here the method of specialization of frame. 
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In the post-war period Cech studied correspondences between n-dimensional pro

jective spaces and line congruences, i.e. two-parameter systems of straight lines in a 

projective space. He obtained a number of results concerning developable correspon

dences between congruences of lines in the three-dimensional projective space. A 

complete description of the theory of correspondences was later given by his student 

Alois Svec. 

We must not omit another feature of Cech's personality, namely his continuous 

care for students and for teaching mathematics . His books (written in Czech) Pro

jective Differejitial Geometry (1926), Point Sets (1936), Foundations of Analytical 

Geometry I, II (1951, 1952) and Topological Spaces (1959) have been of great im

portance for Czech mathematics , because through them the Czech students made 

their first acquaintance with some branches of modern mathematics and they served 

not only as textbooks but also as monographs for specialists. The book Topological 

spaces, written essentially during the war, was made to a large extent up to date by 

appendices written by Josef Novak and Miroslav Katetov. Although the book was 

written in Czech, numerous citations in works of authors not speaking Czech witness 

its publicity even abroad. 

Both Czech and Slovak mathematics are indebted to Eduard Cech for more than 

can ever be realized. 
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