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SYMMETRIC POROSITY OF SYMMETRIC CANTOR SETS 

MICHAEL J. EVANS, PAUL D. HUMKE, KAREN SAXE 

(Received April 23, 1992, in revised form August 30, 1992) 

1. INTRODUCTION 

If A is a subset of the real line R and x e R, then the porosity of A at x is defined 
to be 

\(A,x,r) 
hm sup , 

r->0+ r 

where \(A, x, r) is the length of the longest open interval contained in either (x, x + 
r) fl Ac or (x — r,x) D Ac and Ac denotes the complement of A. A set is said to be 
porous at x if it has positive porosity at x and is called a porous set if it is porous 
at each of its points. The symmetric porosity of A at x is defined as 

j(A,x,r) 
hmsup— -, 

r-»0+ r 

where j(A,x,r) is the supremum of all positive numbers h such that there is a 
positive number t with t + h ^ r such that both of the intervals (x — t — h,x — t) 
and (x + t,x + t + h) lie in Ac. A set A is symmetrically porous if it has positive 
symmetric porosity at each of its points. Porous sets and symmetrically porous sets 
have been contrasted in [2] and [6]. 

Symmetric Cantor sets are quite useful in real analysis for constructing examples 
of pathological behavior. Examples of such constructions can be found in [2] and [1]. 
In [5] and [4] necessary and sufficient conditions were established for a symmetric 
Cantor set to be porous. There it turned out that such a set is porous if and only if it 
is rx-porous, that is, a countable union of porous sets. With symmetric porosity the 
situation is markedly different. In [3] it was observed that a symmetric Cantor set 
can be cr-symmetrically porous without being symmetrically porous. Further, it was 
shown in [3] that a symmetric Cantor set is ^-symmetrically porous if and only if it 
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is porous. Thus it seems appropriate now to investigate the nature of symmetrically 

porous symmetric Cantor sets, and this is the topic of the present work. 

2. PRELIMINARY NOTATION 

First we define the class of symmetric Cantor sets in [0,1]. Let E denote the set of 

all finite sequences of 0's and l's, and let E* denote the set of all infinite sequences 

of 0's and Vs. If a G E we denote the length of a by |cr| and will write a in expanded 

form as O-(l)O"(2)cr(3).. .a(n). If a G E*, and n G N, the set of natural numbers, 

then a\n will denote cr(l)O(2)O-(3)... a(n). If 0 ^ an < 1 for all n -= 0, 1, . . ., then 

{an} determines a symmetric Cantor set, ff(an), in [0,1]. If an ^ 0, we identify 

the complementary intervals and the noncomplementary intervals to this Cantor set 

using subscripts from E in the usual way, i.e. I0 = ( | — ̂ f, | + ^ - ) , Jo and Ji are 

the right and left hand components of the complement of I0 respectively; Io and Ii 

are the open intervals of length | a i ( l — a0) centered in Jo and Ji respectively, and 

so on. (Here and throughout the remainder of this paper complementation is taken 

relative to [0,1].) If one of the an -= 0 we proceed as above with the exception that 

is |cr| — n, then Ia is a "marking" of the center point of Ja (not a interval) and Ja0 

and Ja\ intersect in Ia. The Cantor set defined by the sequence {an} is then 

n = l |cг|=n 

Note that 
M - i 

j°\= n ( 2

a " ) and \i"\=°i\"\\3^ 
n=0 

where |H | is used to denote the length of an interval H. In the obvious manner each 

a G E* determines a point in tf(an). We shall denote this point by xa. 

We adopt the notation d(x, I) for the distance from a point x to an interval I. 

A sequence {an} in [0,1) is called sparse if for each subsequence {ank} having a 

positive limit inferior, the sequence {n^ — ftfc-i} diverges to oo. Finally, a sequence 

{an} in [0,1) is called weakly sparse if for each subsequence {ank} having a positive 

limit inferior, the sequence {n^ - n^-i} is unbounded. 
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3. T H E RESULTS 

We shall prove that following theorem and then conclude with examples to show 
that neither implication can be reversed. 

Theorem 1. Let ^{an} be the symmetric Cantor set determined by the sequence 

K}. 
1. If l imsupa n > | or {a n} is not weakly sparse, then ^ ( a n ) is symmetrically 

porous. 

2. Ifff(an) is symmetrically porous, then l imsupa n > \ or {an} is not sparse. 

This theorem will be established via the following three propositions. 

Proposition 1. Iflimsupan > \, then tf(an) is symmetrically porous. 

P r o o f . Let 0 < e < lim sup a n - \, and let {a n} be a subsequence of {an} for 

which ank = \ + 6k > \ + e. Fix a k and let a have length n^. We shall show that 

for each x G Ja \ Ia we can find positive numbers t, h such that 

(x - t - h, x - t) U (x + t, x + t + h) C (tf(an))°, 

and 

<» +*>•• 
It will suffice to establish (1) for each x G Jc-o- Letting s = \Ja\, we have \Ia\ = 

a\a\s = anks. Let r be such that \T\ = \a\, IT is to the left of Ia, and is closer than any 
other Ie for which |#| = \a\. There is a unique Iu which is centered between IT and Ia. 

The right endpoint of Iu is thus the left endpoint of Jao. For notational convenience 
let IT = (a,b), Iu(c,d), and Ia = (e,f). (Note that c = d in the event that Iu is 
simply a "mark.") We have b — a = f — e = (\ + Sk)s and c-b = e — d= (^ — \ek)s. 

Now let x be any point in J<-o- How we proceed to find t and h will depend on 
the size of d — c. 

First, if d — c < CkS, we choose 

t = x — b, and h = f + b — 2x. 

Then 

(x + t, x + t + h) = (2x - b, f) C (e, / ) , 

(x - t - h, x - t) = (2x - / , b) C (a, b), 
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and 

h _ f -2x + b f -2e + b _ e-b 
>. - — x 

t + h f -x f - e / - e 

(| + -fc)- ( | + fifc)* 
2e„ 

l + 2єk 

> єk> є. 

Next, suppose that d — c^ eks and that x lies the right half of J<-n- In this case 

we choose 

t = x — d, and /i = min{2_r — c,f} — t — x. 

Then 

(re + t, x + t + h) = (2x - d, min{2rr - c, /}) C (e, /) and 

(x — t — h,x — t) = (2x - min{2.r - c,f},d) C (c, d). 

Furthermore, if min{2_r — c, /} = /, then 

h _f — 2x + d_ x — d e — d 
~ 1 "_. 2-^1 

t + h f — x f — x f — e 

- i (____]_ ___+_£_ _________ > ř . 
_ 1 _ ( i + . „ ) _ " 2 + 1 - " > 4 > £ f c > Є ' 

and if min{2_r - c, f} = 2x - c, then 

h d — c d — c d — c 
-_£- —~ ^ 

t + h a ; - c ^ / - a : ^ ( / - e j + i ( e - d ) 
£fc£ _ 8ek 8ek 

> IF+^+lTF - -" " ~~~~~ > " 5 " > e*> e' 
We are left with the situation where d-c^ eks and a; lies in the left half of Ja0. We 

find it necessary to break this case into two subcases. First, if (\ - -*)s > d - c ^ e^-s, 

then we set 

t = x -b, and h = f - 2x + b. 

We then have 

(ж + t,x + t + h) = (2x - b,f) Ç (e,f), 

(x - t - h, x - t) = (2x - / , b) Ç (c, d), 
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and 

f -2x + b _ x-b (x - d) + (d - c) + (c - b) 
t + h f — x / — Æ f — x 

> 1 -
I I I 
2 

( І - f r ) « + ( ł - » ) « + ( І - f r ) ' = 14efc 

(è + ^ ) * + è ( ï - ^ 5 + б £* 
Uek , . 1 . xU . 

> -r (since £*; < - in this case) 
5 + | v 5 ' 

> ek > e. 

The final situation is where d — c^ max {skS,(\ — ^-)s} and x lies in the left half 
of J^. Here we set 

t — e — x, and h = min{2x = c, / } — t — x. 

Then 

(x + t, x + t + h) = (e, min{2a; - c, /}) C (e, / ) and 

(a; — t — h,x - t) = (2a; — min{2a; — c,/},2a; - e) C (c,d). 

Furthermore, if min{2x — c, / } = / , then 

1i f-c f-e 1 
- > -7 1 > - + £fc > £fc > e; t + h f -x f -d 2 

whereas, if min{2a; — c, / } = 2a; - c, then 

h 2x — c- e _ e — x e — d 
— 1 ^ 1 t + h x — c x — c d — c 

Thus we have established (1) and, consequently, the proposition. • 

Proposition 2. If{an} is not weakly sparse, then ff(an) is symmetrically porous. 

P r o o f . Let {a n} be a sequence which is not weakly sparse. If l imsupa n = 1, 
then it follows from Theorem 5 in [2] that ^ ( a n ) is strongly symmetrically porous. 
Hence, we assume there is an 0 < s0 < 1 such that an < SQ for every n. As 
{an} is not weakly sparse there exists a subsequence {ank} of {a n } , an a with 
aUfc > a > 0 for every k, and an M with nk+i ~-nk < M for every k. For each k let 

n f c - l 
wk = EI 2 ' a n d £k = ank

wk> Define k* = k*(k) = min{fc/: ek > Swk'}. Note 
n=0 

that if a' has length nfc + /, then \Jat\ ^ -|f-. If we let /0 = min{Z: 2 _ / < | a } , then 
it readily follows that the number si = sup{njt* - n^ : k = 1,2,...} is finite; indeed, 
si ^l0 + M. D 
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We now wish to establish the following: 

Claim l.Ifk is fixed and I is any interval in [0,1] of length Sk, then I contains 
a subinterval I* in (^ (a n ) ) such that 

P r o o f of C l a i m 1. Let I be as in the hypothesis. If I intersects two 

complementary intervals Ia and IT (a ?- r) with |cr|, \r\ < nk*, then I contains a 

"J-interval," Ju of the nk* stage; that is, \v\ = nk*. Let I* = Iu. Then 

I 7"± I n f c * 1 - 1 -. 

\I\ __ £k* _ ank. - j / l - a ; \ / 1 - s o £k* ankm YJ / i - a ť \ fl-so\Sl 
= ^ = r . n (—p°(—) • III e* 

On the other hand if 7 does not intersect two such complementary intervals, then as 
£k > 3ujfc*, which is three times the length of any "J-interval" of the nk* stage, I 

must contain an interval lying entirely in (tf(an)) at least as long as Wk*. But 

m*_ £_; ^ / l - S 0 \ S l 

£k ' Zk 

completing the proof of claim 

. / I - 5 0 \ s i 

r * a ( — ) < 

Now, consider any x G (0,1) n ^ (a n ) . Choose any k sufficiently large so that if 

\a\ = nk and x G J<-, then 2x — Ia C [0,1]. For each such fc and cr we apply the claim 

to the interval I = 2x — Ia, obtaining the associated subinterval I* C (^ (a n ) ) ° . 

Then 

\n > I/*I _ i / i 
\I*\ + d(x,I*) - |/ | + 2|J,o| |/ | + i ^ | / | 

> i I i + ^ i I i iIi < Q t 2 ; • 

Thus, if (a n) is symmetrically porous at x. Furthermore, it is clear that ^ ( a n ) has 
symmetric porosity at least 2a/(1 -f a) at both 0 and 1 and the proposition is proved. 

a 
Prior to proving the next result, we state (sans proof) the following obvious lemma, 

which will be useful in obtaining upper bounds on the porosity of if (an) at various 

points. 
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Lemma 1. Let Ii be left of x and I2 be to the right of x with | I i | = |I2 | = L. 

Let d denote the difference in distances between x and the two intervals. Then 

, , T v (\{t: 0<t <h,x + t el2,x-t G Ii}h ^ 
r(Ii,I2 ,a:) = sup<-- - \ ^ 

h->n í ti ) 

Proposition 3. If {an} is a sparse sequence with l imsupa n ^ | then ^(an) is 

not symmetrically porous. 

P r o o f . If l ima n = 0, then Corollary 1 of [2] guarantees that ^ ( a n ) is not 
symmetrically porous. So we shall assume that l imsupa n > 0. Let M be a positive 
integer such that 10~M < lim sup a n . For each integer m ^ M, let n(m, k) denote the 
position (subscript) of the kth term of {a n} which exceeds 10 _ m . Then {n(m,k): 

k = 1,...} is a subsequence of {n(m + l,fc): k = 1,...} for each m ^ M. As 
{a n } is sparse, for each m ^ M there is a k*(m) such that if k ^ k*(m) then 
n(m,k) — n(m,k — 1) > 10m + 1 . We also assume {k*(m)} is strictly increasing and 
that there is a k'(m) > k*(m) with n(m + l,k*(m + 1)) = n(m,.fe'(m)), whenever 
m ^ M. If n is such that a n > 0 there is a smallest integer M(n) for which 
lQ-M(n) < an. If an = 0 we let M(n) = +oo. Let m(k) denote that value of m for 
which k*(m) ^ k < k*(m + 1) unless fc < k*(M) in which case we let m(k) = 0. For 
m ^ M define 

Sm = {n(m,k): k*(m) ^ k < k'(m)}. 

Note that min(5m) - max(5m_i) > 10m for every m ^ M. Define T^ = Sm - m 

and note that min(Tm) - max(5m_i) > 10m - m for every m^ M. Finally, let 

oo oo 

s = U 5™ and T= U Tm-
m=/Vir 7n-=M 

We use these sets to define a sequence a G E* for which £<- is not a point of symmetric 
porosity of ^(an). Specifically, define 

f 1 if n - 1 e S U T, 
a(n) = { 

y 0 otherwise. 

• 
We begin by establishing some properties of 5. 

Claim 1. The following are equivalent: 
1. n e 5 . 
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2. There is an m0 ^ M such that n{mo, fc*(m0)) ^ n . 

3. n^n(M(n),k*(M(n))). 
4. There is an m0 ^ M(n) such that n(m0,fc*(m0)) ^ n < n(m0,fc /(m0)). 

P r o o f of C l a i m 1. Let n e S. Then there exists a unique m0 such that 
n G 5 m o . Hence there is a fc0 with fc*(m0) ^ fc0 < fc'(m0) for which n --- n(m0,fc0). 
Then m(fc0) = m0 and so n -= n(m(fc0),fc0). As an ^ io_Tn(fc°) and M(n) is 
minimal, m0 = m(fc0) ^ M(n). Hence 2. and 4. follow. Further, as m0 ^ M(n) and 
n(M(n),fc*(M(n))) = minSM(n), follows that n ^ n(M(n),fc*(M(n))). 

It remains to prove that 4. implies 1. If there exists m0 ^ M(n) with 
n(m0,fc*(m0)) ^ n < n(m0,fc'(m0)), then as mo ) .M(n), a n > 10~m°. 
Since n ^ n(m0,fc*(m0)), there exists a fc0 ^ fc*(m0) with n(m0,fc0) =- n. As 
n < n(m0,fc'(m0)) it also follows that fc0 < fc'(m0). Hence, n = n(m0,fc0) G Sm0> 
completing the proof of Claim 1. 

Claim 2. If {n;} is an increasing sequence in N\S, then {ani} -> 0. 

P r o o f of C l a i m 2. Fix m0 and suppose n{ ^ 5 but an . > 10~m° for every 
i. As a n . > 10~m°, there is a fc such that n; = n(m0,fc). But M(n^) ^ m0, and 
if fc ^ fc*(m0), then by part 2 of Claim 1 n» G S, which is false. Consequently, 
fc < fc*(m0). This can occur for at most fc*(m0) - 1 values of i. This completes the 
proof of Claim 2. 

Some properties of fc* and m we will make use of are: 

• fc*(m(fc0)) O o < fc*(m(fc0) + 1) 

• m(fc*(m0)) = m0 

• If there exist m, fc such that n(m, k) < n < n(m, fc + 1) then an ^ 10~m. 

We now show that ^(an) is not symmetrically porous at xa. Assume to the 
contrary that ^(an) is symmetrically porous at xa. Then there are sequences {rn} 
and {r*} in E and an e > 0 such that ITn is left of xa, IT* is right of xa and 

min{| /T nU/T . |} 
r n = IA( T \A( T U ^ £ f ° r ^ ^ n ' 

max{d(:r, / T n ) , d(x, /T . )} 

We shall find it convenient later on to assume that this e is less than | . Clearly, this 
causes no loss of generality. 

Claim 3. Both |rn | and |r*| G S for all but finitely many n. 
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P r o o f of C l a i m 3. Suppose that | r* | %i S for infinitely many n. As xa is 

left of Ir*, xa is either left of or in Jr^0- Now, xa could be in JT*oi, but is not in 

Jr*01i since a contains no consecutive l's for sufficiently large n. Hence, 

W ^ d(x,Iт.) ^ |Ј т . 0 1 1 p8-з. |Ј т .Г 

The last inequality takes advantage of the assumption that lim sup an ^ | , implying 

that we may assume that an < | for all sufficiently large n. This, in turn, implies 

that if v and /x are in E with \v\ = \\x\ + 1, then \JV\ > ||J/x|. Hence, by Claim 2 

r(n) -> 0. 

Now suppose | r n | ^ 5 for infinitely many n. If | r n | ^ T then O"(|rn| + 1) = 0 

so that xa G J<r\]Tnlo- As ITn is left of xa and *I<-||Tn|0
 n ^r n i = 0, it follows that 

d(xaJTn) ^ |J T n i | ^ % ^ . Consequently, 

^ r a < ^ C T < 8 - -

which by Claim 2 can only happen for finitely many n. 

Consequently, we are left to consider the case where | r n | £ S and |rn | G T for 

infinitely many n. In this case cr(|rn| + 1) = 1. As |rn | G T there is an m such that 

|rn | + m € 5. Thus, #<•, G «I<-|,Tn,io(m-i)i where 0 ( m - l ) denotes a string of m - 1 0's. 

It follows that d(xaJTn) ^ d(xaJa\]Tnl) ^ |JTnio(m-i)o|i a n d h e n c e 

r[n)^d(xa,ITn)<8-™-i\JTn\<* a^' 

But, |rn | $ S since |rn | + m G S and consecutive terms of 5 m are at least 10m apart. 

Consequently, ajT n | ^ 10~m and hence 

r ( » ) < 8 . ( ! ) m 

Hence, we may assume both | rn | and |r*| are in the S for every n. 

Claim 4. For all but finitely many n, |rn | = \T*\. 

P r o o f of C l a i m 4. As both | rn | and |r*| G 5 there are m0, &o> ^ i , k\ with 

| rn | =n(m0,A;o) and |r*| = n(mi ,k i ) . 

Assume |rn | < |r*|. Then either mo < mi, or mo = mi and ko < &i- We use 

|Jr^ | to estimate r(n). As |rn | G 5, cr(|rn| + 1) = 1 and the next value of t for which 

<j(t) = 1 is t = n(m0 , fco +1) - m0 which is in Tmo . As |r*| G 5, |r*| must be at least 
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as large as n(mo,k0 + 1) and so xa G *Icr|,Tn,io(iomo-m())i and hence lies to the right 

of •LrT,io(iomo-m0)o- Since |r*| - |JTr4io(iomo-m0)ol ^ mo ~ 1, 

|«ITn10(10mo-m0)o| ^ 2 m ° ~ |J T * | . 

Hence, 

r^ * # f l < IT—— 1 * 2"mo+1' 
«{#_• , - r n ) | JTn 10(10mo - t n „ ) 0 1 

which according to Claim 2 can happen but for finitely many n. 
If |rn | > |r*|, then as a(\T*\ + 1) = 1, xa must be to the left of the interval JT*0. 

Hence, 
„(„\ s V-TiA s Vrn \Jrn\ ^ Q o - 1 0 m « 

d(xa,lr*) \JT*Q\ 8 1 |JT* | 

since |rn | — |r*| ^ 10m°. This completes the proof of Claim 4. 

Hence, we may assume |rn | = |r*| = £n and that £n G 5 n for all n. As 
r(ITn,ITn<,xa) ^ e there is a positive real number £ such that a^n > 10~^ > --j- for 
every n, and as each 5 m is finite, {mn} —•> oo, where m n = m(£n). As l imsupa n ^ | , 
there is an 1Vi such that if n ^ Ni, then a n < 1/(2 — ^e); that is, 2a£~l < | for 
n ^ Ni. Note further that if n ^ Ni and J^ is a "J-intervaV of the nth stage and 
Jo-/ is a subinterval of Ja and is a "J-interval" of the (n + l)th stage, then 

\M 2 < 8 < 5 > 

| Jo-# | l - a n 2-e 

where the final inequality uses the fact that e < | . Next, there is an 7V2 such that 
if 7i ^ 1V_, then 10^ • 2 2 - m n < e. Fix 72 ^ max{Ni, N2}- For notational convenience, 
we let £ = _n, m = m n and set 7 = o"|£_m- Then a(£ + 1) = 1 = o(£ — m + 1) and 
a(i) = 0 for £ - m + 1 < i ^ £. 

For each integer a satisfying 0 -̂  a < 2 m n _ 1 we let a be the base two representation 
of a proceeded by m — 2 - int (log2(a)) zeros, where we let log2 0 = 0; eq. 2 = 
00 . . .010. As a\t = 7IO, and a(£ + 1) = 1, xa G «I7l01, so it follows that I7l0 and 
I x- are the complementary intervals of the £th stage immediately left and right of 
xa respectively. For 0 ^ a ^ m let Ia = I7la and I_a = Iy0a-- where a* = 2 m _ 1 - a. 
As there are at least 10m — m zeros following a(£ + 1) in a, xa is within 

A _ \J.\e\ 
2 l O m - m 

of the right endpoint of Io- (Again, I0 = I7l0.) 

Claim 5. If - m ^ a, b ^ m then r(Ia,h,xa) < e. 
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P r o o f . For b = 1 an elementary computation shows that {t: xa — t £ Ia and 
xa + t e Ii} = 0 (and hence r(Ia,h,xa) = 0) unless a = 0 or a = —1 . If a = - 1 the 
difference 

d (x a , /_ i ) - d(x„, Ji) ^ |Io| + A + |I7 | - | I , U _J > |Io| - | I , U _ J . 

Using Lemma 1 we compute 

|/o| - ( | /o|-!/.!._»I) _ | / . | < _ l I r(K_i,I ьa; c т) ^ 
|/o| 

Ю-^ІJ^.Л 
°<г-\Jv\f\ 

- 1 ( r % s 1 ю^-m 

l 'o| 

< 

If a = 0, then 

d(xa,h) - d{xa,I0) > d(/i,/ 0) - 2A ^ 2|JCT,,+1| - 2A 

= | J C T | , | ( l - a , ) - 2 A . 

Using Lemma 1 we compute 

, , , ^ | / o | - | J g | t | ( l - a / ) + 2A 
r(/o,/i,x a ) ^ '-n-

l-tol 

_ a t - ( l - a £ ) + 2-(10'"-"1) 

at 

= 2ai - 1 2-(10"'-"') 
Oil Oil 

< £ + io«-2-(1 0 ' " -m) <e. 

For general values of 1 < b < m, as in the 6 = 1 case, it is again easy to see that 

r(Ia, h,xa) = 0 unless a = -b or a = -b + 1. If a = -b, 

d{xaJ-b) - d{xa,Ib) > | /0 | + A + | / 7 | - \IaU_h\ 

^ |/o| - |/.|t-J. 

Then, as in the a = —1, 6 = 1 case we have 

M-(|/o|-|/„i«_t|) _ |/.|,_J 
rЏ-ъJbiXa) ^ 

\Һ\ \h 0| 

a< • | J„|J ae 

< 5 m • 10 ? - m = 2~m • 10* < e. 
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Finally, if a = — b + 1, then there is an i = 1, 2, . . . , ra such that 

d{xa,Ib) -d{x<r,I-b+i) = (d(_v,Ji) -d{xa,I0)) +( |J„ | ._ , | - |J7|) 

> (d(_v,Ji)-d(a:<T,Jo)) - | J 7 | . 

Hence, 

, , , , „ |Jt| - {d{xa,h) - d{x<T,I0)) + |J7 | 
r(J_6+i, h,x„) < i jj-j 

= \Io\-(d{x<T,I1)-d{xa,I0)) | / 7 | 

IJfcl IJ»I 

and using the inequality from the a = 0, b = 1 case, 

< 10* • 2- (1°m-m> + - + 1 0 " m l J g l ^ » l < 1 0 + 2 + 10-*|Ja |J 

< 10* • 2-(10" l-m) -f 10*~m • 5 m + -

= 10*(2-(1°m-m> + 2- m ) + -

< 10* • 21~m + | < e. 

This then completes the proof of Claim 5. 

In order to complete the proof of Proposition 3, and hence of Theorem 1, we note 

that if r* = 716 where b > mn then the right porosity at xa due to IT+ cannot exceed 

^ ; that is, 

\IT*\ 1 
hmsup — —~———- ^ , 

n~>oo d(xa, 1T*) + \1T* I m n 

and this expression clearly dominates r(n) and an analogous statement can be made 
for the r n ' s not previously considered. This and the previous work, contradicts the 
existence of the sequence {rn, r * } . D 

We conclude this paper by providing two examples to show that the converses of 

the implications 1 and 2 in Theorem 1 are not true. 

E x a m p l e 1. There is a sequence {a n} such that ff(an) is symmetrically 
porous, yet l imsupa n = 1 and {a n} is weakly sparse. 

P r o o f of E x a m p l e 1. Let 5 = {\k2 + §ft: k = 0 ,1 ,2 , . . . } and for each 
n = 0, 1, 2, . . . set 

eSorn-leS 

\ 0 othe otherwise; 
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that is, 

{an} = {ii°'°'°'ii^^ 
Clearly, l imsupa n = \ and {an} is weakly sparse. Further, it is an easy exercise to 

show that ^(an) has symmetric porosity at least | at each of its points. • 

E x a m p l e 2. There is a nonsparse sequence {an} for which ^(an) is not sym­

metrically porous. 

P r o o f of E x a m p l e 2. Let 5 be as in Example 1. For each n = 0, 1, 2, . . . 

set 
( ± if neS or n - l e S 

[ 0 otherwise; 

that is, 

{an\ = i — , —,0,0,0, — , —,0,0,0,0, — , — , —,0,0,0,0,0, — , — , . . . V 
1 ; l l O ' l O ' ' ' ' 10 10 ' 10' 10' 10 ' ' 1 0 ' 1 0 / 

Although {an} is weakly sparse, it is not sparse. Furthermore, ^(an) is not 

symmetrically porous. Specifically, by employing the same strategy as that used by 

the present authors in Example 1 of [3], it is a straightforward matter to show that 

^ ( a n ) is not symmetrically porous at the point xa G ^(an) where for each natural 

number n 
( 1 if neS or n - 3 E 5 

a(n) = { 
{0 otherwise. 

• 
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