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Math. Slovaca 34,1984, No. 2,141—154 

ON CONTINUOUS INTERVAL FUNCTIONS 

LADISLAV MlSfK 

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday 

In 1966, in the references of my paper ([7]) I announced that my paper entitled 
"Uber stetige Intervalfunktionen" was in the press. But I had written only the first 
draft of the paper and as I did not find it interesting enough, I did not finish it for 
publication. Unfortunaly, I forgot to correct the announcement in the references of 
[7]. My first aim for writting the mentioned paper was the study of Darboux 
functions on the spaces of intervals. Some statements of the original draft are 
introduced in [7]. 

On January 29, 1981, M. Laczkov ich sent me preprints [2] and [3] of his 
papers, which he had submitted to Acta Math. Acad. Sci. Hung. Simultaneously, he 
asked me for a reprint of my mentioned unpublished paper. I sent him the copy of 
the mentioned first draft with some comments concerning the proof of theorem 5 in 
the draft. In August, I received a letter from H. W. Pu in which he asked me for the 
full reference of my paper "Uber stetige Intervalfunktionen". I sent him the 
English translation of the draft of the paper. In that translation, I made some 
corrections and suitable modifications in the proof of theorem 5, as I mentioned in 
my letter to M. Laczkovich. Simultaneously, I wrote a letter to H. W. Pu in which 
I mentioned that M. Laczkov ich in [2] proves that any additive interval function 
defined on the space of all closed subintervals of a given closed interval I is 
uniformly continuous if it has a finite strong derivative on I ([2], theorem 3). I also 
added some comments concerning the relations between the theorem of 
M. Laczkov ich and my theorem 5. 

The facts introduced above were an impulse to my decision to adapt for 
publication the English translation which I had sent to H. W. Pu. 

1. Let there b e n ^ l and En the euclidean n-dimensional space. Let at<bi for 
i = 1, ..., n. By the closed interval 1= (ax, bx; . . .; an, bn) in En we understand the 
set {(JCI, ..., xn)eEn: a, ^JC, ^ 6 , for i = l , ..., n). The boundary (the interior) of 
the interval I will be denoted by Fr(J) (Int(I)). The intervals Iu ...,In will be called 
non-overlapping iff Int(J I)nInt(/,) = 0 for all /=?-;, i, j = \, ..., n, where 0 is the 
empty set. The Lebesgue measure of a Lebesgue measurable set A in En will be 
denoted by m(A). A set expressible as the sum of a finite number of closed 
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intervals in E„ will be termed a figure in E„. If R is a figure in E„ or G is an open 
set in En, then X(R) or X(G) will denote the space of all closed intervals contained 
in R or in G, respectively, and X0(R) = X(R)u{0}, Xo(G) = X(G)u{0} . 

Lemma 1. Let I and J be elements of X(E„). Let {sk}k i be a sequence of 
naturals defined as follows: Si = 2 , sk + l=3sk +2 for k = \,2, 3, .... Then the 
difference I —J is either the empty set or there exists a finite system {Ii, ..., I,} of 
non-overlapping closed intervals such that 

U l n t ( I , ) c z I - J c z ( J I r and t^s„. 

Proof. If IczJ, then I-J = 0. 
If InJczFr(I), then Int (I) cz I - J cz I. Since I — J = I-(InJ), we can assume 

that JczI and I-J^0. 
Let be JczI and I — J'=7-0. We prove the lemma for n = \. In this case for 

I= (a, b) ZD (c, d) = J there holds: (a, c)u(d, b)al-ja (a, c)u(d, b) if a< 
c<d<b; (a,c)aI-Ja(a,c) if a<c<d = b and (d, b)a I - J cz (d, b) if 
a = c<d<b. Lemma 1 holds for n = \. 

Let Lemma 1 be true for n. Let / and J e X(E„+]), J a I and / - J ^ 0 . Th,en 
there exist Y, Y2eX(E„) and a^c<d^b such that / = Y , x ( « , b ) and J = 
Y 2 x ( c , d). If Y, - Y 2 ^ 0 , then there exists a finite system {Y,, ..., Y } , of 

non-overlapping closed intervals in E„ such that U Int(Y)cz Y, — Y2cz[J Y, and 
( i / i 

sS s„ . If (a, b) — (c, d) ^0, then there exists a system rX of maximally two 
non-overlapping closed intervals in E. such u{In t (T) : Te :T} cz (a, b) - (c, d) cz 
u{T: T e J } . The following cases are possible: a) Y, —Y2=£0, (a, b) - (c, 
d)±0, b) Y,-Y 2 =£0, (a,b) = (c,d) andc) Y, = Y2, < f l , 6 > - ( c , d)±0. 

In case a) the system {Y.xT: i = \,...,s, Te ST}v{Y, x (c, d): i = 
1, ..., s}u{Y2xT: Te 3~}, in case b) the system {Y, x(c, d): i = \, ..., s} and in 
case c) the system {Y2xT: Te^F} is the system {I,: i = \, ..., t} mentioned in 
lemma 1. 

Let be Q(A, B) = m(A AB) , where A A B i s the symmetric difference of A and 
B for each A, BeX 0 (E„) . Then (X()(E„), p) and (X(E„), Q) are metric spaces. 

Lemma 2. Lef I=(a,, 6,; ...; a„,b„), 0<e<m(I), K = max {b, - a,: 
KE 

i = \,...,n}, d^—— and Y=(a,-S, ^ + o ; . . . ; a„-d, b„ + d). Then 
m(I) — £ ' 

uO/(e)cz Y, where 0/(e) is the closure in (X(E„), g) of the e-neighbourhood of I. 

Proof. Let J = (ci, J , ; ...; c„, d„) e Ot(e). Let there exist a je {\, ..., «} for 
which either q < ay - 6 or 6, + <5 < dh Let c, = max (a,, c,) and /, = min (b,, d,) for 
/ = 1, ..., rc. Then 
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g(I, J) = m(l - (InJ)) + m(J - (InJ)) = 

= П (Ь, - a.) - IÎ (/• ~ <'<) + П tø - c.) - П (/. - І'.)^ 
, 1 i ì , I / I 

> VT (#• - ť ) fr/~/i + g/-Ц + 4 - / / + <',-<'; ^ 

ł = i // — ť*/ 

> П o. - *) гг^г -- П u, - e,) к ̂ т^Tw =' • 

However, this is a contradiction and therefore J <= y if J eO,(f). 

Theorem 1. The space (X„(E„), p) is a metric connected space and (X(E„), p) is 
a metric locally compact connected space. 

Proof. Let J be in X(E„) and 0 < e < m ( I ) . According to lemma 2, there exists 

a y e X ( E „ ) such that uO,(e)cz Y. Let {Ik}7 i be a sequence of elements in OI(E) 

and let Ik = (aKk, bKk; ...; an,k, b,,,k) for k = l , 2 , 3, .... Since {JhczY, the 
k i 

sequences {aLk}T=\ and {6,,*}r=i are bounded for / = 1, ...,«. Therefore there 
exists a sequence {kv}T=i such that all sequences {«,,^}r=i and {b,,^}T i for 

/ = 1, ..., rc are convergent. Let a, = lim a,, *s and 6, = lim 6,. As for / = 1, ..., n. Since 

0 < £ < m ( J ) , p(J, Iic) = E for k = 1, 2, 3, ... and p is continuous, we have «,-<fr, for 

i = l, ..., n. Let J = (ax,b\\ . . .; an,bn). Then lim p(J, IO = 0 and p(I, J)-Se. 

Thus J 6 0/(e) and we have proved that 0,(e) is a compact set in X(E„). Therefore 
(X(E„), p) is a locally compact space. 

Assume that X(E„) = O i u 0 2 , where Ox and 0 2 are two nonempty open disjoint 
sets. Then there exist I, JeX(En) such that I=(a\,b\\ . . . ; an,bn)eO\ and 
J = ( c , , d , ; . . . ; cn, <£,>€02. Let J = (to, + ( 1 - f )c , rf>, + (l-*)<*•; . . . ; 
to„+(l-f)c.,, rt>„+(l-fK) for fe<0, 1). The map <p: (0, 1)->X(E„) defined 
as follows: cp(t) = J( for each re (0, 1) is continuous. Thus (p'x(Ox) and cp ' (0 2 ) 
are two non-empty disjoint open sets in ( 0 , 1 ) for which (0 ,1 ) = 
gT1(Oi)uqp"1(02). However, this is a contradiction, since (0, 1) is a connected set. 

Since X(En) is a connected set in X()(En), {0} is not open in X0(E„) and 
X0(E„) - {0} is open in X0(E„), the space X0(En) is connected. Analogously we can 
prove the following theorem: 

Theorem 2. Lef R be a figure in En. Then (X«(R), p) is a compact metric space. 
If IeX(En), then (X0(I), p) is a compact connected metric space. 
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If R is a figure in E„, the space (X„(R), Q) is a one-point compactification of 
(X(R),Q). 

Theorem 3. The space (X(,(E„), o) is a complete metric space in which the base 
g8={O f(e): IeX(E„), O < £ ^ m ( I ) } u { O 0 ( e ) : e>0} has the following two 
properties: 

(1) Let IeX0(En) and U be an open set for which IeU. Then there exists 
a Be<M such that BaU and leB-B. 

(2) Let Bern and let be B = A,uA 2 , where A,=£0, A2-?-0, AxnA2 = 0 and 
CnBczA, or CnBczA 2 if Ceffl and C<=A, or CczA2, respectively. Then the 
sets A\nA2 and A\nA2 are non-empty. By A\ or A2 we denote the set of all 
points of accumulation of A\ or A2, respectively. 

Proof. Let {h}k i be a Cauchy sequence in (X(,(E„), o). If there exists 

a sequence {ks}7 i such that lim m(IO = 0, then lim Q(h, 0) = O and the sequence 

{h}T i converges to 0 in (X(,(E„), o). 

If there does not exist a sequence {/cv}T-1 such that lim m(h ) = 0, then there 

exists a positive number K and a natural number N such that K<m(IN) and 
K / K\ 

o(J„, lq)<— for all p,q^N. Then Ip e 0.N ( — ) for all p ^ N . According to 

lemma 2, there exists a J e X(En) such that uO/N ( —JcJ . It is easy to prove that 

{h}T i converges to some IeX(J). 
Now let I e X(,(E„), U an open set in X(,(E„) and IeU. Then there exists a 6 > 0 

such that 0.(<5)c:lJ. If 1 = 0, we choose a J e Ol(d)nX(En) such that m ( i ) < ^ . 

Then B = 0,(m(J))e®, B e l / and I = 0 e B - B . Let be Ie X(En). Then we 

choose a Je X(E„) such that Ic:Int(J)and o(I, J)<~. Then for B = Oj(o(I, J)) 

we have: B e ^ , B c [ / a n d I e B - B . 
Let B e d and B = A,uA 2 , where A, and A2 are two nonempty disjoint sets 

with the following property: CnBczA\ or CnBcz:A2 if Ce2# and C c A , or 
Cc:A2 , respectively. 

First let B = O^e), where IeX(E„) and 0<s^m(I). We shall prove the 
following proposition: There exist two closed intervals J! = (it\.,, u,.i; . . .; 
u„.,, vn.\) and J2= (w,,2, t»i.2; ...; u„2, f„,2) in B and a natural / e {1, ..., n} such 
that J, e A\, J2eA2, either u,., ^ u,,2, ui,\ = u],2 for 7 = 1, ..., / - 1, / + 1, ..., n and 
tv 1 = V11.2 for k = \, ..., n or u*,! = uk,2 for k = 1, ..., n and u,.. ^ i\.2 and i>,., = v,.2 

for 7 = 1,. . . , i - l , / + l , . . . , n and J, = (u,,,, V\ ,; ...; u, \.\,v, ,.,; 
tu,., + (1 - t ) u , 2 , t>,,,; u, + ,,,, v, + i,i; ...; u„,u *V,) eB for all t e (0, 1) in the first 
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case or Y, = (u,,,, u,,,; . . .; w,_,.,, _»,_,,,; w,,,, tu,.i + (1 - t) vL2; u,+..i, v,-+i.i; ...; 
un,\, vn.\) eB for all re (0, 1) in the second case. 

We can assume that IeAx. In the case of IeA2 we proceed similarly. Let 
I=(aub\; . . . ; an,bn) eAx and J = ( c i , d , ; ...; c„, dn) e A2. Since g(I,J) = 
m(IuJ)-m(InJ)<e^m(I), there must be Int (In J) ±0. Thus Y = 
I n J e X ( E „ ) . Since p(Y, I) __£>(!, J ) < e , Y is in B. Therefore either Ye Ax or 
YeA2. 

Let Y = ( c , / , ; . . .; en, /„) eAx. Then c, =max (a,-, c,) and /, =min (6,, d() for 
i = 1, ..., n. If Ci =max (a,, Ci) = a,>Ci, then the intervals I, = (fci + (1 — t)e{, / , ; 
c2, /2 ; . . .; en, /„) belong to B for all te (0, 1), because Ycz ln l , d u l , c l u J and 
e(I , I,)__e(I, J ) < £ for all te (0, 1). If Ii e A2, the proposition is proved. 

If either I\eA\ or Ci = Ci and if /, = min (_>,, di) = fri < d , , we consider the 
following system of intervals I, = (c,, rdi + (1 - t)/,; c2, f2;...; en, /„) for te (0, 1). 
Then I, e B for all te(0, 1), because Y c l n l , c l u l , c=IuJ and Q ( I , I,)__ 
£>(!, J ) < _ . If Ii e A2, the proposition is proved. 

If d = Ci or Ii e Ax, fx = dx or I, eAx and c2 = max (e2, c2) = a2>c2, then we take 
the system of intervals Y, = (c,, d,; tc2 + (l - t)c2, /2 ; e3,fi;...; en,fn) for 
t e (0, 1) in consideration and we proceed as we proceed in the case of the systems 
{I,: te (0, 1)} and {!,: te(0, 1)}. Since YeA\ and J eA2, we get by induction the 
existence of some ie {1, ..., n} such that either Ti = ( d , dx; . . .; c,_i, d,-\; c , /,; 
...; en, /„) eA\ and Ti = (ci, dx; ...; c,_i, dx ,; c,, //; c,+,, / i + i ; . . .; c„, /„) e A2 or 
T2 = (ci, di; ...; c,_,,d,_,; c,, /^; c,+i,/+i; . . .; e „ , / „ ) e A , and f 2 = ( c , , d , ; ...; 
c, ,, d,_,; c , d,; c,+i,/+i; . . . ; en, /„) e A2. 

If Y e A 2 , it is easy to see that we must proceed similarly to prove the 
proposition. 

Now let {J,: f e ( 0 , 1)} or {Y,: te(0, 1)} be the system mentioned in the 
proposition in the first case, or in the second case, respectively. We shall deal only 
with the system {J,: t e (0, 1)} which corresponds to the first case. The second case 
can be treated similarly. 

The system {J,: te(0, 1)} is a compact subset of Oi(e) and therefore 6 = 

inf {g(l, Y): YeO^e)- 07(e), te(0, 1 ) } > 0 . Let <5, = inf {g(Jt, Y): 

Y G O / ( £ ) - 0 / ( E ) } for te(0, 1). Then 0<<5__<5, for all te(0, 1). If e = m(I), 

then 0 6 O / ( e ) - O / ( £ ) and therefore 6,__e(J,, 0) = m(J,). If 0 < e < m ( I ) , then 
m(I — (InJ))^g(I, J)<e<m(I). Therefore there exists a closed interval T such 

that TalnJ and m ( I - T ) = e. But then Te Oj(e)- 0,(_) and c\__e(J,<, T) = 
m ( J , - T ) < m ( J , ) . 

For each re ( 0 ,1 ) there exists an eti_0 such that either Oj((£f)c_Ai and 
(Oj f(e ' )nA 2)u(Oj>')-Oi(£))^0orO i f(£r)c=A 2and(Oj f(^)nA 1u(Oj r(e ' ) -O /(£)) 
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^-0 for all e'>e( if J(eAx or J(eA2, respectively. If e, = 0 , we put OJ((O) = 0. If 

0<e , <£ , , then there exists an interval .JeOJf(£.) such that either JeAxnA^> or 
JeA[nA2 when either Jr e A, or J, e A2, respectively. This is a consequence of the 

compactness of Ojf(£f). If e( = 0 and if J, e A, or J, e A2, then either J, e AxnA'2 or 
J, e A [ n A 2 , respectively. 

Let a= in f { t e ( 0 , 1 ) : eu = dit for all u e ( M ) } and /3 =sup {t e (0, 1 ) : e„ = du 

for all U G ( 0 , t)}. From the properties of A, and A2, from the definition of e, and 
from J , e A , and J()eA2 we conclude that 0^t5<P + d^a^l. But then there 
exist two numbers r and s such that ^^r<s^a, JreA2, JseA,, er<dr and 
e, < 6S. However, from the consideration in the preceding paragraph it follows that 
A[nA2±0 and AxnA'2±0. 

Now let B = O0(e), where e > 0 . There can neither A, = {0} nor A2 = {0}. Then 
there exist two intervals I and J such that I=(a\,bx; ...; an,bn)eAx and 
J=(cx,dx; . . .; c „ , ^ ) € A 2 . Two cases are possible: either a) {(ta,,tfr,; ...; 
tan, tbn): t e ( 0 , 1>}CZA, or b) {(tau tbx\ . . . ; tan, tbn): t e ( 0 , 1 ) } - A , ^ 0 . We 

shall prove that in both cases there exist an interval Ye O0(e) and <5 > 0 such that 
O V ( 6 ) C Z O 0 ( E ) and OY(d)nAx±0 and OY(d)nA2±0. 

Let there be {(tax, tbx; ...; tan, tbn): te(0, 1)} cz A,. Then there exists a t > 0 
such that t(bt - a,)^d, - c, for i = l, ..., n. Let Ys = (stax + (1 - s)c, 
s f b , + ( l - s ) d , ; ...; s ta, ,+(1-s)c, , , stb,, + (1 - s)dn) for Se(0, 1) and a = 
inf { se (0 , 1 ) : YseAx}. If a = l, then Y a e A , n A 5 , if a = 0, then Y(leA[nA2 

and if 0 < a < l , then either Y(leAxnA2 or Y(teA[nA2. Since 0 < 
at(bl-a,) + (l-a)(di-cl)^d,-cl for i = l, ..., n, there holds: g(0, Y<t) = 

n n 

m(Ya) = f] (at{bi - a-) + (1 - a)W ~ ^)) = n W " c»)= rn(J)<e. Therefore 

Y(teO0(e). There exists a <5>0 such that Oy,,(<5)cz O0(e) and OY ( j(6)nA,?-0, 
OY t t(6)nA2-£0 . 

Let there {(to,, tbx; ...; ta„, fb„): f e(0, 1)} - A,-£0. Let 0 =sup {te (0, 1 ) : 
(tax,tbx; . . .; tan, tbn) e A2}. Then 0 < / 3 ^ 1 . If /3 = 1, then Y = ( a , , 6 , ; ...; 
an,bn)eAxnA2 and if 0 < / 3 < l , then either Y= (jfa,, /3b,; ...; 
| 3 f l „ , ^ ) 6 A , n A ; or Y = (0a,, 0b, ; .. .; /3a„, |3b„> e A,'nA2 . Since p(0, Y) = 
/3m(I)<£, Y is in O0(e). There also exists a positive number 6 such that 
OY(6)c=O0(e) and Oy(S)nA, =£0 and OY(S)nA 2-£0. 

Let YeO0(e) and S > 0 such that OY(6)cz O0(e), O Y (S)nA,-£0 and Ov(6) 
n A 2 ^ 0 . Let Ax = 0Y(d)nAx and A2 = Oy(<5)nA2. Then Oy(<5) = A,uA 2 , 
AxnA2 = 0 and A, -£0, A2-£0. Let C e i and either Ccz A, or Ccz A2. Therefore 
either CnO 0(£)czA. or CnO0(£)czA2 and thus CnOY(5)cz CnO0(e)nOY(d)cz 
A ,nO Y (6 ) = A,, or CnOY(6)cz CnO 0(£)nOY(6)cz A2nOY(<5) = A2 if either 
Ccz A, or Ccz A2, respectively. But then there holds: AxnA2j=0 and A[nA2±0 
and therefore AxnA2±0 and Ai'nA2-j-=0. 
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Thus the property (2) for the base 3ft is proved. 
We remark that the properties (1) and (2) are important in the study of the 

39-Darboux Baire 1 functions (see [4] and [5]). 
We note that also the base 38 in X(En) of all sets U(I, e) = {JeX(En): (ax + e, 

b\ — e ; ...; an + e , bn — e)czjcz(ai — e, b\ + E ; ...; an — e, bn +£)} for 1= (a,, b\; 
. . .; an, bn) eX(En) and 0 < e < ^ m i n (bx — ax, ..., bn—an) satisfies the properties 
(1) and (2). 

2. There are several definitions of the continuity of interval functions. 
The first is as follows: An interval function f is continuous on a figure R in En (or 

on an open set G in En) iff for each x e R (x e G) and e>0 there exists a 5 > 0 such 
that | / ( J ) | < e holds whenever I e X(R) (I e X(G)), x el and m(I)<6 ([10]). If an 
interval function is continuous on a figure R (or on G) in this sense, we shall say 
that / is pointwise continuous on R (on G) . 

The second is the following: An interval function f is continuous on a figure 
R (on an open set G) iff for each e>0 there exists <5>0 such that | / ( / ) | < e 
whenever I e X(R) (I e X(G)) and m(I)<6 ([9]). If / is continuous on R (on G) 
in this sense, we shall say that / is uniformly continuous on R (on G) . However, 
this continuity is usually, also by M. Laczkov ich , called simply continuity. 

In [8] C. J. N e u g e b a u e r gives the following definition of the continuity of an 
interval function: An interval function f is continuous on a figure R (on an open set 
G) iff for each e > 0 and for each I e X(R) (I e X(G)) there exists a 6 > 0 such that 
\f(I)-f(J)\<e holds whenever JeX(R) (JeX(G)) and Q(I, J)<6. Thus / is 
continuous on R (on G) in this sense iff / is continuous on (X(R), Q) (on 
(X(G), Q)). This continuity is introduced also in my paper [6] in theorem 3. In such 
a case of the continuity we shall say that / is metrically continuous on R (on G). 

An interval function f is called additive on a figure R (on an open set G) iff 
/ (IuJ) = / ( / ) + /(J) for each nonoverlapping interval I and J of X(R) (I, 
J e X(G)) for which IuJ is an interval. Let / be an additive interval function on R 
(on G). Then the function / : X0(i*)->(-oo, oo) (/ : X0(G)->(-oo, oo) defined as 
follows: f(I) = f(I) for each IeX(R) (IeX(G)) and /(0) = O, is an additive 
extension of / to XQ(R) (to X0(G)). 

Theorem 4. Let f be an additive interval function on a figure R (on an open set 
G). Then the following properties are equivalent: 

a) / is uniformly continuous on R (on G) 
b) The additive extension f is continuous at 0 in the metric space (X0(R), Q) 

(X„(G), Q), 
c) f is metrically continuous on R (on G) and there holds b). 
Proof. The equivalence of a) and b) is evident. The theorem will be proved if we 

prove that b) implies c). 
Let / be continuous at 0 in (X0(R), Q) ((X0(G), Q)). Let sn be the number 
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introduced in Lemma 1. Let E>0 Let d>0 such that | / ( / ) | < — whenever 

IeX(R) (IeX(G)) and m(I)<6. Let IeX(R) (IeX(G)). According to Lem­
ma 1 for each J e X(R) (J eX(G)) for which o(I, J)<<5 there exists a finite system 
{J, . ., Js) of non-overlapping closed intervals in X(R) (in X(G)) such that 

U l n t ( J , ) c r I - J c z L J j , , | J In t (J , )czJ- Icz [J J,, O ^ p ^ s , , , pg kv^2v„, 
i / i , p+\ , p+\ 

1 1 s s 

where (J Int(J,) and [J J, for p = 0 and | J Int(J,) and IJ J, for s = p we shall 
i ' i / p + 1 i p + \ 

put equal to 0. If I n J is an interval, then f(I) = f(InJ) + ^jf(Jl) and / (J) = 
/ i 

t(InJ)+ 2 / U ) and if InJ is not an interval, then f(I) = ^f(J,) and / (J) = 
' /• + i / i 

2 / ( j ) . Therefore | / ( / ) - / ( J ) | S ^ | / ( j , ) | < e . We put here £ / ( j ) = 0 if p = 0 

and 2 /(J,) = 0if - = p . 
/ ,> I 

If I is a closed interval, then according to theorem 2, the metric space (X0(I), o) 
has some properties as interval. Any continuous function on (X0(I), o) is uniformly 
continuous on X0(I) and has a maximum and a minimum on X0(I). All continuous 
functions on (X,,(I), p) form a separable Banach space with the norm ||/|| = 
max {|/(J)|: J eX 0 ( I )} , where / is continuous function on X0(I) ([1], p . 397). Any 
continuous function on (X0(I), p) has the Darboux property according to the base 
05 which is introduced in theorem 3, thus: for each B e 33 each Y, JeB each c 
such that f(J)<c<f(I) there exists TeB such that f(T) = c. 

It is well known that any real function of a real variable is continuous on an 
interval J if it has a finite derivative at any point of J . We shall prove that any 
additive interval function which has at any point of an open set (of a figure) a finite 
strong derivative is metrically continuous. We recall the definition of the strong 
derivative. Let / be an interval function on an open set G (on a figure R) . Then 
a number a is a strong derivative of / in X e G (X e R) iff for each e > 0 there exists 

/ ( i ) 6 > 0 such that < e for each IeX(G) (IeX(R)), Xel and d(I)<6, 
\m(I) 

where d(I) is the diameter of I. 

Lemma 3. Let J = (a,, bx; ...; an, bn) be an interval, X = (xi, ..., xn)eJ, let f be 
an additive interval function on J and K a positive number. If \f(I)\ ^Km(I) 
whenever I is in X(J), Xel then there holds: \f(I)\ g 2nKm(J) for each I e X(J) . 

Proof. Let I=(c, du ...; c,„ dn)eX(J) and N- = {/e{l , ..., n}: c^x^d,}. 
We shall prove, that \f(I)\ ^TKm(J) if the cardinality of N, is n-j. 

If the cardinality of N, is n, then Xel and therefore \f(I)\^Km(I)^Km(J). 
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We shall assume that \f(Y)\^2iKm(J) for each Ye X(J) such that the cardinality 
of NY is n—j. Let the cardinality of Nt be n — (1 + 1). Then there exists an 
ie {1, ..., n} —Ni. There must hold either JC,<C, or d,<jc,. If x,<c,, we put 
y , = ( c , , d , ; . . . ; d-i,di-x; a„c,; c,+x, d,+x; . . . ; cn, dn) and Y2=(cx,dx; . . . ; 
c, ,, d, ,; a,, d,; c,4l, d, + x; ...; cn, dn). Then y 2 = y , u l and y , and I are nonover-
lapping closed intervals. Therefore / (y 2 ) = / ( y , ) + / ( / ) and \f(I)\ = \f(Y2)-f(Yx)\ 
= 1/(^)1 + | / ( y , ) | -S 2i+lKm(J) because Ny, = Ny2 = N / u { / } . We treat the case 
fdi<jc, analogously. 

Theorem 5. Let f be an additive interval function on an open set G (on a figure 
R) which has a finite strong derivative at any point of G (of R). Then f is metrically 
continuous on G (on R). 

Proof. Let I = (a,, bx; . . . ; an, bn) eX(G) and e > 0 . For every XeFr ( I ) there 
exists a positive number 5(X) such that ( D / ( X ) - 2 ) m ( J ) < / ( J ) < ( D / ( X ) + 2) 
m(J) if J e X(G), X e J and the diameter d(J) of J is less than <5(X), where D/(X) 
is the strong derivative of / at X. 

Let &* be the system of all triple (N,, N2, N3) such that {N,, N2, N3} is a disjoint 
decomposition of {1, ..., n} such that N,uN 2 -£0 . Let (N,, N2, N3)e 5F and let 
F(Nl. N,. NO be the set {(JC,, ..., xn): for each / e N, there is JC, = a, for each / e N2 there 
is JC, = b, and for each / e N3 there holds a, S JC, = /?,}. The cardinality of the system 

*-*-l(г) r"'-
Let J(X) be an n-dimensional cube in X(G) with the centre X and with the 

diameter less than 6(X). Since Fr(I) = U { F ( N I , N 2 . N O - W , N2, N 3 ) e ^ } and since 
each set F ( N , . N 2 . NO for (N,, N 2, N3)e¥F is compact, there exists a finite system 
{X,, ..., Xs} of points of Fr(I) such that F (N , ,N2 , N o c : ^{ I n t ( J (X , ) ) : X, GF ( N I .N 2 . NO} 

for each (N,, N2, N3)e ^ . Let K = max {max ( |D / (X , ) - 2 | , |D/(X,) + 2 | ) : 
/ = 1, ..., S} and / be the minimum of the lengths of the cubes J(X,) for / = 1, ..., s. 

Let .% be the system {J: J is a closed interval for which there exists a finite set 
Kj cz{l, ...,s} such that J = n { J ( X , ) : /eKj}} and let tf be the system of all 
minimal elements of S^; thus 9>= {Je 5^0: for each Tetfo there holds: if Taj, 
then T = J } . Then the system 5̂  is a finite system of non-overlapping closed 
intervals, for J e SF there exists a point Xk such that JczJ(Xk) and u{J(X,) : 
X,eF(N,.N2.No} = u { J e ^ : Jc=J(X,), X, GF ( N I , N 2 .NO} for each (Nx, N2, N,)e &. 
Let j be the cardinality of the system 6 .̂ 

It is easy to prove that there exists a n r j > 0 such that: rj < 3 , 77 < \ min {b,- a,: 
i = l,...,n}, I T ) - I n t ( J n ) c u { J ( X i ) : 1 = 1, ..., s} and j(pn)2 2nKm(Ir}-Jr])<e, 
where Jrj = (fll + rj, bx-t]; . . . ; a„ + rj, 6n - rj) cz (ax - r\, bx + r\; . . .; an-r\, 
bn + r]) = In. Now for each (N,, N2, N3)€ ^ we define two intervals: y (Nl,N,,NO = 
(tx, ux; . . . ; tn, un) and yfNl.N2.No= (^1, w,; . . . ; ij„, wn), where t, = «,, u, = a, + r\, 
v, = a,-r\, Wi = ai if ieNx, ti = b,-t], u, = bi, Vi = bi, w, = b, + t] if / e N2 and 
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t, = a, + r], u, = b,-r\, v, = a„ w, = b, if / e N.. Let ^ = {y(N|.N, N ,: 
(Nx,N2,N,)e&} and <&* = {YtNl.N,.Ny- ( N , , N 2 , N , ) e ? } . 

We shall prove that ^ u ^ * is a finite system of non-overlapping closed intervals 

and I-J =u°У, I -I=uЩ*. 

Let P = (px, ...,pn)єl-J and let N, = {/є{l, ..., n): p, a,+ ) , N2 = 

{/e{l, ..., n): 6,-r j^p,} and N, = {1, ..., n } - ( N , u N 2 ) . Since Pel-J„, there 
is either Pe I- Jn or P e F r ( J n ) . Therefore N,uN 2 -£0 and (N,, N2, N,)e&. But 

then P G y(N, N,,NI) and therefore I —J^cru^. Let P e u ^ . Then there exists 
« (N,, N2, N^e&t such that P e y ( N | N,,N,). From the definition of y(Nl.N.. NO it 
follows that a,^p,^b, for each / e { l , . . . ,«} and therefore P e I . For each 
/ G N, uN 2 there cannot hold a, + r] < p, < fr, - r) and since N, uN 2 4=- 0 there holds: 

P^Int(JTJ). Thus Pel — Jjj. This gives that u^/c=I —JTJ and we have proved that 

I-Jr]=u(&. The proof of Ir]-I=u(2/* is similar. 
Let T, UetyuW* and In t (T)nIn t (C/ )^0 . Since Int(T)nInt((7) ^ 0 and 

In t ( I - J n )nIn t ( I T 7 - I ) = 0, there can be either T, Ue® or T, UeU*. Let T, 
l / € ® . Then there exists a (N,, N2, N-) and (K,, K2, KO of & such that T = 
y(N,,N,.N,)= ('., " l ; •••; *«> M„) and (7= y(K..K2.Ko = (vu w,; . . . ; vn, wn). Since 
Int(T)nInt((7)9-0, there exists a point P = (p., ..., p„) e In t (T)nIn t ( I / ) . There­
fore there holds: t,^p,^u, and v, Sp , ^ w, for each / G { 1 , . . . , / ? } . Since a, < 
a, + r]<b, — r)<b, for each / G {1, ..., n}, there must be t, = v, and w, = w, for each 
i e { l , ..., fi}. Thus (N„N 2 , N,) = (K,,K2 , K,) and T = If 

For T, Ue°y* the proof is similar. 
Let f = [J\ J is a closed interval for which there exist a Tetf and 

a (Nu N2, N?)e& such that J = Tny ( N l .N , .N O} and let ^ = { y : y is a closed 
interval for which there exist a T e ^ and a (Ni, N2, N»)e ^ such that y = 
y*N,,N2.N,)nT}. Then the systems J? and /i1 are finite systems of nonoverlapping 

closed intervals of the cardinality not greater than j • pn and u $ = 1 — Jn and 

u^ = In-I. 
Let Jef. Then there exist a T e ^ and a (N,,N2 , N,)e:> such that J = 

Tny ( N l .N , ,N ,) . Let y = (tx, ux; . . .; tn, un), where t, = a,, u, = a, + r\ for each / G N,, 
t, = b, — r\, u, = b, for each / e N2 and t, = a, and u, = b, for each ieN^. Then 
J c y ( N | , N , N , ) C u { J ( X , ) n y : X, G F(Nl.N,, N0} and therefore there exists an 

ie{\, ..., s} such that J c J ( X , ) n y , J(X,)n Y is an interval contained in I- Jn and 
X,GJ(X, )ny . 

Let Ye 3. Then there exist a l e ^ a n d a (N{,N2,N,)e& such that y = 
TnyfN l .N , .N 0 . Then y c yfNl, N„ Nl) c u {J(X,)n y (Nl. Nl< Nl): X,eFiN N , .N,)}. 
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Therefore there exists an X,, ye {1, ..., s} such that YcJ(X / )nYf N | .N , .N, )Cl - - I , 
J(X,)nY*N | ,N 2 .N 0 is an interval and X} e J(X7)n Y*N , .N 2 .N,) . 

It is easy to see that there exists a <5>0 such that J^cJal^ for each J e X ( G ) 
satisfying g(I9 J)<6. 

Let J = < c , d,; . . . ; c„, d„) an interval of X(G) such that p(I , J)<6. Then 
J,, cz J c I , , . Let there for each (N,, N2, N3)e 2F be J (N1 ,N2 .N,)= ( C / , ; . . . ; e„, /„) , 
where e, = a,, f, = max (ai9 c,) for each / e N,, c, = min (fr,, d,), / = b, for each / e N2 

and e, =max (ai9 c,), / =min (6,, d,) for each / e N 3 . Then the system J = 
{J(N|. N2. NO: I(N,.N2.NO is a closed interval in E„, (N,, N2, N3)e ^ } is a finite system 

of non-overlapping closed intervals for which I — (Jnl) = U{J ( N I .N 2 . NO' 

J ( N , . N , . N , ) G | } . We give here only the proof of the last relation. 

Let P = (p\, ..., pn) e I- (Jnl). Then a.^p.-Sb, for each i e { l , ..., n} and there 
exists a ; e {1, ..., n} such that either p]^ max (ay, q) or min (bh d^^p, holds. Let 
N, = {/e {1, . . . , « } : a,<c, and p , ^ c , } , N 2 = {/e {1, ..., n } : d,<p, and d,^pt} 
and N 3 ={1 M } - ( N I U N 2 ) . Since either Pel-(Jnl) or P is a limit point 
of I-(Jnl), there must be N , u N 2 ^ 0 . Thus (N,, N2, N3)e& and PeJ (Nl.N2.N,)-
because a^p^c, for each ieNh d,^p,^6, for each / e N 2 and c^p . -Sd , for 
each / eN 3 . Let there be (N,, N2, Ni)e2F9 let J(N,.N2. NO be a closed interval and 
P = (p,, ..., p„)e J (N|,N3.N3). Then a,^/?,^c,<a,+ rj<b, - rj<6, for each / e N , , 
a,<ai + t]<bi-r]<di^Pi^bi for each / G N 2 and a, .Smax (a,, c,)Sp, ^ 
min (ft,, di)Sbt for each / fN 3 . Therefore Pel. Since N,uN2=£0, there exists 
« ; e {1, ..., n} such that the inequality max (ah cj)<pj<min (bh df) does not 

hold. Therefore P ^ I n t ( J n l ) . Thus P e I - I n t ( J n I ) = I - ( J n I ) . 

Let there be J*N,.N2 .NO= ((JI, ft.; . . . ; g„9 hn) for each (N,, N2, N 3 ) e ^ , where 
t/, = c,, ft, = max (ai9 c,) for each i e N,, gr, = min (6,, d,), ft, = d, for each / e N2 and 
<;, = max (a,, c,), ft, = min (bi9 dt) for each / e N3. Then the system J* = {J*Nl.N2. NO: 
J?N,.N,. NO is a closed interval in En and (N,, N2, N3)e:^} is a finite system of 

non-overlapping closed intervals for which J — (Jnl) = U{J* N , .N 2 . N,>: 

J ( N,. N2. NO 6 / / . 

Let ^/ be the system { T: T is a closed interval for which there exist a n J e J * and 
J(N,. N2. NO e J* such that T = JnJiNl, Nz. N,)} and let T be the system { T: T is a closed 
interval for which there exist an YeS> and J*N,.N2, N l )e J * such that T = 
YnJfNl.N2.NO}- It is evident that °U and Y are finite systems of non-overlapping 
closed intervals of the cardinality not greater than j(pn)

2 and for each Te°U there 

exists a closed interval J(Xi)nY contained in I — Jr] such that Tc= J (X, )nY and 
X, eJ(Xi)nY and for Te Y there exists a closed interval J(X /)n^*N ( ,N 2 ,N 0 and 
X j6J(X ;)nYfNl,N2,N3). According to lemma 3 we have | / (T) |^2"Km(J(X, ) 
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nY)^2nKm(I-Jri) for each Te°U and | / (T) | S2 n Km(J (X , )n Y?NI.N,.NO) = 

2"Km(In-I) for T e V Then we have: / (J) = / ( J n / ) + 2{ / (T) : Tel') and 
/ ( / ) = / ( J n / ) + 2{ / (T ) : Te^Z}. Therefore | /(J) - / ( / ) | = |2{ / (T) : T G V)-
2{ / (T) : T G U}\ ^ 2{ | / (T ) | : T ^ u T } ^ / ( p j 2 2"K m(/r) - J,,)<E. 

The proof of the mentioned theorem 3 of Laczkov ich [2] is based on 
theorem 1 of [2] and on theorem 7 of [3]. 

We give here Laczkov ich ' s theorems 1 of [2] and 7 of [3]. We do not give here 
the definition of the Ck property because this property is not important for 
Laczkovic f f s proof of theorem 3. 

If cp is an additive interval function defined on X(/ ) , where I=(au bt; ...; 
a,, bn) is a closed interval, M. Laczkov ich defines a function fq on / as follows: 
/, (x) = 0 if x = (x\, .., xn) and x, = a, for some ie {I, ..., n) and fq (x) = cp((at, xx; 
...; an, xn)) if x = (xx, ..., xn) and a, <x,^b, for each / e {\, ..., n}. 

Laczkovich ' s theorem 7 of [3] says that fq is differentiable on / if cp is an 
additive interval function defined on X(/) , which has a finite strong derivative at 
each point of /. Theorem 1 of [2] says that for any additive interval function cp 
defined on X(/) the following three assertions are equivalent: 

(i) cp is uniformly continuous on I, 
(ii) cp has the Ck property in / for every k = 0, 1, ..., n — 1, 

(iii) fq is continuous on /. 
It is easy to prove that theorem 5 is a consequence of Laczkov ich ' s theorem 3 

of [2]. 
We give here another proof of Laczkovich ' s theorem 3 of [2] in a way similar 

to the one used in the proof of our theorem 5. 

Theorem 6. (M. Laczkov ich) Let f be an additive interval function on X(I), 
where I is a closed interval. If f has at each point of I a finite strong derivative, then 
f is uniformly continuous on I. 

Proof. Let / be an additive interval function on I which has a finite strong 
derivative at each point of / . If we suppose that / is not uniformly continuous on /, 
then there exist a e>0 and a sequence {Jk}T-i of X(I) such that | / (JO| = e for 

k = 1, 2, 3, ... and lim m(J^) = 0. Let there be Jk = (ax,k, btk; ...; an,k, bn,k) for 

k = 1, 2, 3, .... Then there exists an ie {1, ..., n} such that lim inf (blk — a,,k) = 0. 

Since the sequences {a, k}T i and {b, k}T i for / = 1, ..., n are bounded, there exist 

a sequence {ks}7-\ and numbers at and b, for / = 1, ..., n such that a, = lim a,,ks, 

bj = lim bhks and at = b,. 
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Let H= {(JCI, ..., xn)el: x, = a,}. Since / has a finite strong derivative at each 
point of I, there exist a finite system {Xr = (JC[, ..,, xn): r = 1, ..., s} of points of H 
and 8 such that 0<<5<1, for each re {1, ..., s} and y e X ( I ) , we have ( D / ( X r ) -
| ) m ( y ) < / ( y ) < ( D / ( X , ) + 2

i)m(y) if X r e y and d(y)<6, and Hczu{y r : 

r = l, ...,<?}, where Yr = In(x\- — , x\+ — \ ...; .*;,- — , xn + -—) for r = 
\ 2/1 2/1 2/1 2n/ 

1, . . . , 5. 
Let 6̂ o be the system {J: J is a closed interval for which there exists a finite set 

Kj cz{l, ..., s} such that J = n { y r : reKj}} and let Sf be the system of all minimal 
elements of %. Then Sf is a finite system of non-overlapping closed intervals such 
that u { y r : r = 1, ..., s} = u{J: JeSf} and for each JeS^ there exists an 
r e {1, ..., s} such that J c yr. Let / be the cardinality of Sf. Let rj>0 such that 
y ={(*, , ...,xn)el: ai-r)^xi^a, + r\}a\j{Yr: e = \, . . . , s} and / 2" K m ( y ) < 
e, where K = max {max ( | |D / (X r ) - | | , D/(Xr) + ^|: r = l, ...,s}. 

Since {Jks}7=\ is a sequence of intervals of X(I) such that lim a,,*v = lim 6lAs = a,-, 

there exists a natural m such that Jkfn a Y. The interval Jkm is a union of the system 
$*— {JkmnJnY: JkmnJnY is a closed interval, JeSf) of non-overlapping closed 
intervals. According to Lemma 3, we have | / (J f c m nJny |^2 n K m ( Y r n Y ) ^ 2 n 

K m ( y ) for each JkmnJnYe$* if Jc=yr for r e { l , ..., s}. Therefore we get 

Eg|/(jo=iz{/a^ 
g / 2n K m(Y)<£. But, this is a contradiction and the theorem is proved. 
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Ohni n co v micru 49 
SÍ4 73 BrutisLiMi 

О НЕПРЕРЫВНЫХ ФУНКЦИЯХ ИНТЕРВАЛА 

Еас1ьк^ М т к 

Р е з ю м е 

В статье изучается пространство замкнутых интервалов в п-размерном эвклидовом простран­

стве и доказывается, что аддитивная функция интервала метрически непрерывна, если имеет 

конечную сильную производную. Приводится также другое доказательство теоремы 

М. Л а цкович а. 
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