Mathematica Slovaca

Ladislav Misik
On continuous interval functions

Mathematica Slovaca, Vol. 34 (1984), No. 2, 141--154

Persistent URL: http://dml.cz/dmlcz/128564

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/128564
http://project.dml.cz

Math. Slovaca 34, 1984, No. 2, 141—154

ON CONTINUOUS INTERVAL FUNCTIONS
LADISLAV MISIK

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

In 1966, in the references of my paper ([7]) I announced that my paper entitled
“Uber stetige Intervalfunktionen” was in the press. But I had written only the first
draft of the paper and as I did not find it interesting enough, I did not finish it for
publication. Unfortunaly, I forgot to correct the announcement in the references of
[7]. My first aim for writting the mentioned paper was the study of Darboux
functions on the spaces of intervals. Some statements of the original draft are
introduced in [7].

On January 29, 1981, M. Laczkovich sent me preprints [2] and [3] of his
papers, which he had submitted to Acta Math. Acad. Sci. Hung. Simultaneously, he
asked me for a reprint of my mentioned unpublished paper. I sent him the copy of
the mentioned first draft with some comments concerning the proof of theorem 5 in
the draft. In August, I received a letter from H. W. Pu in which he asked me for the
full reference of my paper “Uber stetige Intervalfunktionen”. I sent him the
English translation of the draft of the paper. In that translation, I made some
corrections and suitable modifications in the proof of theorem 5, as I mentioned in
my letter to M. Laczkovich. Simultaneously, I wrote a letter to H. W. Pu in which
I mentioned that M. Laczkovich in [2] proves that any additive interval function
defined on the space of all closed subintervals of a given closed interval I is
uniformly continuous if it has a finite strong derivative on I ([2], theorem 3). I also
added some comments concerning the relations between the theorem of
M. Laczkovich and my theorem 5.

The facts introduced above were an impulse to my decision to adapt for
publication the English translation which I had sent to H. W. Pu.

1. Let there be n =1 and E, the euclidean n-dimensional space. Let a, <b; for
i=1, ..., n. By the closed interval I = (ay, b:; ...; a., b,) in E, we understand the
set {(xi, ..., x.)€E,: a=x;=b; for i=1, ..., n}. The boundary (the interior) of
the interval I will be denoted by Fr(I) (Int(I)). The intervals I,, ..., I, will be called
non-overlapping iff Int(L)nInt([;)=@ for all i#j, i, j=1, ..., n, where @ is the
empty set. The Lebesgue measure of a Lebesgue measurable set A in E, will be
denoted by m(A). A set expressible as the sum of a finite number of closed
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intervals in E, will be termed a figure in E,. If R is a figure in E, or G is an open
setin E,, then X(R) or X(G) will denote the space of all closed intervals contained
in R or in G, respectively, and X,(R)= X(R)u{0}, Xo(G)= X(G)u{0}.

Lemma 1. Let I and J be elements of X(E.). Let {s.}{ \ be a sequence of
naturals defined as follows: s,=2, si.i=3si+2 for k=1,2,3,.... Then the
difference I—J is either the empty set or there exists a finite system {I,, ..., I} of
non-overlapping closed intervals such that

UInt(L)cI—JcL,JI, and (=s,.
[ [}

Proof. If IcJ, then I—J=40.

If InJcFr(I), then Int(I)eI—-Jcl. Since [ —J=1-(InJ), we can assume
that J<I and I —-J+#0.

Let be JcI and I—-J#0. We prove the lemma for n=1. In this case for
I={(a,b)>{c,d)=1J there holds: (a, c)u(d, bycI—Jc{a, c)u{d, b) if a<
c<d<b; (a,c)cl—-Jc{a,c) if a<c<d=b and (d,b)cI-Jc{d, b) if
a=c<d<b. Lemma 1 holds for n=1.

Let Lemma 1 be true for n. Let I and J e X(E,+,), J < I and I —J+#@. Then
there exist Y, Y,e X(E,) and a=c<d=b such that =Y, X (a,b) and J=
Y.x{c,d). If Y,—Y.#9, then there exists a finite system {Y,, ..., Y.}, of

non-overlapping closed intervals in E, such that U Int(Y,))e Y, - Yo Y, and
[ [}

s=s.. If (a,b)—{(c,d)+#0, then there exists a system J of maximally two
non-overlapping closed intervals in E, such u{Int(T): Te T} <(a,b) —(c, d) c
U{T: TeT). The following cases are possible: a) Y,— Y.#@, (a, b)—{c,
dYy#0,b) Y- Y,#0, (a,b)={c,d) and c) Y,=Y,, (a,b)—{(c, d)#9.

In case a) the system {Y,xXT: i=1,..s, TeT)u{Y.x{(c,d): i=
1,...,s}u{Y,x T: Te T}, in case b) the system {Y; x (¢, d):i=1, ..., s} and in
case c) the system {Y,x T: Te J} is the system {I: i=1, ..., 1} mentioned in
lemma 1.

Letbe o(A, B)=m(A A B), where A A B is the symmetric difference of A and
B for each A, B e X((E.). Then (Xu(E.), 0) and (X(E,), o) are metric spaces.

Lemma 2. Let I={(a,b; ...; a.,b,), 0<e<m(Il), K=max {b —a:

£
i=1,...n), 6=Z——t
! nh 0= ",

VOi(e)c Y, where Oi(¢) is the closure in (X(E.), 0) of the e-neighbourhood of I.

and Y=(a,—6., by+06;...; a,— 8, b,+3). Then

Proof. Let J={(ci, di; ...; ¢, d.) € Oi(g). Let there exist a je {1, ..., n} for
which either ¢;<a,— 8 or b,+ 8 <d,. Let ¢, =max (a, ¢;) and f, =min (b,, d,) for
i=1,...,n. Then
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oI, N=m(I-UnJ))+m(J —(InJ))=
=TT ~a)-[1-e)+[[@-a-TT (-2

bi—fi+e—a+d—f+e- Gy
f,—é’,

=[] (/- e)

- o L ) InJ)e_
>N 0-0 g 2 6-0g= Gz,

However, this is a contradiction and therefore J < Y if Je Oi(¢).

Theorem 1. The space (X,(E.), @) is a metric connected space and (X(E,), ¢) is
a metric locally compact connected space.
Proof. Let I be in X(E,) and 0<ge <m(I). According to lemma 2, there exists

a Ye X(E,)such that uO,(e)c Y. Let {I,}7 | be a sequence of elements in O;(¢)
and let L= (arc, bra; .3 s bur) for k=1,2,3, ... Since |J I, <Y, the
ko1

sequences {a;.}i-1 and {b;«}i-1 are bounded for i=1, ..., n. Therefore there
exists a sequence {k,}7_, such that all sequences {ai.« }=, and {b . }7 for

i=1, ..., nare convergent. Let a; =lim a,« and b, =lim b, fori=1, ..., n. Since
O0<e<m(l), o(I, L)Sefor k=1,2,3, ... and g is continuous, we have «; <b, for

i=1,...,n. Let J={a, by; ...; a,, b,). Then limo(J, L.)=0 and o(I, J)=e¢.

Thus J e —O,(—e) and we have proved that m is a compact set in X(E, ). Therefore
(X(E.), 0) is a locally compact space.

Assume that X(E,) = O,u 0., where O, and O, are two nonempty open disjoint
sets. Then there exist I, Je X(E,) such that I={a,, b,; ...; a., b,)€ O, and
J=(ci,dv; ...; Cu,d)eO, Let J=(tai+(1—=1t)c;, thy+(1—-0)di; ...;
ta, + (1 —t)c,, th,+ (1 —1t)d,) for te {0, 1). The map ¢: (0, 1) — X(E,) defined
as follows: @(t)=J, for each te (0, 1) is continuous. Thus ¢~ '(O,) and @ '(O>)
are two non-empty disjoint open sets in (0,1) for which (0,1)=
@ '(0))u@ '(0,). However, this is a contradiction, since (0, 1) is a connected set.

Since X(E,) is a connected set in Xo(E.), {8} is not open in X,(E,) and
Xo(E,) — {@} is open in X,4(E,), the space X,(E.) is connected. Analogously we can
prove the following theorem:

Theorem 2. Let R be a figure in E,. Then (Xo(R), 0) is a compact metric space.
If Ie X(E.,), then (Xo(I), 0) is a compact connected metric space.
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If R is a figure in E,, the space (Xo(R), 0) is a one-point compactification of
(X(R), 0).

Theorem 3. The space (X,(E.), 0) is a complete metric space in which the base
B={0(e): IeX(E,), 0<e=m(I)}u{Ou(e): €>0) has the following two
properties :

(1) Let Ie X,(E,) and U be an open set for which I € U. Then there exists
a Be®B such that Bc U and 1€ B — B.

(2) Let Be B and let be B= A ,UA,, where A, #0, A,+¥, A\inA,=0 and
CnBcA, or CnBc A, if Ce®B and Cc A, or Cc A,, respectively. Then the
sets AINA, and AinAj; are non-empty. By Al or A; we denote the set of all
points of accumulation of A, or A,, respectively.

Proof. Let {I,}{ . be a Cauchy sequence in (X.(E.), 0). If there exists

a sequence {k,}7 | such that an2 m(L.)=0, then Pfl o(Ii, ) =0 and the sequence
{L}7 | converges to ) in (X(E,), 0).

If there does not exist a sequence {k,}7-, such that !iﬂ m(I, ) =0, then there
exists a positive number K and a natural number N such that K<m(Iy) and

o(l,, I,,)<—12g for all p, g =N. Then I, € Oy, (5) for all p=N. According to

2

lecmma 2, there exists a J € X(E,) such that UO,, (g) < J. It is easy to prove that

{L}7 | converges to some Ie€ X(J).
Now let I € X,(E,), U an open set in X,(E,) and I € U. Then there existsa 6 >0

such that O,(8)c U. If I =0, we choose a Je O,(8)nX(E,) such that m(])<g.
Then B=0,(m(J))eB, Bc U and I=@eB—-B. Let be Ie X(E,). Then we
choose a J e X(E,) such that I cInt(J) and o(I, J)<§. Then for B = 0O,(o(I. J))

we have: Be®B, Bc U and Ie B— B.

Let Be®B and B=A,UA,, where A, and A, are two nonempty disjoint sets
with the following property: CnBc A, or CnBc A, if Ce®B and Cc A, or
C c A, respectively.

First let B=0O,(¢), where Ie X(E,) and 0<e=m(I). We shall prove the
following proposition: There exist two closed intervals J,=(u, . vi1; ...
Uy 1, Vo) and Jo= (U, 2, Vi.25 ...} Un.2, U2y in B and a natural i€ {1, ..., n} such
that J,e A\, J,€ A, either u,, #u 2, .. =uw,forj=1,...,i—1,i+1, ..., n and
ma=w.fork=1,..,norw ,=wu.fork=1,...,nand v, #v..and v, ,=v,>
for j=1,...., i—-1, i+1,..,n and J=(u,vi; ...; Wi,V 13
tu,+ (1=t 2, Vit Uiray Visiay -oo3 Ut Vaa ) € B for all te€ (0, 1) in the first

144



case or Y: = (ul.l, Vit ooy Uimig, Vieras Wity o+ (1 — 1) Viay Ui 1, Vit 1} --
U, \, Va1) € B for all t€(0, 1) in the second case.

We can assume that I'e€ A,. In the case of I€ A, we proceed similarly. Let
I=(a.b:; ...; a,b.)€A, and J=(c, d\; ...; ¢c., d.) €A, Since o(I,J)=
m(Iu])—m(InJ)<e=m(I), there must be Int(InJ)#@. Thus Y=
InJe X(E,). Since o(Y,I)=9o(I,J)<e, Y is in B. Therefore either Ye A, or
YeA..

Let Y={e\, fi; ...; e, f.) € A,. Then e, =max (a;, ¢;) and f, =min (b;, d;) for
i=1, ..., n. If ee=max (ai, ¢;)=a,>c,, then the intervals I, = (tc,+ (1 —t)ei, fi;
e, f>;...; en, f.) belong to B forall t € (0, 1), because Y InI, cIul,cIuJ and
o(I, )=o(I,J)<e for all te(0,1). If I, € A,, the proposition is proved.

If either I,e A, or e,=c¢, and if f,=min (b, d\)=b,<d,, we consider the
following system of intervals I, = (c,, td, + (1 = 1)f; €2, f25 ... ea, f. ) for t€ (0, 1).
Then [,eB for all te(0,1), because YcInlcIulcIuJ and o(I, 1)
o(I, )<e. If I, € A,, the proposition is proved.

*

Ife,=cior [,e Ay, fi=d, or [, e A, and e, =max (es, ¢;) = a,> ¢, then we take
the system of intervals Y.=(c,, di; tc:+(1—1)es, f>; €3, fr;...; e, fa) for
te (0, 1) in consideration and we proceed as we proceed in the case of the systems
{L:1e(0,1)}and {L:te (0, 1)}.Since Y€ A, and J € A,, we get by induction the
existence of some i€ {1, ..., n} such that either Ti={ci, d; ...; ci-i, di-1; €, .}
e fyeArand Ti=(ci, di; ...5 Coia di 15 Gy fis €vts firrs oo’ €ns fu) €Az OF
T.= <C1, di; ...5 Cioiy dicyy Gy fis €ivry fivrs oon €, fn) €A, and T2= (Cl, di; ...
C 1, diis Gy dis €ivts fivrs oo €n,y fn) €A..

If YeA,, it is easy to see that we must proceed similarly to prove the
proposition.

Now let {J: te€(0,1)} or {Y,: te(0,1)} be the system mentioned in the
proposition in the first case, or in the second case, respectively. We shall deal only

with the system {J,: t € (0, 1)} which corresponds to the first case. The second case
can be treated similarly.

The system {J;: te(0,1)} is a compact subset of O,(g) and therefore 6=
inf {o(J., Y): YeO(e)—0i(e), te(0,1)}>0. Let & =inf{o(J, Y):
Y € Oi(¢) — Oi(g)} for te{0,1). Then 0<S8=4, for all te (0, 1). If e=m(I),

then Pe O;(e) — Oi(¢) and therefore 8, =o(J,, @) =m(J). If 0<e<m(I), then
m(I—(InJ))So(I, J)<e<m(I). Therefore there exists a closed interval T such

that TcInJ and m(I- T)=¢. But then Te O,(g)— Oi(¢) and &, =o(J,, T)=
m(J, - T)<m(J).

For each te(0,1) there exists an & =0 such that either O;(&)<=A, and
(05,(e)NA)U(O0;)e" )~ O (€)) £ or Oj,(e.)= Az and (O5,(e)NnA,U(Os (€)= Oi(¢))
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#0 for all £’ >¢, if J € A, or J € A, respectively. If & =0, we put O, (0)=9. If

0< ¢ <4, then there exists an interval J € Oj (¢) such that either Je A,nA’ or
Je AinA; when either J, € A, or J, € A, respectively. This is a consequence of the

compactness of O; (&). If & =0 and if J e A, or J, € A,, then either J,e A,nA" or
J. e AinA,, respectively.

Let a=inf {te(0,1): &, =0, forall ue(t,1)} and B=sup {te (0, 1): &, =0,
for all u € (0, t)}. From the properties of A, and A,, from the definition of & and
from J € A, and J,e A, we conclude that 0S8 < +8=a=1. But then there
exist two numbers r and s such that B=Sr<s=a, J €A, J €A, <9, and
€, < 4,. However, from the consideration in the preceding paragraph it follows that

iNA,#0 and A\nA#0. '

Now let B = Oy(¢), where € >0. There can neither A, = {@} nor A, = {0}. Then
there exist two intervals I and J such that I=(a,, b\; ...; a.,, b.)€ A, and
J={c,d; ...; cu.d.) € As. Two cases are possible: either a) {(tai, th,; ...;
ta,, th,): te(0,1)}c A, or b) {{ta,, thy; ...; ta,, th,): t€(0,1)} — A, #0. We
shall prove that in both cases there exist an interval Y € Oy(¢) and 6 >0 such that
0y(8) = Oy(€) and Oy(8)nA,#0 and Oy(8)NA,+#0.

Let there be {(ta,, th; ...; ta,, th,): te(0, 1)} = A,. Then there exists a t>0
such that t(b,—a)=d -c¢ for i=1,...,n. Let Y. ={(stai+(1-s)ci,
stby+(1=s)d,; ...; sta,+(1—=s)c,, sth,+(1—s)d,) for se(0,1) and a=
inf {s€(0,1): Y.eA\}). If a=1, then Y,e A\nAS, if a=0, then Y,e AInA,
and if 0<a<l1, then either Y,e A NnAj} or Y.€eA[{nA, Since 0<
at(bi—a)+(1—a)(d—c)=d —c for i=1,...,n, there holds: o(@, Y.)=

m(Y.)=]] (at(b~ )+ (1~ a)(d ~c)S[] (d-c)=m(J)<e. Therefore

Y. € Ou(e). There exists a >0 such that Oy, (6) < Oy(e) and Oy, (8)NA#0,
Oy, (8)nA#0.

Let there {{tay, th,; ...; ta,, th,): te(0,1)} —A,#0. Let B=sup {te(0,1):
(ta\, thy; ...; ta., th,) € A,}. Then 0<pB=1. If =1, then Y={(a, b:; .
a,, b,)e AinA} and if 0<pB<1, then either Y=(Bai, Bb:; .
Ba., Bb.) e AinA} or Y={(Bai, Bb:;...; Ba., Bb.) e AinA,. Since o(@, Y)=
Bm(I)<e, Y is in Oy(e). There also exists a positive number & such that
Oy(8)= Oy(e) and Oy(6)nA,#0 and Oy(8)NA,#0.

Let Y€ Oy(e) and 6 >0 such that Oy(8) = Ou(€g), Oy(6)NnA,# 0 and Oy(d)
NA,#0. Let A, =0y(8)nA, and A,=0y(8)nA,. Then Oy(8)=A,UA,,
AnA,=0and A, #0, A,#0. Let Ce B and either Cc A, or Cc A,. Therefore
either CNOy(e) = A, or CnOy(e) = A, and thus Cn Oy () = CnOy(e)N Oy (d) =
AiNOy(8)=A,, or CNnOy(8)c CNnOW(e)NOy(8) = A:nOy(d) = A, if either
Cc A, or Cc A,, respectively. But then there holds: A;nA;#@ and A|nA,#0
and therefore A\nA;#@ and AInA,+#0.

ey
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Thus the property (2) for the base 3B is proved.

We remark that the properties (1) and (2) are important in the study of the
B-Darboux Baire 1 functions (see [4] and [5]).

We note that also the base 8B in X(E,) of all sets U(I, ¢)={Je X(E.): (a, +¢,

bi—¢;...;a,+€e, b,—e)cIc(ai—¢, bi+e€;...; a,— ¢, b, +€)} for [=(ay, b,;
..; an, b,) € X(E,) and 0<e<}min (b,—ay, ..., b, — a,) satisfies the properties
(1) and (2). :

2. There are several definitions of the continuity of interval functions.

The first is as follows: An interval function f is continuous on a figure R in E, (or
on an open set G in E,) iff for each x € R (x € G) and € >0 there exists a § >0 such
that |f(I)| < € holds whenever I € X(R) (I € X(G)), x e I and m(I)< 8 ([10]). If an
interval function is continuous on a figure R (or on G) in this sense, we shall say
that f is pointwise continuous on R (on G).

The second is the following: An interval function f is continuous on a figure
R (on an open set G) iff for each € >0 there exists §>0 such that |f(I)|<e
whenever I € X(R) (I € X(G)) and m(I)<é ([9]). If f is continuous on R (on G)
in this sense, we shall say that f is uniformly continuous on R (on G). However,
this continuity is usually, also by M. Laczkovich, called simply continuity.

In [8] C. J. Neugebauer gives the following definition of the continuity of an
interval function: An interval function f is continuous on a figure R (on an open set
G) iff for each ¢ >0 and for each I ¢ X(R) (I € X(G)) there exists a 6 >0 such that
|f(I) = f(J)| <& holds whenever Je X(R) (J € X(G)) and o(I, J)<§é. Thus f is
continuous on R (on G) in this sense iff f is continuous on (X(R), o) (on
(X(G), 0)). This continuity is introduced also in my paper [6] in theorem 3. In such
a case of the continuity we shall say that f is metrically continuous on R (on G).

An interval function f is called additive on a figure R (on an open set G) iff
ful)=f(I)+f(J) for each nonoverlapping interval I and J of X(R) (I,
J e X(G)) for which IuJ is an interval. Let f be an additive interval function on R
(on G). Then the function f: Xy(R)—(—, ®©) (f: X(G)— (-, ») defined as
follows: f(I)=f(I) for each Ie X(R) (I€ X(G)) and f(#)=0, is an additive
extension of f to Xo(R) (to X(G)).

Theorem 4. Let f be an additive interval function on a figure R (on an open set
G). Then the following properties are equivalent:

a) f is uniformly continuous on R (on G)

b) The additive extension f is continuous at @ in the metric space (Xo(R), 0)
(Xo(G), 0), .

¢) f is metrically continuous on R (on G) and there holds b).

Proof. The equivalence of a) and b) is evident. The theorem will be proved if we
prove that b) implies c).

Let f be continuous at @ in (Xo(R), 0) ((Xo(G), 0)). Let s, be the number
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introduced in Lemma 1. Let £¢>0 Let >0 such that |f(1)|<% whenever

n

Ie X(R) (Ie X(G)) and m(I)< 6. Let I e X(R) (I € X(G)). According to Lem-

ma 1 for each J € X(R) (J € X(G)) for which o(I, J) < d there exists a finite system

{J, .., J.} of non-overlapping closed intervals in X(R) (in X(G)) such that

Omayecri-JeUJs, U IntU)ci—Ic | J, 0=pSs. pSs=2s,
1 [

t p+l1 top+l

I s 5
where U Int(J)and UJ for p=0and |J Int(J)and |J J for s=p we shall
1 [

i p+l opHl

put equal to 0. If InJ is an interval, then f(I)=f(InJ)+ > f(J,)) and f(J)=

f(InJ)+ Z f(J)) and if InJ is not an interval, then f(I)=§:f(],) and f(J)=

o optl

> f(J)). Therefore lf(I)—f(J)|§2|f(J,-)l<£. We put here if(.l,)=0 if p=0

Pt

and Y, f(J)=0if s=p.
c Ty

If I is a closed interval, then according to theorem 2, the metric space (X.(I), 0)
has some properties as interval. Any continuous function on (X,(I), @) is uniformly
continuous on X,(I) and has a maximum and a minimum on X,(I). All continuous
functions on (X(I), 0) form a separable Banach space with the norm [|f]|=
max {|f(J)]: J e X,(I)}, where f is continuous function on X,(I) ([1], p. 397). Any
continuous function on (X,(I), ¢) has the Darboux property according to the base
B which is introduced in theorem 3, thus: for each Be B each Y, Je B each ¢
such that f(J)<c <f(I) there exists Te B such that f(T)=c.

It is well known that any real function of a real variable is continuous on an
interval J if it has a finite derivative at any point of J. We shall prove that any
additive interval function which has at any point of an open set (of a figure) a finite
strong derivative is metrically continuous. We recall the definition of the strong
derivative. Let f be an interval function on an open set G (on a figure R). Then
a number a is a strong derivative of f in X € G (X € R) iff for each € > 0 there exists

W) _ ¢ for each Te X(G) (Ie X(R)), X eI and d(I)<s.

m(I)
where d (1) is the diameter of I.

& >0 such that

Lemma 3. LetJ={a,, b,; ...; a., b, ) be an interval, X =(x,, ..., x.) € J, let f be
an additive interval tunction on J and K a positive number. If |f(I)| = Km(I)
whenever Lis in X(J), X € I then there holds: |f(I)|=2"Km(J) for each I € X(J).

Proof. Let I={ci, di, ...; ¢c., d,ye X(J)and N, ={ie{l, ..., n}: ¢ =x,=d,}.
We shall prove. that |f(1)|=2'Km(J) if the cardinality of N is n—j.

If the cardinality of N, is n, then X e I and therefore |f(I)|=Km(I)=Km(J).
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We shall assume that [f(Y)|=2/Km(J) for each Y e X(J) such that the cardinality
of Ny is n—j. Let the cardinality of N; be n—(j+1). Then there exists an
ie{l,...,n}—N,. There must hold either x;<c or d;<x. If xi<c;, we put
Y. =(c,d; ...; C-1sdi1 @i, C; Curydisr; ...; Coyde) and Yo={ci, d; ...;
¢ v»d a,diycivy, diviy ... ¢o, d,). Then Yo=Y, ul and Y, and I are nonover-
lapping closed intervals. Therefore f(Y>)=f(Y,)+ f(I) and |f(I)| = |f(Y2) — f(Y))|
= |f(Y2)| +f(Y)| = 2'"'Km(J) because Ny, = Ny,=N,u{i}. We treat the case
d; < x; analogously.

Theorem 5. Let f be an additive interval function on an open set G (on a figure
R) which has a finite strong derivative at any point of G (of R). Then f is metrically
continuous on G (on R).

Proof. Let I={(ay, b} ...; a., b,) € X(G) and £ >0. For every X € Fr(I) there
exists a positive number 6(X) such that (Df(X)—3) m(J)<f(J)<(Df(X)+3)
m(J) if J € X(G), X € J and the diameter d(J) of J is less than 6(X), where Df(X)
is the strong derivative of f at X.

Let & be the system of all triple (N, N2, N;) such that { N, N>, N} is a disjoint
decomposition of {1, ..., n} such that NyUN,#@. Let (N,, N;, NJ)e F and let
F(n,. no.ny be the set {(x4, ..., x,): for each i € N, there is x; = q, for each i € N there
is x, = b, and for each i € N, there holds a; = x; = b;}. The cardinality of the system

n—1
Fispo=3, (") 2k,
h=0 k

Let J(X) be an n-dimensional cube in X(G) with the centre X and with the
diameter less than 8(X). Since Fr(I)=U{Fn, n,.ny: (N1, N2, N3) € %} and since
each set Fn, n,.ny for (Ny, N3, N3) e F is compact, there exists a finite system
{X., ..., X.} of points of Fr(I) such that Fn, n,. ny=U{Int(J(X.,)): X, € F(n, n».nu )
for each (N,,N,, N;JJe%. Let K=max {max (|[Df(X)—3|, |Df(X)+:]):
i=1, ..., s} and | be the minimum of the lengths of the cubes J(X;) for i=1, ..., s.

Let &, be the system {J: J is a closed interval for which there exists a finite set
K,={1, ..., s} such that J=n{J(X): i€ K,;}} and let & be the system of all
minimal elements of %,; thus ¥={Je %,: for each T e ¥, there holds: if TcJ,
then T=J}. Then the system & is a finite system of non-overlapping closed
intervals, for Je & there exists a point X, such that J<J(X\) and u{J(X):
X eFn . nongt = U{Jed: JcI(X), Xi € Fin, na.ny) for each (N, N>, N)) e Z.
Let j be the cardinality of the system &.

It is easy to prove that there exists an >0 such that: n <}, n<} min {bh, — a,:
i=1,..,n}, I=Int(J,)cu{J(X): i=1,...,s} and j(p.)’ 2"Km(I,—1,)<Ee,
where J,=(a;+mn, bi—n; ...; a.+n, b,—m)c{ai—n, bi+n; ...; a.—n,
b, +n) =1I,. Now for each (Ni, Nz, N3) €  we define two intervals: Y, n,. ny =
(t, w5 ooy by w,) and Y¥n, naono = (U1, Wi .05 Ua, W), Where tt=a,, u;=a, +1,
v=a-m, wi=aq if ieN,, t=b—n, u,=b;, vi=>b, w,=b,+n if ie N, and
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t=a+n, u=b-n, v=a, w=b if ieN. Let ¥={Yn n n~):
(Ni, N, Nx)e FY and ¥*={Y¥n, no.nvot (N1, N2y N2) e F).
We shall prove that ¥ U%¥* is a finite system of non-overlapping closed intervals

and I -J,=09%, I, - I=u%*.
Let P=(p:,...,p.)el—J, and let N,={ie{l,...,n}: p=a+n}, N.=

{ie{l,...,n}: b—m=p} and N;={1, ..., n} —(N,UN,). Since Pel-J, there
is either Pe I —J, or PeFr(J,). Therefore NyUN,# @ and (N, N>, N.)e . But

then P€ YN, n,.~ny and therefore I— J,,cu@/ Let Peu%. Then there exists
a (N, N>, N))e & such that Pe€ Y(n, n, ~y- From the definition of Yn, ..~y it
follows that a,=p,=b, for each i€{l,...,n} and therefore Pel. For each
i € N;UN, there cannot hold a, + n < p, <b, —n and since N;UN, # ) there holds:

PéInt(J,). Thus Pe -7, J,. This gives that uYycl-J, J, and we have proved that

I—J,,=u6y. The proof of I,, —I=uU%* is similar.
Let T, Ue%u%* and Int(T)nInt(U)#@. Since Int(T)nInt(U)#@ and

Int(I— J,,)nInt(I —I)=0, there can be either T, Ue ¥ or T, Ue ¥Y*. Let T,
Ue¥. Then there exists a (N, N,, N;) and (K, K;, K;) of % such that T=
Y noong =t Uy o by ) and U= Y, ko k0 =(V1, Wi ...} V., w,). Since
Int(T)nInt(U) # @, there exists a point P=(pi, ..., p.) € Int(T)nInt(U). There-
fore there holds: t=p.=uw and v,=p,=w, for each ie{l, ..., n}. Since a <
a+n<b —n<b foreachie{l, ..., n}, there must be t, = v, and u; = w, for each
ie{l,...,n}. Thus (N, N,, N))=(K,, K5, K;) and T=U.

For T, U e %* the proof is similar.

Let $=1[J:J is a closed interval for which there exist a Te¥ and
a (N, N2, N))e F such that J=TNnYn, no.nyp and let $={Y:Y is a closed
interval for which there exist a Te ¥ and a (N;, N;, N:)e % such that Y=
Yi¥n, n..non T}, Then the systems $ and $ are finite systems of nonoverlapping

closed intervals of the cardinality not greater than j-p, and U $=1-J, and

vd=1I,—-1

Let Je ¢. Then there exist a Te¥ and a (N,, N, N;)e F such that J=
TAYw,. nono- Let Y=(t, w5 ...; t, u, ), where t, = a;, u, = a, + 7 for each i € N,
t=b,—mn, u,=b, for each ieN, and t,=a;, and u,=b, for each ie N;. Then
Je Y nonncU{J(X)NY: X €Fn n.ny) and therefore there exists an
ie{l,...,s)suchthat Jc J(X,)nY, J(X.)n Y is an interval contained in I — J, and
X eJ(X)nY.

Let Ye $. Then there exist a Te¥ and a (N,, N», N;)e F such that Y=
TﬁY’(kNl.Nw.Nﬂ- Then Yc Y’(kN,.N’.N‘)CU{J(X,)nY:NLN,AN‘): X € Fn N,_NI)}.
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Therefore there exists an X, je {1, ..., s} such that YcJ(X)NY¥in nonne I, =1,
J(X)N Y¥n,.ns no is an interval and X € J(X)N Y v o no-

It is easy to see that there exists a 6 >0 such that J, cJ < I, for each J e X(G)
satisfying o(I, J)<é.

Let J={(c\, d,; ...; ¢., d,) an interval of X(G) such that o(I, J)<§. Then
J,cJc1,. Let there for each (N, N», N3)€ F be Jiv, nonp=C(er, fi; ...5 €n, fu)s
where e, = a,, f, =max (a;, ¢;) for each i € Ny, ¢, =min (b;, d.), fi = b, for each i € N,
and e, =max (4, ¢;), f,=min (b, d)) for each ieN;. Then the system §=
(T vy ma mn J(N, ~». Ny 18 @ closed interval in E,., (N1, N2, N3) € &} is a finite system

of non-overlapping closed intervals for which I—(JNI)=U{Jn, n no:
Jinin.no € $). We give here only the proof of the last relation.

Let P=(p:, ..., p.) eI —(INI). Then a,=p;=b, foreachie {1, ..., n} and there
exists aje{l, ..., n} such that either p; =max (a;, ¢;) or min (b;, d;)= p; holds. Let
={ie{l,. ,n} a<c and p=c¢}, N,={ie{l,...,n}: di<b; and d =p;}

'md Ni={1,....,n} —(N,UN,). Since either PeI—(JnI) or P is a limit point
of I —(JNI), there must be N\UN,#@. Thus (Ni, N2, N;)€ % and P € J(n,. n.. noy»
because a,=p;=c, for each ie N,, d =p;=b, for each ie N, and ¢;=p, =d, for
each i€ Ni. Let there be (N, N, N))e &, let f(Nl‘Nz_ ~y be a closed interval and
P=(pi, ..., px)€Jin, oy Then a, Sp;Sc,<a +n<b, —n<b; for each ieN,,
a<a+nN<b—n<d=p=b for each ieN, and a=max (a,c)=p=
min (b, d)=b, for each i€ N;. Therefore Pel. Since N;UN,# @, there exists
a je{l, ..., n} such that the inequality max (qg;, ¢;)<p; <min (b;, d;) does not

hold. Therefore P ¢ Int(JNI). Thus Pe I -Int(JnI)=1—(JnI).

Let there be J¥x, n. no= (g1, N1} ...; Ga, hy) for each (N,, N2, N;) e &, where
g, = ¢, h, =max (a;, ¢;) for each i € Ny, g;=min (b, d), h; = d; for each i e N, and
g, =max (a, ¢:), h;=min (b;, d) for each i € Ns. Then the system $ = {J¥n, n,.no:
J¥n, nony is a closed interval in E, and (Ni, N2, N3)e %) is a finite system of

non-overlapping closed intervals for which J—(JnI)=U{J¥n n not
j)(kN,.Nz. Nx)ej*}-

Let U be the system {T: T is a closed interval for which there exist an J € # and
Jine no.no € F such that T=JNJ(n,. n,.~y ) and let V be the system { T: T is a closed
interval for which there exist an Ye$ and J¥, NN €F* such that T=
Y J¥n, n,. ny). It is evident that U and ¥ are finite systems of non-overlapping
closed intervals of the cardinality not greater than j(p.)* and for each T € U there

exists a closed interval J(X;)nY contained in I — J,, such that TcJ(X,)nY and
X, €J(X)NY and for Te ¥ there exists a closed interval J(X;)n Y¥x, n, ~, and
X; € J(X;))N Y¥n, n.ny- According to lemma 3 we have [f(T)|=2"Km(J(X:)
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AY)=2"Km(I—1J,) for each TeWU and |f(T)|=2"Km(J(X,)nYin nono) S

2"Km(I, —I) for TeV. Then we have: f(J)=f(JnI)+Z{f(T): Tel'} and
(D) =fJAD+Z(f(T): Tea). Therefore |f(J)—f(I)|=|(f(T): TeV}—
S{f(T): Te U}| = Z{AD)|: TeULTV} = j(p.)’ 2"K m(I,— J,)<e.

The proof of the mentioned theorem 3 of Laczkovich [2] is based on
theorem 1 of [2] and on theorem 7 of [3].

We give here Laczkovich’s theorems 1 of [2] and 7 of [3]. We do not give here
the definition of the C, property because this property is not important for
Laczkovich’s proof of theorem 3.

If ¢ is an additive interval function defined on X(I), where I={(a,, b,; ...;
a,, b,) is a closed interval, M. Laczkovich defines a function f, on I as follows:
f,(x)=0if x=(x\, .., x,)and x, =a, forsome i€ {1, ..., n} and f, (x) = @({ai, x:;

5, X)) if x=(x,, ..., x,) and a,<x,=b, for each ie {1, ..., n}.

Laczkovich’s theorem 7 of [3] says that f, is differentiable on I if ¢ is an
additive interval tunction defined on X(I), which has a finite strong derivative at
each point of I. Theorem 1 of [2] says that for any additive interval function ¢
defined on X(I) the following three assertions are equivalent:

(i) @ is uniformly continuous on I,

(ii) @ has the C, property in I for every k=0, 1, ..., n—1,

(iii) f, is continuous on I.

It is easy to prove that theorem 5 is a consequence of Laczkovich’s theorem 3
of [2]. .

We give here another proof of Laczkowvich’s theorem 3 of [2] in a way similar
to the one used in the proof of our theorem 5.

Theorem 6. (M. Laczkovich) Let f be an additive interval function on X(I),
where 1 is a closed interval. If f has at each point of I a finite strong derivative, then
f is uniformly continuous on I.

Proof. Let f be an additive interval function on I which has a finite strong
derivative at each point of I. If we suppose that f is not uniformly continuous on I,
then there exist a £ >0 and a sequence {J,}7_ of X(I) such that [f(J.)|Z¢ for

k=1,2,3,... and ll_nl m(J.)=0. Let there be J, ={a, «, bi.x; ...; Qus, bur) for

k=1,2,3,.... Then there exists an i € {1, ..., n} such that lirp inf (b, —a,.,)=0.
Since the sequences {a, . }v 1 and {b, . }x  for j=1, ..., n are bounded, there exist

a sequence {k,}7, and numbers q; and b, for j=1, ..., n such that ¢, =lim q, ,,

b,=lim b, «, and a, = b,.
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Let H={(xi, ..., x,)€I: x;=a;}. Since f has a finite strong derivative at each
point of I, there exist a finite system {X, =(x/, ..., x:): r=1, ..., s} of points of H
and 6 such that 0< 8 <1, foreach re {1, ..., s} and Y € X(I), we have (Df(X,)—
DIm(Y)<f(Y)<(Df(X,)+3)m(Y) if X.eY and d(Y)<8, and Hcu{Y,:
r=1,...,s}, where Y,=In<x.’—%, x.’+56;; e x;—%, x,’,+-2%> for r=
1,...,s.

Let ¥, be the system {J: J is a closed interval for which there exists a finite set
K,={1, ..., s} such that J=n{Y,: re K,}} and let & be the system of all minimal
elements of ¥,. Then & is a finite system of non-overlapping closed intervals such
that U{Y,: r=1,...,s}=u{J: Je¥} and for each Je¥ there exists an
re{l, ..., s} such that Jc Y,. Let j be the cardinality of &. Let n>0 such that
Y={(xi, ... x)el:a—n=xiSa+n}cu{Y.:e=1,...,s}and j2" Km(Y)<
€, where K =max {max (||Df(X,)—3|, Df(X,)+3|:r=1, ..., s)}.

Since {Ji,}:- is a sequence of intervals of X(I) such that lim a; ., =lim b, «, = a;,

there exists a natural m such that J,,, = Y. The interval J, , is a union of the system
F*={J,, nInY: I,,nINY is a closed interval, J€ ¥} of non-overlapping closed
intervals. According to Lemma 3, we have |f(Ji,,nInY|=2" K m(Y,nY)=2"
K m(Y) for each J, ,nInYeg* if JcY, for re{l, ..., s}. Therefore we get
e=fU) = 2{f(U,nInY): I, nInY e $*H =Z{|f(J,n N Y)| : T, ,nINY € $*}
=j2" K m(Y)<e. But, this is a contradiction and the theorem is proved.
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