Ladislav Nebeský
Visibilities and sets of shortest paths in a connected graph

Persistent URL: http://dml.cz/dmlcz/128548

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
VISIBILITIES AND SETS OF SHORTEST PATHS
IN A CONNECTED GRAPH

LADISLAV NEBESKÝ, Praha

(Received December 28, 1993)

By a graph we mean here an undirected (not necessarily finite) graph without loops and multiple edges. Thus if G is a graph with a vertex set $V(G)$ and an edge set $E(G)$, then $V(G)$ is a nonempty set and $E(G)$ is a subset of the set of all two-element subsets of $V(G)$; G is called finite if $V(G)$ is finite.

The letters h, i, j, k, m and n will be reserved for denoting integers.

Consider a graph G. We denote by $W(G)$ the set of all finite sequences of vertices in G, including the empty sequence, which will be denoted by \ast. Thus $W(G) - \{\ast\}$ is the set of all sequences

(0)
$v_0, \ldots, v_j,$

where $j \geq 0$ and $v_0, \ldots, v_j \in V(G)$. Similarly to [2], instead of (0) we will write $v_0 \ldots v_j$. Let $u_0, \ldots, u_i, w_0, \ldots, w_k \in V(G)$, where $i, k \geq 0$, and let $\alpha = u_0 \ldots u_i$ and $\beta = w_0 \ldots w_k$. Then we write

$$\alpha \beta = u_0 \ldots u_i w_0 \ldots w_k.$$

Moreover, we write $\gamma \ast = \gamma = \ast \gamma$ for every $\gamma \in W(G)$. Let $x_0, \ldots, x_m \in V(G)$, where $m \geq 0$. Put $\delta = x_0 \ldots x_m$. We write

$$||\delta|| = m, \quad F\delta = x_0, \quad L\delta = x_m, \quad \text{and} \quad \delta = x_m \ldots x_0.$$

Moreover, we define $\ast = \ast$. Let $y_0, \ldots, y_n \in V(G)$, where $n \geq 0$. We say that $y_0 \ldots y_n$ is a path in G if the vertices y_0, \ldots, y_n are mutually distinct and $\{y_i, y_{i+1}\} \in E(G)$ for every integer i such that $0 \leq i < n$. Let $\mathcal{P}(G)$ denote the set of all paths in G. Obviously, $\mathcal{P}(G) \subseteq W(G) - \{\ast\}$. If $\alpha \in \mathcal{P}(G)$, then the number $||\alpha||$ is called the length of α. Consider $\mathcal{R} \subseteq \mathcal{P}(G)$ and $u, v \in V(G)$. Define

$$\mathcal{R}_{(u,v)} = \{\alpha \in \mathcal{R}; \ F\alpha = u \text{ and } L\alpha = v\}.$$
We say that G is connected if $\mathcal{P}_{(t,z)} \neq \emptyset$ for every pair of $t, z \in V(G)$, where $\mathcal{P} = \mathcal{P}(G)$.

Consider a connected graph G. We define the distance $d_G(x,y)$ of vertices x and y in G as
\[
d_G(x,y) = \min(\|\alpha\|; \alpha \in \mathcal{P}(G), F\alpha = x \text{ and } L\alpha = y).
\]

Let $\xi \in \mathcal{W}(G) - \{\ast\}$; we say that ξ is a shortest path in G if $\xi \in \mathcal{P}(G)$ and $\|\xi\| = d_G(F\xi, L\xi)$. Let $\mathcal{I}(G)$ denote the set of all shortest paths in G.

The set $\mathcal{I}(G)$ was characterized by the present author in [2] (under the condition that G is finite); his characterization is “almost non-metric” in the sense that the lengths of paths greater than one are neither considered nor compared in it. In the present paper a more general result will be proved. We will obtain an “almost non-metric” necessary and sufficient condition for a set of paths in a connected graph G to be an element of a certain set of subsets of $\mathcal{I}(G)$. To describe such a set of subsets of $\mathcal{I}(G)$ we introduce the notion of visibility in G.

Let G be a connected graph, and let $Q \subseteq V(G) \times V(G)$. We say that Q is a visibility in G if Q fulfills the following Axioms I–IV (for arbitrary $u, v, x, y \in V(G)$):

I if $(u,v) \in Q$, then $(v,u) \in Q$;
II if $(u,v) \in Q$ and $d_G(u,x) + d_G(x,v) = d_G(u,v)$, then $(u,x) \in Q$;
III if $(u,v) \in Q$, $\{u,x\}, \{v,y\} \in E(G)$ and $d_G(x,v) = d_G(u,v) - 1 = d_G(x,y)$, then $(u,y) \in Q$;
IV if $(u,v) \in Q$, $\{u,x\}, \{v,y\} \in E(G)$ and $d_G(x,v) = d_G(u,v) - 1 \geq 1$, then $(x,y) \in Q$.

We are now prepared to formulate the main result of the present paper.

Theorem. Let G be a connected graph, and let $\mathcal{R} \subseteq \mathcal{P}(G)$. Denote $\mathcal{I} = \mathcal{I}(G)$. Then the following statements (1) and (2) are equivalent:

(1) there exists a visibility Q in G such that
\[
\mathcal{R}_{(t,z)} = \mathcal{I}_{(t,z)} \quad \text{if} \quad (t,z) \in Q \quad \text{and}
\]
\[
\mathcal{R}_{(t,z)} = \emptyset \quad \text{if} \quad (t,z) \notin Q;
\]

for every pair of vertices t and z of G;

(2) \mathcal{R} fulfills the following Axioms A_1–A_4 and B_1–B_3 (for arbitrary $u, v, x, y \in V(G)$ and $\alpha, \beta, \gamma, \delta \in \mathcal{W}(G)$):

A_1 if $\alpha \in \mathcal{R}$, then $\overline{\alpha} \in \mathcal{R}$;

A_2 if $\alpha u v \in \mathcal{R}$, then $\alpha u \in \mathcal{R}$;

A_3 if $uxov \in \mathcal{R}$, $\{v,y\} \in E(G)$, $u \varphi y v \notin \mathcal{R}$ for any $\varphi \in \mathcal{W}(G)$ and $ux\psi y \notin \mathcal{R}$ for any $\psi \in \mathcal{W}(G)$, then $xovy \in \mathcal{R}$;
A_4 \text{ if } u x \alpha, u \beta y v \in \mathcal{R}, \text{ then } \mathcal{R}_{(x,y)} \neq \emptyset; \\
B_1 \text{ if } \alpha u \beta v \gamma, u \delta v \in \mathcal{R}, \text{ then } \alpha u \delta v \gamma \in \mathcal{R}; \\
B_2 \text{ if } u x \alpha, u \beta y v, x u \beta y \in \mathcal{R}, \text{ then } x a v y \in \mathcal{R}; \\
B_3 \text{ if } u x \alpha v \in \mathcal{R}, \text{ then } \{u, v\} \notin E(G).

Proof. Instead of $d_G(t, z)$, where $t, z \in V(G)$, we will write $d(t, z)$.

Part One: $(1) \Rightarrow (2)$. Let (1) hold. We want to prove that \mathcal{R} fulfills Axioms A_1–A_4 and B_1–B_3.

Consider arbitrary $u, v, x, y \in V(G)$ and $\alpha, \beta \in \mathcal{W}(G)$.

(Verification of Axiom A_1). Suppose $\alpha \in \mathcal{R}$. There exist $t, z \in V(G)$ such that $\alpha \in \mathcal{R}_{(t,z)}$. Hence $\mathcal{R}_{(t,z)} \neq \emptyset$. It follows from (1) that $(t, z) \in Q$ and therefore, $\mathcal{R}_{(t,z)} = \mathcal{I}_{(t,z)}$. We get $\alpha \in \mathcal{I}_{(t,z)}$. Axiom I implies that $(z, t) \in Q$. According to (1), $\mathcal{R}_{(z,t)} = \mathcal{I}_{(z,t)}$. Thus $\alpha \in \mathcal{R}$.

(Verification of Axiom A_2). Suppose $\alpha u v \in \mathcal{R}$. First, let $\alpha = \ast$. According to (1), $u v \in \mathcal{I}$ and $(u, v) \in Q$. Axiom II implies that $(u, u) \in Q$. As follows from (1), $\alpha u = u \in \mathcal{R}$. Let now $\alpha \neq \ast$. There exist $t \in V(G)$ and $\varphi \in \mathcal{W}(G)$ such that $\alpha = t \varphi$. Then $t \varphi u v \in \mathcal{R}_{(t,v)}$. According to (1), $t \varphi u v \in \mathcal{I}$ and $(t, v) \in Q$. Obviously, $t \varphi u \in \mathcal{I}$. We have $d(t, v) = d(t, u) + d(u, v)$. Axiom II implies that $(t, u) \in Q$. According to (1), $\mathcal{R}_{(t,u)} = \mathcal{I}_{(t,u)}$. We get $\alpha u = t \varphi u \in \mathcal{R}$.

(Verification of Axiom A_3). Suppose $u x \alpha v \in \mathcal{R}$, $\{v, y\} \in E(G)$, $u \varphi y v \notin \mathcal{R}$ for any $\varphi \in \mathcal{W}(G)$ and $u x \psi y \notin \mathcal{R}$ for any $\psi \in \mathcal{W}(G)$. Clearly, $\{u, x\} \in E(G)$. Since $\mathcal{R}_{(u,v)} \neq \emptyset$, it follows from (1) that $\mathcal{R}_{(u,v)} = \mathcal{I}_{(u,v)}$ and $(u, v) \in Q$. This implies that $u x \alpha v \in \mathcal{I}$ and $u \varphi y v \notin \mathcal{I}$ for any $\varphi \in \mathcal{W}(G)$. Thus $d(x, v) = d(u, v) - 1 \geq 1$ and $d(u, v) \leq d(u, y)$.

Obviously, $d(x, y) \geq d(u, y) - 1$. This means that $d(u, v) - 1 \leq d(x, y) \leq d(u, v)$. Assume that $d(x, y) = d(u, v) - 1$. Axiom III implies that $(u, y) \in Q$. As follows from (1), $\mathcal{R}_{(u,y)} = \mathcal{I}_{(u,y)}$. This means that $u x \psi y \notin \mathcal{I}$ for any $\psi \in \mathcal{W}(G)$. Thus $d(u, y) \leq d(x, y)$. Clearly, $d(u, v) \leq d(u, y) \leq d(x, y) \leq d(u, v) - 1$, which is a contradiction. Hence $d(x, y) = d(u, v)$. We see that $x a v y \in \mathcal{I}$.

Recall that $d(x, v) = d(u, v) - 1 \geq 1$. Axiom IV implies that $(x, y) \in Q$. According to (1), $\mathcal{R}_{(x,y)} = \mathcal{I}_{(x,y)}$. We get $x \alpha v y \in \mathcal{R}$.

(Verification of Axiom A_4). Suppose $u x \alpha v, u \beta y v \in \mathcal{R}$. Then $\{u, x\}, \{v, y\} \in E(G)$. According to (1), $u x \alpha v \in \mathcal{I}$ and $(u, v) \in Q$. Since $d(x, v) = d(u, v) - 1 \geq 1$, it follows from Axiom IV that $(x, y) \in Q$. According to (1), $\mathcal{R}_{(x,y)} \neq \emptyset$.

Thus \mathcal{R} fulfills Axioms A_1–A_4. Axioms B_1–B_3 follows from (1) and simple properties of \mathcal{I}. Hence (2) holds.

Part Two: $(2) \Rightarrow (1)$. Let \mathcal{R} fulfill Axioms A_1–A_4 and B_1–B_3. Combining Axioms A_1 and A_2, we get

(3) if $u \in V(G)$, $\alpha, \beta \in \mathcal{W}(G)$ and $\alpha u \beta \in \mathcal{R}$, then $\alpha u, u \beta, u \alpha, \beta u \in \mathcal{R}$.

565
Combining Axioms A_2 and A_3, we get

(4) if $u, v, x, y \in V(G), \alpha \in \mathcal{W}(G), uxav \in \mathcal{R}, \{v, y\} \in E(G)$ and $xavy \notin \mathcal{R}$, then

$\mathcal{R}(u, y) \neq \emptyset$.

This part of the proof will be divided into Sections 1 and 2. In Section 1 we will prove that

(5) if $\mathcal{R}(u, v) \neq \emptyset$, then $\mathcal{R}(u, v) = \mathcal{I}(u, v)$ for every pair of vertices u and v of G.

In Section 2 we will prove that

$$\{(u, v); u, v \in V(G) \text{ such that } \mathcal{R}(u, v) \neq \emptyset\}$$

is a visibility in G.

Section 1. We denote by M the set of all integers k such that there exist $t, z \in V(G)$ with the property that $d(t, z) = k$. Obviously, either M is the set of all non-negative integers or there exists $h \geq 0$ such that $M = \{0, \ldots, h\}$. For each $m \in M$ we will prove that

(6) if $\mathcal{R}(u, v) \neq \emptyset$, then $\mathcal{I}(u, v) \subseteq \mathcal{R}(u, v)$ for every pair of vertices u and v of G such that $d(u, v) \leq m$,

and

(7) $\mathcal{R}(u, v) \subseteq \mathcal{I}(u, v)$ for every pair of vertices u and v of G such that $d(u, v) \leq m$.

We proceed by induction on m. First, let $m = 0$. Since $\mathcal{R} \subseteq \mathcal{P}(G)$, we get $\mathcal{R}(w, w) \subseteq \{w\}$ for each $w \in V(G)$. Hence (60) and (70) follow. Next, let $m = 1$. Consider arbitrary $t, z \in V(G)$ such that $d(t, z) = 1$. Axiom B_3 implies that $\mathcal{R}(t, z) \subseteq \{t, z\}$. Hence, (61) and (71) follow.

Now, let $m \geq 2$. Suppose (6$_{m-1}$) and (7$_{m-1}$) hold. This section of the proof will be divided into two subsections. In 1.1, combining (6$_{m-1}$) and (7$_{m-1}$) we will prove that (6$_m$) holds. In 1.2, combining (6$_m$) and (7$_{m-1}$) we will prove that (7$_m$) holds.

1.1. If $\mathcal{R}(t, z) = \emptyset$ for every pair of vertices t and z of G such that $d(t, z) = m$, then (6$_{m-1}$) implies that (6$_m$) holds. Assume that there exist $t, z \in V(G)$ such that $\mathcal{R}(t, z) \neq \emptyset$ and $d(t, z) = m$.

Consider arbitrary $u, v \in V(G)$ such that $\mathcal{R}(u, v) \neq \emptyset$ and $d(u, v) = m$. Consider an arbitrary $\xi \in \mathcal{I}(u, v)$. We want to prove that $\xi \in \mathcal{R}$. Since $\mathcal{R}(u, v) \neq \emptyset$, there exists $\zeta \in \mathcal{R}(u, v)$.

We first assume that ξ and ζ have a common vertex w such that $u \neq w \neq v$. Then (8) there exist $\varphi_1, \varphi_2, \psi_1, \psi_2 \in \mathcal{W}(G) - \{\ast\}$ such that $\xi = \varphi_1 w \varphi_2$ and $\zeta = \psi_1 w \psi_2$.

Obviously, $\varphi_1 w \in \mathcal{I}(u, w)$ and $w \varphi_2 \in \mathcal{I}(w, v)$. As follows from (3), $\psi_1 w \in \mathcal{R}(u, w)$ and $w \psi_2 \in \mathcal{R}(w, v)$. It is clear that $d(u, w) < m$ and $d(w, v) < m$. Since $\mathcal{R}(u, w) \neq \emptyset$.
\[\emptyset \not\in R_{(w,v)}, (6_{m-1}) \text{ implies that } \varphi_1 w, w \varphi_2 \in R. \text{ Recall that } \psi_1 w \psi_2 \in R_{(u,v)}. \] Using Axiom \(B_1\) we get \(\psi_1 w \varphi_2 \in R\) and \(\xi = \varphi_1 w \varphi_2 \in R\).

We now assume that \(\xi\) and \(\zeta\) have no common vertex different from \(u\) and \(v\). Put \(n = \|\zeta\|\). Obviously, \(n \geq m \geq 2\). There exist mutually distinct \(x_0, \ldots, x_{m+n-1} \in V(G)\) such that

\[\text{(9) } \xi = x_0 x_{m+n-1} \ldots x_n \text{ and } \zeta = x_0 x_1 \ldots x_n.\]

Obviously, \(x_0 = u\) and \(x_n = v\). Put \(x_{k+m+n} = x_k\) for each \(k \in \{0, \ldots, m+n-1\}\).

Then \(\xi = x_{m+n} x_{m+n-1} \ldots x_n\). We define

\[\text{(10) } \xi_i = x_i x_{i+m+n-1} \ldots x_{i+n} \text{ and } \zeta_i = x_i x_{i+1} \ldots x_{i+n}\]

for each \(i \in \{0, \ldots, m\}\). Obviously, \(\xi_0 = \xi\) and \(\zeta_0 = \zeta\). Recall that we want to prove that \(\xi_0 \in R\). Suppose, to the contrary, that \(\xi_0 \not\in R\). It follows from (3) that \(\zeta_m \not\in R\).

Since \(\xi_0 \not\in R\), \(\zeta_0 \in R\) and \(\zeta_m \not\in R\), there exists \(j \in \{0, \ldots, m-1\}\) such that

(a) \(\xi_j \not\in R\), \(\zeta_j \in R\) and (b) either \(\xi_{j+1} \in R\) or \(\zeta_{j+1} \not\in R\).

Let \(\zeta_{j+1} \in R\). According to (b), \(\xi_{j+1} \in R\). Since \(\zeta_j \in R\), Axiom \(B_2\) implies that \(\xi_j \in R\), which is a contradiction. Thus \(\zeta_{j+1} \not\in R\).

Clearly, \(d(x_j, x_{j+n}) \leq \|\xi_j\| = m\). If \(d(x_j, x_{j+n}) < m\), then—combining \((7_{m-1})\) with the fact that \(\xi_j \in R\)—we get \(\xi_j \in \mathcal{I}\) and therefore \(n = \|\xi_j\| = d(x_j, x_{j+n}) < m\), which is a contradiction. Thus \(d(x_j, x_{j+n}) = m\). This means that \(\xi_j \in \mathcal{I}\). Put

\[\sigma = x_j x_0 x_{m+n-1} \ldots x_{j+n+1}.\]

Then \(\xi_j = \sigma x_{j+n}\). Clearly, \(\sigma \in \mathcal{I}\). Recall that \(\zeta_{j+1} \not\in R\). It follows from (4) that

\[R(x_j, x_{j+n+1}) \neq \emptyset.\]

Since \(\sigma \in \mathcal{I}\), it follows from \((6_{m-1})\) that \(\sigma \in R\). Since \(\xi_j \not\in R\), Axiom \(B_1\) implies that

\[\text{(12) } x_j \varphi x_{j+n+1} x_{j+n} \not\in R \text{ for any } \varphi \in \mathcal{W}(G).\]

Combining the fact that \(\zeta_{j+1} \not\in R\) with (12) and Axiom \(A_3\), we see that there exists \(\psi \in \mathcal{W}(G)\) such that

\[x_j x_{j+1} \psi x_{j+n+1} \in R.\]

Put \(\omega = x_{j+1} \psi x_{j+n+1}\). Since \(d(x_j, x_{j+n+1}) = m - 1\), \((7_{m-1})\) implies that \(x_j \omega \in \mathcal{I}\). Since \(\sigma x_{j+n} \in \mathcal{I}\), we get \(x_j \omega x_{j+n} \in \mathcal{I}\). Hence \(\omega x_{j+n} \in \mathcal{I}\) and \(d(x_{j+1}, x_{j+n}) = \|\omega x_{j+n}\| = m - 1\).
Define

$$
\theta = x_{j+1} \ldots x_{j+n}.
$$

Since $\zeta_j \in \mathcal{R}$, (3) implies that $\theta \in \mathcal{R}$. Since $F\theta = x_{j+1}$, $L\theta = x_{j+n}$ and $\omega x_{j+n} \in \mathcal{I}$, it follows from (6_{m-1}) that $\omega x_{j+n} \in \mathcal{R}$. Obviously, $x_j \theta \in \mathcal{R}$. According to Axiom B_1, $x_j \omega x_{j+n} \in \mathcal{R}$. Since $L\omega = x_{j+n+1}$, we get a contradiction with (12).

We have proved that $\xi \in \mathcal{R}$. This means that (6_m) holds.

1.2. Consider arbitrary $u, v \in V(G)$ such that $d(u, v) = m$. If $\mathcal{R}_{(u,v)} = \emptyset$, then $\mathcal{R}_{(u,v)} \subseteq \mathcal{I}_{(u,v)}$. Let $\mathcal{R}_{(u,v)} \neq \emptyset$. Consider an arbitrary $\zeta \in \mathcal{R}_{(u,v)}$. We want to prove that $\zeta \in \mathcal{I}$. Obviously, there exists $\xi \in \mathcal{I}_{(u,v)}$.

We first assume that ξ and ζ have a common vertex w such that $u \neq w \neq v$. Then (8) holds. Clearly, $d(u, w) < m$ and $d(w, v) < m$. As follows from (7_{m-1}), $\psi_1 w \in \mathcal{I}_{(u,w)}$ and $w \psi_2 \in \mathcal{I}_{(w,v)}$. This implies that $\zeta \in \mathcal{I}$.

We now assume that ξ and ζ have no common vertex different from u and v. Put $n = ||\zeta||$. Obviously, $n \geq m = d(u, v)$. Recall that we want to prove that $\zeta \in \mathcal{I}$. Suppose, to the contrary, that $\zeta \notin \mathcal{I}$. Then $n > m$. There exist mutually distinct $x_0, \ldots, x_{m+n-1} \in V(G)$ such that (9) holds. We adopt the convention (10) and define ξ_i and ζ_i as in (11) for each $i \in \{0, \ldots, m\}$. Recall that

$$
\zeta_0 = \zeta = x_0 \ldots x_m \ldots x_n, \quad \zeta_m = x_m \ldots x_n \ldots x_{m+n} \quad \text{and} \quad x_{m+n} = x_0.
$$

If $\zeta_m \in \mathcal{R}$, then Axioms A_1 and B_1 imply that

$$
x_m \ldots x_n \ldots x_m \ldots x_0 \in \mathcal{R},
$$

which contradicts the fact that $\mathcal{R} \subseteq \mathcal{P}(G)$. Hence $\zeta_m \notin \mathcal{R}$.

Since $\zeta_0 \in \mathcal{I}, \zeta_0 \in \mathcal{R}$ and $\zeta_m \notin \mathcal{R}$, there exists $j \in \{0, \ldots, m-1\}$ such that

(a) $\xi_j \in \mathcal{I}, \xi_j \in \mathcal{R}$ and (b) either $\xi_{j+1} \notin \mathcal{I}$ or $\zeta_{j+1} \notin \mathcal{R}$.

Since $\xi_j \in \mathcal{I}$, it follows from (6_m) that $\xi_j \in \mathcal{R}$. Axiom A_4 implies that

$$
\mathcal{R}_{(x_{j+1}, x_{j+n+1})} \neq \emptyset.
$$

Let $\xi_{j+1} \in \mathcal{I}$. According to (6_m), $\xi_{j+1} \in \mathcal{R}$. Recall that $\xi_j, \xi_j \in \mathcal{R}$. Axiom B_2 implies that $\zeta_{j+1} \in \mathcal{R}$, which contradicts (b).

Thus $\xi_{j+1} \notin \mathcal{I}$. This means that $d(x_{j+1}, x_{j+n+1}) \leq m - 1$. Hence $d(x_{j+1}, x_{j+n}) \leq m$. Define ρ as in (13). Assume that $d(x_{j+1}, x_{j+n}) \leq m - 1$; then (7_{m-1}) implies that
\(\varphi \in \mathcal{S}\); therefore \(n - 1 \leq m - 1\), which is a contradiction. Thus \(d(x_{j+1}, x_{j+n}) = m\). This means that \(d(x_{j+1}, x_{j+n+1}) = m - 1\). There exists \(\psi \in \mathcal{W}(G)\) such that

\[
x_{j+1}\psi x_{j+n+1} x_{j+n} \in \mathcal{S}.
\]

Similarly to 1.1, put \(\omega = x_{j+1}\psi x_{j+n+1}\). Then \(\|\omega\| = m - 1\). It follows from (6m) that \(\omega x_{j+n} \in \mathcal{R}\). Since \(\zeta \in \mathcal{R}\), Axiom B1 implies that \(x_j \omega x_{j+n} \in \mathcal{R}\). According to (3), \(x_j \omega \in \mathcal{R}\). Since \(d(x_j, x_{j+n+1}) = m - 1\), \((7m-1)\) implies that \(x_j \omega \in \mathcal{S}\). But \(\|x_j \omega\| = m > d(x_j, x_{j+n+1})\), which is a contradiction.

We have proved that \(\zeta \in \mathcal{S}\). This means that \((7m)\) holds.

Summarizing the results of 1.1 and 1.2, we see that \((5)\) holds.

Section 2. Denote

\[
Q = \{(t, z); t, z \in V(G) \text{ such that } \mathcal{R}_{(t, z)} \neq \emptyset\}.
\]

We want to prove that \(Q\) fulfills Axioms I–IV.

Consider arbitrary \(u, v, x, y \in V(G)\). Suppose \((u, v) \in Q\). Then \(\mathcal{R}_{(u, v)} \neq \emptyset\). According to \((5)\), \(\mathcal{R}_{(u, v)} = \mathcal{S}_{(u, v)}\).

(Verification of Axiom I) It follows from Axiom A1 that \(\mathcal{R}_{(v, u)} \neq \emptyset\). We get \((v, u) \in Q\).

(Verification of Axiom II) Suppose \(d(u, v) = d(u, x) + d(x, v)\). If \(x = v\), then it is obvious that \((u, x) \in Q\). Let \(x \neq v\). Then there exist \(\alpha, \beta \in \mathcal{W}(G)\) such that \(\alpha \beta \in \mathcal{S}_{(u, v)}\). Hence \(\alpha \beta \in \mathcal{R}_{(u, v)}\). It follows from (3) that \(\alpha \beta \in \mathcal{R}_{(u, x)}\). Therefore, \(\mathcal{R}_{(u, x)} \neq \emptyset\). We get \((u, x) \in Q\).

(Verification of Axiom III) Suppose \(\{u, x\}, \{v, y\} \in E(G)\) and \(d(x, y) = d(u, v) - 1 = d(x, y)\). Clearly, \(x \neq v\). There exists \(\alpha \in \mathcal{W}(G)\) such that \(uxav \in \mathcal{S}\). Since \(d(u, v) = d(x, y)\), we have \(xav \notin \mathcal{S}\). Since \(uxav \in \mathcal{S}\), we have \(uxav \in \mathcal{R}\). Since \(xav \notin \mathcal{S}\), (5) implies that \(xav \notin \mathcal{R}\). It follows from (4) that \(\mathcal{R}_{(u, y)} \neq \emptyset\). We get \((u, y) \in Q\).

(Verification of Axiom IV) Suppose \(\{u, x\}, \{v, y\} \in E(G)\) and \(d(x, v) = d(u, v) - 1 \geq 1\). There exists \(\alpha \in \mathcal{W}(G)\) such that \(uxav \in \mathcal{S}\). Hence \(uxav \in \mathcal{R}\). If \(xav \in \mathcal{R}\), then \(\mathcal{R}_{(x, y)} \neq \emptyset\). Let \(xav \notin \mathcal{R}\). If there exists \(\beta \in \mathcal{W}(G)\) such that \(\beta x \gamma \notin \mathcal{S}\), then (3) implies that \(x \beta y \in \mathcal{R}\), and thus \(\mathcal{R}_{(x, y)} \neq \emptyset\). Let \(uxav \in \mathcal{R}\) for any \(v \in \mathcal{W}(G)\). Axiom A3 implies that there exists \(\gamma \in \mathcal{W}(G)\) such that \(w \gamma y \in \mathcal{R}\). Since \(uxav \in \mathcal{R}\), Axiom A4 implies that \(\mathcal{R}_{(x, y)} \neq \emptyset\). We get \((x, y) \in Q\).

We have proved that \(Q\) is a visibility in \(G\).

The proof of the theorem is complete. \(\square\)
The following corollary is similar to the result which was (under the condition that G is finite) originally proved in [2]:

Corollary. Let G be a connected graph, and let $\mathcal{R} \subseteq \mathcal{P}(G)$. Then $\mathcal{R} = \mathcal{I}(G)$ if and only if \mathcal{R} fulfills Axioms A_1–A_3, B_1–B_3 and the following Axiom A_0 (for arbitrary $u, v, x, y \in V(G)$ and $\alpha, \beta, \gamma, \delta \in \mathcal{W}(G)$):

$$A_0 \quad \mathcal{R}_{(u,v)} \neq \emptyset.$$

Proof. Let $\mathcal{R} = \mathcal{I}(G)$. Then \mathcal{R} fulfills Axiom A_0. Our theorem implies that \mathcal{R} fulfills Axioms A_1–A_3 and B_1–B_3.

Conversely, let \mathcal{R} fulfill Axioms A_0–A_3 and B_1–B_3. Axiom A_0 implies that \mathcal{R} fulfills Axiom A_4. According to our theorem, there exists a visibility Q in G such that (1) holds. Axiom A_0 states that $\mathcal{R}_{(u,v)} \neq \emptyset$ for every pair of vertices u, v of G. Combining this fact with (1), we get $\mathcal{R} = \mathcal{I}(G)$, which completes the proof.

Remark. Let G be a finite connected graph. The set $\mathcal{I}(G)$ is closely related to the interval function of G in the sense of H.M. Mulder [1]. An “almost non-metric” characterization of the interval function of G was given in [3].

References

Author’s address: Filosofická fakulta University Karlovy, nám. J. Palacha 2, 116 38 Praha 1, Czech Republic.