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GEODESIC REFLECTIONS IN SEMI-RIEMANNIAN GEOMETRY 

EDUARDO GARCÍA-RÍO and M. ELENA VÁZQUEZ-ABAL, Santiago de 

Conipostela 

(Received November 29, 1991) 

1 . INTRODUCTION. 

The existence of a serni-Riernannian metric on a differentiate manifold M gives 

rise to a decomposition of the tangent bundle into a Whitney sum, TM = T+M ® 

T" M. This decomposition is given by two mutually orthogonal distributions on the 

manifold, in such a way that the restriction of the metric tensor to the distribution 

associated to T+M is positive definite, and the restriction to the complementary 

distribution associated to T" M is negative definite. 

The influence of this split on the geometry of the manifold was studied by Dajczer 

and Noinizu [DN], with the aim of characterizing indefinite space forms. Kulkarui [K] 

used in a fundamental way this decomposition in order to prove the main theorem 

in that paper. 

In the case of Lorentzian manifolds [BeE], there exists a (local) timelike vector field 

£, induced by this decomposition, in such a way that we may assume that (M,g) is 

time oriented. 

U being a normal neigborhood of the point m 6 M, we can consider the restrictions 

of the timecones: 

I"(m) = {p = expm(rv)/ (v, v) < 0, (£, v) < 0} , 

I+(m) = {p = expm(rv)/ (v, v) < 0, (£, v) > 0} . 

A special transformation defined in the normal neighborhood of each point is the 
local geodesic symmetry centered at m: 

Sm : p = exp m (rx) >-» Sm(p) = expm(-rx); 
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its study gives rise to characterizations of important kinds of (semi)-Riemannian 

manifolds. 

For Lorentzian manifolds we have Sm(I+ (m)) C l~(m). Bearing in mind that 

I^(m) are open sets in M, we can study the restriction of the local geodesic sym­

metry Sm to /+(?7i) U / ~ ( m ) and expect its properties to influence the geometry of 

the manifold. 

In the more general framework of a semi-Riemannian manifold, we are interested 

in the study of different kinds of transformations, such as (local) geodesic symmetries 

and reflections with respect to submanifolds, in order to prove: 

T h e o r e m A. A semi-Riemannian manifold (M,g) is locally symmetric if and 

only if the local symmetries along timelike geodesies are isometries. 

When we consider the particular case of Lorentzian manifolds, the previous theo­

rem asserts tha t the restriction of the local geodesic symmetries Sm to the timecone 

are isometries if and only if (M, g) is locally symmetric. 

Having in mind the strong relation between symplectic and indefinite almost Her-

mitian manifolds, we study symplectic and holomorphic geodesic reflections with 

respect to points and holomorphic surfaces. A result analogous to Theorem A is 

obtained, as well as the following characterizations of indefinite real and complex 

space forms: 

T h e o r e m B. A semi-Riemannian manifold (M, g) is an indefinite real space form 

if and only if the geodesic reflection with respect to any timelike geodesic is an 

isometry. 

T h e o r e m C. An indefinite Hermitian manifold (M,g, J) of signature [2p,2q), 

q > I is a space of constant holomorphic sectional curvature if and only if the 

geodesic reflection with respect to any holomorphic timelike surface is symplectic. 

Acknowledgement. The authors would like to thank Professor Lieven Vanhecke for 

all helpful conversations and suggestions concerning this work. 

2. LOCALLY S Y M M E T R I C S E M I - R I E M A N N I A N MANIFOLDS. 

A natural condition to impose on a (semi)-Riemannian manifold is that its cur­

vature tensor be parallel; that is, to have vanishing covariant differential, V1 t — 0. 

Such a manifold is said to be locally symmetric . In particular, manifolds of constant 

curvature turn out to be locally symmetric. 
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In this section we will prove some lemmas which will be needed in the next sec­

tion, in order to obtain some characterizations of locally symmetric semi-Riemannian 

manifolds in terms of timelike (or spacelike) geodesies. 

In the remainder of this section, we will use the letters X, Y, Z for spacelike 

vectors, U, V, W for timeiike vectors, and we will represent null vectors by T, L. An 

arbitrary tangent vector will be denoted by A, B, C. 

L e m m a 2 . 1 . Let (M, g) be a semi-Riemannian manifold. Then the following two 

conditions are equivalent: 

i) VI? = 0 ; 

ii) VXRXAXA = 0 

for all unit tangent vectors X, A of M, with X spacelike. 

P r o o f . Clearly i) implies ii). We will show that ii) implies i) in two steps. 

First we will prove that VURUAUA = 0 for all tangent vectors U, A G 3C(M), with U 

timelike; secondly, using ii) and this last condition, we will prove that VTRTATA = 0 

for all T, A G X(M), where T is a null vector, which will finish the proof. 

Let U be a unit timelike vector, and X an arbitrary unit spacelike vector. 

If g(X, U) = 0, then AX + / / [ / , (A2 — //2 = 1), is a spacelike vector, and so, applying 

ii) to AX + fiU and an arbitrary vector A, we have 

V\X+nU R\X+tiU,A,\X+nU,A = 0 

which implies that VURUAUA = 0. 

On the other hand, if g(X, U) ^ 0, we consider the vector Z = AoX + fiU, where 

An = 2g(x U)' ^ e n a v e 9(Z*Z) — ^o + /'(l~~r0> a n c l so> -f/-* € (0> -)> % is a spacelike 
vector. Then, applying ii) to Z and A, 

V\QX+nUR\QX+nU,A,\oX+nU,A = 0. 

Linearizing previous expression, in the same way as before, we get 

^URUAUA = 0, 

for all vector A. 

To finish the proof we only have to prove that VTRTATA = 0, where T is a null 

vector. We consider Z\ = j^X + T, for an arbitrary unit spacelike vector X , which is 

always a spacelike vector if g(X,T) = 0 or, if g(X,T) -^ 0, for A ?- - 2 ^ Ty Now, 

making use of the results proved before, and taking limits as A »—• oo, the result is 

obtained . 

Thus, we have proved that V A R A B A B = 0, VA, B G X(M). Then the result follows 

in the same way as in [VW], by using the Bianchi identities. • 

585 



R e m a r k 2.2. By reversing the metric tensor, we transform spacelike into time­
like vectors, and so condition ii) in previous lemma may be replaced by VURUAUA = 
0 for all tangent vectors with U timelike. 

In a similar way as before, we can prove the following: 

Lemma 2.3. Let (M,g) be a semi-Riemannian manifold. Then the following 
three conditions are equivalent: 

i) VI? = 0 ; 

ii) VXRXYXY = 0; 

iii) VuRuvuv = 0 

for all spacelike tangent vectors X} Y and timelike tangent vectors U, V. 

An indefinite almost Hermitian manifold (M, </, J) is an almost complex manifold 
with an adapted semi-Riemannian metric, i.e., 

J2 = - i d g(JX,JY) = g(X,Y). 

Such a metric is necessarily of signature (2p, 2q). The manifold is said to be 
indefinite Kahler if the almost complex structure is integrable and the Kahler form 
Q(X, Y) = g(X, JY) is closed. These conditions are equivalent to VJ = 0. We refer 
to [BR] for some results related to the curvature of such manifolds. 

Due to the special properties of the curvature tensor in the Kahler case, we can 
state 

Lemma 2.4. Let (M, g,J) be an indefinite Kahler manifold. Then (M,g,J) is 

locally symmetric if and only ifVxRxJXXJX = 0 for all spacelike tangent vectors. 

P r o o f . Let X, Y be arbitrary spacelike unit vectors. If g(X, Y) ^ 0 we consider 

the spacelike vector Z = AoX + fiY (// > 0, Ao = 2 / # Y\)> and so 

V'zRzJZZJZ = 0 = V\0x+nYR\oX+nYt\0JX+nJYMX+nYt\0JX+nJY 

Now, the coefficient of /i4 in the expression above must vanish: 

(1) 0 = VARYJYYJY + 2VYRXJYYJY + WYRYJYYJX-

If g(X,Y) = 0, Z = XX + fiY is a spacelike vector, and (1) is obtained in an 
analogous way as before. Using the second Bianchi identity, we get 

0 = VxRYJYYJY + V y RjYXYJY + ^JYRXYYJY 
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and substituing Y by JY in (1), we have: 

(2) 0 = VXRJYYJYY + WJYRXYJYY - WJYRJYJXJYY-

Adding (1) and (2) yields 

VXRYJYYJY = 0, for all spacelike vectors X, Y 6 X(M). 

Linearizing the expression above and applying the Kahler identity for the curvature 
tensor, after some computations (by using similar methods as those developed in 
[SV]), we get VXRXYXY = 0 for all spacelike vectors X, Y tangent to M. So, the 
result follows as a consequence of Lemma 2.3. D 

R e m a r k 2.5. As in Remark 2.2, Lemma 2.4 holds also for timelike vectors, 
using — g instead of g. 

3 . GEODESIC SYMMETRIES AND LOCALLY SYMMETRIC SPACES. 

Let (M, g) be a semi-Riemannian manifold of signature (p, g), and m an arbitrary 
point in M. Consider an orthonormal basis { e i , . . . , e„} of the tangent space TmM. 
We denote by ( x i , . . . , x n ) the system of normal coordinates centered at m with 
ei = & ( « » ) • 

If f is a tangent vector at m and 7 the geodesic through m with 7(0) = m and £ = 
7;(0), the geodesic symmetry with respect to m is defined by 

Sm:p = expm(rf) »-> Sm{p) = expm(-r£). 

By using the lemmas from the previous section, we have 

Theorem A. A semi-Riemannian manifold (M,g) is locally symmetric if and 
only if the local symmetries along timelike geodesies are isometries. 

P r o o f . We need only to prove the sufficiency. Let 7(r) = expm(r£) be a 
timelike geodesic. If the local geodesic symmetry is an isometry along 7, then we 
have 

0«j(exPm(rO) = £I«i(expm(-r^)), 1 ^ i, j ^ n. 

Now, in a normal coordinate neighborhood, the components of the metric tensor 
can be expressed by the following power series expansion [P, pg. 36] 

2 3 
»0-(expm(rO) = 9ij(m) - y « t , 0 ( m ) - jV{/?{f{i(m) + o(r4) 
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If we express the condition above using this power series expansion, we get 

v e % 0 = o, u = i,...,n, <K£,0 = - i 

and so . the result follows from Lemma 2.1 and Remark 2.2. D 

A geodesic reflection in an indefinite almost Hermitian manifold is said to be 

holomorphic (resp. symplectic) if it satisfies 

(S m )*J = J(Sm)* (respect. S m Q = ft). 

If (M, g, J) is a locally symmetric Hermitian manifold, geodesic symmetries must 

be holomorphic isometries, and so, symplectic. The main purpose of the remainder 

of this section is to prove the converse. 

T h e o r e m 3 . 1 . Let (M, y,J) be an indefinite almost Hermitian manifold. Then 

M is locally symmetric Hermitian if and only if one of the following conditions is 

satisfied: 

i) the local symmetries along timelike geodesies are holomorphic, 

ii) the local symmetries along timelike geodesies are symplectic. 

P r o o f . If g is of signature (2p, 2a), we consider at the point m the following 

basis for the tangent space: 

\e\,..., ep, Je\,..., Je^, ep+i, • • •, en, JCp+i, • • •, Jen j 

where g(ei,ej) = £,£»j, with £,• = 1, for i = 1, . . . , p and £, = — 1, for i = p + 1, 

. . . , n; (a?i , . . . , X2n) denotes the system of local normal coordinates corresponding to 

such a basis. 

By using similar methods as those developed in [Gl] or [V], one can compute 

power series expansions for a general tensor field of type (0, s) with respect to a 

system of normal coordinates in the semi-Riemannian case. If y(r) = expm (r£) is a 

non-null geodesic through m, we have the following expansion for the components of 
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the almost complex structure J: 

Jh
a(r) = (ecQacg

ch)(m) + rec (gehV(Qac) (m) 

+ r2ec | i <7 e 4 V^n a c - ^gcb(Ria(Jc - R(c(Ja) + i I W ^ c j (m) 

+r3£c \ 5-,e*v««n««" l9'" X>.(*e«««v«n«« + IWWO 

- ^9Cb(V(Ria(Jc - V(R(c(Ja) + g Vefi? c C 6na c 

+ ^fe€iVfnac|(m) + o(r4). 

NOW, if the geodesic symmetry is holomorphic along any timelike geodesic, 
exP m(rU) , (</([/, U) = - l ) , then 

\bm)+J = J\£>m)*' 

Therefore, using the power series expansion of J^(expm(r[/)), we obtain Vu^ab = 
0. Then VrJJ = 0 for all timelike vector U. Proceeding now as in the proof of 
Lemma 2A , we obtain that VxJ = 0, Vr«I = 0 for each spacelike vector X and null 
vector T. Hence (M, g,J) is an indefinite Kahler manifold. 

If we consider the terms of degree three in the previous power series expansion, 
we get 

JZ€b(VuRuaUJb — ^uRubUJa) + ^uRuJaUb = 0. 

Taking a = U, 6 = JU, the above expression gives VURUJUUJU = 0, and so, from 
Remark 2.5, (M,g, J) is a semi-Riemannian locally symmetric Hermitian manifold. 

By the definition of a locally symmetric Hermitian manifold, geodesic symme­
tries are holomorphic maps, and so the converse in i) is trivial. Analogously, if 
(M,y, J) is locally symmetric Hermitian, then the geodesic symmetries are holomor­
phic isometries, and so, from the definition of the Kahler form, we obtain that they 
are symplectic. 

Converseley, in order to prove that condition ii) is equivalent to i), it is enough to 
consider the power series expansion of the Kahler form, and to proceed in a similar 
way as before. (We delete the details.) • 

The conditions on timelike geodesies in the previous theorems may be replaced 
by the analogous ones on spacelike geodesies, by considering analogous statements 
as in Section 2 for spacelike vectors, or by reversing the metric tensor and applying 
previous theorems for (M, — g). 
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4 . GEODESIC REFLECTIONS WITH RESPECT TO SUBMANIFOLDS AND SPACES 

OF CONSTANT CURVATURE. 

Let (M,g) be a semi-Riemannian manifold of signature (p, q), and N a topo­
logical^ embedded non-degenerate m-dimensional submanifold. We denote by U 
a neigborhood in M of a point m £ N and let {E\,..., En] be a local orthonor-
mal frame field of (M,g) defined in U. We specialize the moving frame such that 
{ E i , . . . , Em} are tangent vector fields and {Km+i, . . . , En) normal vector fields of 
N. Further, let (y i , . . . , t/m) be a system of coordinates in a neighborhood of m in N 

such that ^-(m) = Ei(m), i = 1, ..., m. Then the Fermi coordinates (x\%..., xn) 
with respect m, (y\,..., ym) and {K m +i , . . . , En] are defined in a open neighborhood 
of m in M by 

Xi lexpy ( ^tpEpj J =t/,, i = l , . . . , n , 

xa I exp„ I ^2 tpEfi ) I = '«» a = n + 1,..., m, 

where v = TLN is the normal bundle of N. 

We will call a (local) reflection with respect to N the local diffeomorphism <p whose 
expression in local Fermi coordinates is given by 

<p(xi,.. .,a:m,xm+i,.. .,x„) = (x\,..., xm, -a; m +i , . . .,-xn). 

We will restrict ourselves to the case of curves and holomorphic surfaces in real 
and Hermitian manifolds, with the aim of giving some new characterizations for real 
and complex indefinite space forms. 

In order to characterize indefinite real space forms, we will use the following result 
of Dajczer and Nomizu [DN]. 

Theorem 4.1. A semi-Riemannian manifold (M,g) of dim M ^ 3 is a space of 
constant curvature if and only if R(X,Y,Z,X) = 0 for all {X,Y} orthonormal of 
signature ( - , +) and g(X, Z) = 0 = g(Y, Z). 

The signature of the plane { K , y } may be replaced by (+ ,+ ) or (—, —), and the 
vector Z may be restricted to range over timelike vectors or spacelike vectors if the 
metric g is of signature (p, g), with p, q > 1 [DN]. 

We state our Theorem B. 
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Theorem B. A semi-Riemannian manifold (M,g) of dimension greater or equal 

than two is a space of constant curvature if and only if the geodesic reflection with 

respect to any timelike geodesic is an isometry. 

(Timelike geodesies may be replaced by spacelike geodesies just by reversing the 
metric tensor.) 

P r o o f . First of all, we will prove that if the geodesic reflection with respect to 
a unit speed curve <r is an isometry, then it must be a geodesic. Let m = <r(t) be 
an arbitrary point and y(r) = expm(r£) an arbitrary geodesic through m meeting 
<r orthogonally, where expm is the exponential map and £ an arbitrary unit normal 
vector at m. 

If (xi, £2, • • •> xn) is a system of Fermi coordinates with respect to cr, the geodesic 
reflection is an isometry if and only if the components of the metric tensor satisfy 

(3) g\\(x) = g\\(<p(x)) gab(x) = gab(ip(x)) gla(x) = -gia((p(x)). 

Now, if we consider the power series expansions of the components of the metric 

tensor along 7, in an analogous way as in [GV], we obtain 

0i i( e xPm( rO) = ei - 2r/ce(m) - r 2 ( . % 0 - ei/c|)(m) 

r3 

+ y ( v e ^ u i - teiK*Rtiti)(™) + °(r4) 

where K^ = #(£, <r) is the geodesic curvature of <r. 

Applying the isometry condition (3) to the power series expansion of g\\, yields 
K{ = 0 and therefore <r is a geodesic. 

Using the fact that <r is a geodesic, the power series expansion of the components 
gia of the metric tensor have the expression 

gla(expm(rZ)) = -£--Reie«(m) - j (3VefleUa) (m) + o(r4). 

Therefore, using again the isometry condition (3), we get R^\^a = 0, and, by applying 
Theorem 4.1, it follows that (M}g) is a space of constant curvature for dimM ^ 3. 

If M is a 2-dimensional manifold, then it is a Lorentz manifold, and therefore, 
the scalar curvature is given by r = 2R^\^\, where {f,K i} is an orthonormal basis 
of signature (—,+). Now, if we consider again the power series expansion of the 
component gn of the metric tensor along the geodesic 7 and the hypothesis, we get 
Vf.ftfi£i = 0 = V^r, and so the scalar curvature is constant along timelike geodesies. 
Proceeding as in the lemmas in Section 2 we obtain that the scalar curvature is 
constant, and so also the sectional curvature. 
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In order to prove the converse, if (M, g) is a space of constant curvature, we can 

solve explicitly the Jacobi equation Y + RY = 0, and in an analogous way to tha t 

developed in [V] it is possible to find global expressions for the components of the 

metric tensor. So, if (M,g) has constant sectional curvature c > 0 and a is an 

arbitrary unit speed geodesic along a spacelike normal geodesic 7( r ) = e x p m ( r x ) ) , 

we have the particular expressions for the metric tensor 

(cos ^/cr\ 
0 n ( e x p m ( r x ) ) = £i I J- I , 

0 ia (exp m ( rx ) ) = 0, 

0 a 6 (exp m ( rx ) ) = ea ( j?-J 6ab-

If 7 is a timelike geodesic, trigonometric functions in the expressions above must be 

replaced by hyperbolic functions. If the curvature c is negative, analogous formulas 

can be obtained by reversing the metric, having in mind that spacelike geodesies are 

transformed into timelike ones. 

As a consequence, if (M, g) is a space of constant curvature, then geodesic re­

flections with respect to non-null geodesies are isometries along normal non-null 

geodesies. By a process analogous to that of Le m m a 2 . 1 , the result for null geodesies 

is obtained by taking limits . • 

R e m a r k 4,2 . In the same way as the theorem before, by applying the result 

of [DN], one can prove that (M, g) is a space of constant curvature if and only if all 

geodesic reflections with respect to spacelike (resp. timelike) geodesies are isometries 

along all normal spacelike (resp. timelike) geodesies. 

A strictly weaker condition to impose on a geodesic reflection is to be volume-

preserving (up to sign) . Then we obtain 

T h e o r e m 4 .3 . A semi-Riemannian manifold (M,g ) is locally symmetric if and 

only if the geodesic reflection with respect to any timelike (resp. spacelike) geodesic 

is volume-preserving (up to sign). 

P r o o f . Let m = <r(t) be an arbitrary point, and 7(r) = exp m ( r£ ) an arbitrary 

non-null geodesic through m meeting cr orthogonally, where £ is an arbitrary unit 

normal vector at m. In order to prove our result we need the power series expansion 

of the volume density function uj\t...tn = -^(Ki > • • •, Kn) along a non-null geodesic 7 

normal to a. 
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If R is the curvature of the metric connection V, then the Ricci tensor is defined 

by 
n 

Qij = Q(Xi,Xj) = y^ejfcfltjbjfc 
Jb = l 

where {K,-,z= l , . . . , n } is an orthonormal local basis of vector fields, and in an 

analogous way as in [GV], we obtain the expression: 

r2 

fc>i,...,n(s = expm(r£)) = 1 ~ r£i/ce(m) - - - (g^ + 2eiR^Hi) (m) 

r3 

- Y2 ( V ^ * - 2*i/c^« + eiV(Rwi) (m) + 0(r4) 

where €\ = 1 (resp. — 1) if a is a spaceiike (resp. timelike) curve. 

Now, if the geodesic reflection with respect to any timelike geodesic is volume-

preserving, we get 

(4) V C 0 « + £ i V e . % ^ = O 

for all unit timelike vectors U orthogonal to £. 

If X, U are arbitrary orthonormal spacelike respectively timelike vectors orthog­
onal to £, we have that V = AX + /.lU is a timelike vector when A2 < /z2, which is 
orthogonal to £. 

Applying (4) to the unit vector , ^ , we have 

(-A2 + //2)VeD^ + A2£! Vf-ReA-e* + foiVtRtutu + 2A/^i V ^ W t / = 0. 

Writing the last expression for —A, /J it follows that V^R^x^u — 0, and conse­
quently, we obtain that: 

(5) V e $ « - £ i V £ . R W j r = 0 

for all unit spacelike vectors Ar orthogonal to £. 

Let us complete {£} to obtain an orthonormal basis of TmM, and let {£, X i , . . . , 
X r i_i} denote the parallel frame obtained along y(r) by parallel displacement. Then, 
for the derivative of the Ricci tensor, we have 

n - l 
V í Є « = JZєkViЩxьtXы-

k = l 

Now, using (4) and (5) together with the fact that a is a timelike geodesic (e\ = 

-1) , it follows VSQZZ = -(p + q- 1)V^D^. 
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Hence, V ^ ^ ( r a ) = 0 and so, the result follows from (4) by applying Remark 2.2. 

Conversely, Let (M, g) be locally symmetric. If we use an analogous method as in 
[GV], having in mind that the coefficients of the power series expansion of the volume 
function are determined by the covariant derivatives of the curvature tensor, then 
one can see that the power series expansion of the volume function along a non-null 
geodesic is an even function and so, the geodesic reflection is volume-preserving (up 
to sign). Null geodesies are treated in the same way as in previous theorems. D 

We note that, in an analogous way as in Theorem B, we must restrict to geodesies 
because if the geodesic reflection with respect to a non-degenerate curve (i.e., the 
tangent vector field is non-null) is volume-preserving (up to sign), then it must be a 
geodesic. 

Aiming to obtain a characterization of indefinite complex space forms, we will 
consider symplectic geodesic reflections with respect to surfaces. First of all, we 
note that, if P is a non-degenerate submanifold in an indefinite almost Hermitian 
manifold (M, </, J) such that the geodesic reflection <p with respect to P is symplectic 
(ip*Q. = ft), then the fixed submanifold P must be holomorphic. (The proof is similar 
to that of Theorem 7 in [CV1], having in mind that the restriction of the metric tensor 
to P is non-degenerate.) 

Therefore, we restrict to geodesic reflections with respect to holomorphic surfaces. 
In order to prove Theorem C, we will use the following result of [BR]: 

Theorem 4.4. Let (M, g, J) be an indefinite Kahler manifold. Then the sectional 

curvature of all non-degenerate holomorphic planes is constant at a point m if and 

only if 

(6) R(X, JX, X, Y) = 0 

where X, JX, Y are orthogonal tangent vectors at m. 

We note that if we consider condition (6) for timelike (resp. spacelike) vectors only, 
then the result remains true if (M, g} J) is of signature (2p, 2q), q > 1 (resp. p > 1). 

Now, we are in a condition to state our theorem: 

Theorem C. An indefinite Hermitian manifold (M, g,J) of signature (2p, 2<j), 
q > 1 is a space of constant holomorphic sectional curvature if and only if the 
geodesic reflection with respect to any holomorphic timelike surface is symplectic. 

P r o o f . Let us consider an arbitrary spacelike geodesic normal to a holomorphic 
surface P through ra, satisfying y(r) = expm(r£), (£,£) = 1. With respect to a 
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system of Fermi coordinates adapted to P, we can express for the reflection along 7 
the condition of being symplectic: 

(7) fi„(p) = n.j(v>(p)) ilia(p) = -Üia(<p(p)) ПаЬ(р) = ft..Mp)) 

where 37~(m) = c,- are tangent vectors to P, and ^|-(m) = ea are normal vectors 

to P . 

Considering the first condition in (7) in an analogous way as in [CV2], we obtain 

that (V^J)£ must be tangent to the submanifold. Now, M being of complex dimen­
sion greater than two and q > 1, there exists a timelike holomorphic surface normal 
to P and to {£,J£}. In the same way as before, one obtains that (V^J)f must be 
normal to P, and so it vanishes. 

In the same way as we did in Theorem 3.1, one can prove that (V^J)K = 0 
for any tangent vector field to M, and so (M, g, J) is an indefinite nearly Kahler 
manifold. By using the fact that the almost complex structure J is integrable, it 
follows that M is an indefinite Kahler manifold. 

In order to prove the constancy of the holomorphic sectional curvature, we consider 

the following power series expansion, obtained in an analogous way as in [CV2]: 

n,«(exPm(rO) = -r2 ( 5 . W - . " J ^ W « . ) ("») + 0(i*). 

If we consider the second condition in (7) for the special choice of coordinates with 
ea = J£> we obtain that I2(f, J£,£, Jet) = 0. Then, the constancy of the holomorphic 
sectional curvature follows directly from the theorem before. 

In order to prove the converse, we solve the Jacobi equation, using the fact that the 
curvature tensor in a Kahler manifold of constant holomorphic sectional curvature 
is expressed by 

R(X, Y, Z,W)=C- {g(X, Z)g(Y, W) - g(X, W)g(Y, Z) + fì(X, Z)fì(Y, W) 

-fì(X, W)fì(Y, Z) + 2fì(X,Y)fì(Z, W)} . 
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If we proceed in an analogous way as in [CV1], we obtain the following expressions: 

Q.j(expm(r£)) ~ ( c o s rVc ) 2 Q i 3 (m) -f (--= cos ry/csin r—Jg(e i , TJej)(m) 

-F ( —7= co srv^s inr—- )g(Te,, Je,)(m) 
V c 2 / 

+ ( 4 ; s i n r Y ) 2 ^ ^ , - - * 1 eiyTJej - % L Je^m), 

fi«a(expm(rO) = - (-7= s i n r — j #(' l e , , J e a ) ( m ) , 

/ 2 \ / c \ 2 

^a&(expm(r£)) = - ( ~ 7 j s i n r " 2 ~ j * W m ) 

where T and _l_ are the shape operator and the normal connection of the surface P , 

defined in the same way as in [V]. 

If 7 is a timelike geodesic, trigonometric fuctions must be replaced by hyperbolic 

ones. In the same way as for Theorem B, if the holomorphic sectional curvature 

is negative, by reversing the metric tensor, the formulas can be obtained from the 

above ones, having in mind that timelike geodesies are transformed into spacelike 

ones. 

In any case, from the above formula it is clear that (<£>*fi)(expm(r<!;)) = 

£2(expm(r£)) and so the geodesic reflection is symplectic along any non-null geodesic. 

By using limits, analogously as in Theorem B, one obtain the result for null geodesies. 

• 
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