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Math . Slovaca 41 , 1991, No. 1 , 69—82 

ERROR BOUNDS FOR THE SECANT METHOD 

IOANNIS K. ARGYROS 

ABSTRACT. Error bounds for the secant method eventually better than those 
presented in literature, under the same assomptions. 

I. Introduction 

In this paper we study the iterative procedure 

xn+]=xn- 8f(x„_ l9 xnY
xf(xn) (1) 

to approximate solutions x* of the equation 

fix) = 0, (2) 

where f is a nonlinear operator between two Banach spaces E and E, x_x and 
x0 are two points in the domain off, and 8fis a consistent approximation off'. 

The iterative procedure (1) is called the secant method but it is also known 
under the name of regula falsi or the method of chords. This procedure has been 
known since the time of early Italian algebraists [5] and it was extended to the 
solution of nonlinear equations in Banach spaces by Sergeev [12] and 
Schmidt [11]. Po t r a [6], [7], [8], P tak [9], [10], Dennis [3], Gragg 
and Tapia [4] and others have done similar work on the secant as well as 
the Newton method. 

Here we provide a priori and a posteriori error estimates which are proven 
to be eventually better than those presented in literature [7], [8], [9], under the 
same assumptions. 

Finally, a simple example is provided, where our results are compared 
favourably with the corresponding results obtained in [7] and [8]. 

II. Error estimates for the secant method. 

In the study of the secant method we shall use the method of nondiscrete 
mathematical induction. This method was developed by V. P tak by refining 
the closed graph theorem [9], [10]. 

AMS Subject Class i f icat ion (1985): Primary 65H10 
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Let T denote either the set of all positive numbers, or an interval of the form 
(0, b] = {xeU; 0 < x < b). Let w be a mapping of the cartesian product T2 into 
T and let us consider the "iterates" w{n) of w given for each t = (t]9 t2)eT2 by 

w<°>(0 - t29 w{n + ])(t) = w{n)(t29 w(t))9 n = 0, 1, 2, .... (3) 

Definition 1. A mapping w: T2 -> Twith the above iteration law is called a rate 
of convergence of type (2, 1) on T if the series 

G{t) = _ W<*>(0 (4) 
* = o 

is convergent for all teT2. 
We will need: 

Definition 2. Let E and E be two Banach spaces and let V be a convex and open 
subset of E. Let f: V ^ E be a nonlinear operator which is Frechet-differentiate 
on V. A mapping 5 / : V x V-> L(E9 E) will be called a consistent approximation 
off if there exists a constant H > 0 such that 

W(x9y)-f(z)\\<H(\\x-z\\ + \\y-z\\) for all x9y9zeV. (5) 

The above condition implies the Lipschitz continuity off. In this case we can 
by using a standard argument (see [7], p. 432) easily deduce the following: 

\\f(u) -f(v) -f(v)(u - 17)11 < H\\u - v||2; u9ve V (6) 

and 

| | / (W) _ / ( „ ) _ 8 / ( x , y)(U - i;)|| < H(\\U - V\\ + ||JC - 171| + \\y - 171|) ||U - 171|. 

(7) 

Let C(h0, q0, r0) be the class of all the triplets ( / x09 x_x) satisfying the 
following properties for some p.: 

(Pi) fis a nonlinear operator having the domain of definition V a E and taking 
values in E. 

(p2) x0 and x_, are two points of V such that 

| | x o - x - i l l <qo ? \\x0- x_}\\ < p. (8) 

(P3) f is Frechet-dijferentiable in the open ball 
U = U(x09 p) = {xe V| \\x0 — x\\ < p) and continuous on its closure U. 

(p4) There exists a consistent approximation hfoff such that D0 = 8f(x_,, x0) 
is invertible and 

\\D0~
](8f(x9y)-f(z))\\ < h 0 ( | | x - z | | + | | j - z | | ) for all x9y9zeU. (9) 

70 



(p5) The following inequalities are satisfied: 

llAr'f(*o)ll<>o, (io) 

lto?0 + 2 V V ^ < l , (11) 

/t ^ — (1 - lto<7o ~ V(T - l*otfo)2 - 4Vo) = 
2/i0 

/V (12) 

Using the iterative procedure (1) P o t r a showed in ([7], Thm. 3) and ([8], 
Thm. 1) that if (/, x0, x_{) e C(h0, q0, r0), then the equationf(x) = 0 has a locally 
unique solution x*, and certain error estimates are valid. 

In particular he showed: 
Theorem 1. If(f xo, x_,) e C(/z0, q0, r0), then via the iterative procedure (1) one 

obtains a sequence {xn}, n > 0 of points from the open ball U(x0, //0) which 
converges to a unique root x* of the equation f(x) = 0 in U(x0, //Q) and the 
following estimates are satisfied: 

\\xn -x*\\< (T0(wlT\t0))9 t0 = (q0, r0), n = 0, 1, 2, ... (13) 

| | x „ - x * | | <c{n) = [al+ \\xn- xn_x\\(\\xn_x- xn_2\\ + ||x„ - xn_ J)] 1 / 2 - a0, 

rz=l,2, ... (14) 

\\xn+l-xn\\<w^\t0l " = 0,1,2, . . . (15) 

\\x„ - x*\\ < c0(n) = s0- \\xn - xoll ~ 

[(*0 - II*. - xoll)' - (llx„ " x„-,ll + llx„-, - Xn-lW) llx„ - x,-l ll]1/2, (16) 

where 

и = l , 2 , 

<h = 7 - [(1 - Kq0f - 4/vo]l/2, (17) 
2h0 

so = ̂ f ^ , (18) 

w0(0 = H>O(<7, r) = ' / ! + r \ 2 (19) 

r + 2Vr(-7 + )̂ + ô 

aлzd 

ob(0 = ^b(q, 0 = r - a0 + Vr(q + r) + «o2- (20) 

We can prove the following theorem: 
Theorem 2. Under the hypothesis of Theorem 1 the following inequalities hold 

for n= 1, 2, 3, ..., 
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||x„-x*|| <c,(«) = 
(21) 

= [«„2- i + ll*„ - xn-1II ( I K - i - *.-2ll + II*. - * „ - . II)]12 " a„_ , 

provided that for n= 1,2, ... the following estimate is true: 

^ - " ( t o ) 0 V01 , 

where 

< " '>(/«) + 2 V ^ - '>(/„)(_o + < " "(to)) + «o2 

+ 2 / — , < ^ ~ _ , 1 , (H) 
V H><"- '>(/0) + 2 V ^ - ' ^ o K f t + ^ - ' V o W + Oo2 

sup l - > - " ( У ( ^ ) - Л - » l t ( 2 2 ) 

.v,.v,--eí/ | | x - _ | | + | І J - Z | | 

D„ = Ъf(x„_ux„), (23) 

_„ + , = t"„ = ||лг„ — лг„+ Jl, (24) 
and 

a„(h„, q„, r„) = a„ = — [(1 - h„q„f - Ah„r„\!1, « = 0, 1,2, .... (25) 
2h„ 

Proof. First let us observe that with the constant a0 given by (17) we 
have <J0(r0) = /i0. Hence the closed ball with centre x0 and radius /^ is included 
in U. Consider the triplet (/ x_u x0)eC(h0, q0, r0). We will prove that 
(/ xn- i' x„)eC(h„, q„, r„). It suffices to show that the inequality 

h„q„ + 2jhj„<\. (26) 

Using (9), (15), and (20), we have: 

\\D0\D0-D„)\\ < \\D0\D0-f'(x„_x))\\ + \\D0-\f'(x„_x)-D„)\\ 

<h0{\x0-x„_x\ + ||x_, - x „ _ J| + | |x„-x-_, | | ] 

< l to[2lk-*„-i l l + I k , - x 0 | | + ||x__, -x„ | | ] 

< /.0[2(A, - O b « " "(to)) + % + w_- "ft,)] 

< 1 - hM"~ '>(/„) + 2sjwi"~ "(/0)(a0 + M."" '>(/„)) + a2 < 1. 

(27) 

According to Banach's lemma this implies that 

II(AT'A,)-'II < { i - h 0 [ l k - * „ - , l l + Ik-, -•*„-,II + I k - , - * J I ] } - ' - (28) 

72 



From the identity 

ZVW(x, y) -/'(*)) = (Ar'A,)"1 AT W(x, y) -/'(*)), 
(9) and (28) we obtain 

\\Dn-\bf(x,y)-f'(z))\\ <h\\(DQ-xDn)-'\\(\\x-z\\ + | | y - z | | ) , (29) 

that is 

hn < zn = h0{l - /20[||x0- *„-ill + ll*-i " x„-,ll + ll*„-i - ^ll]}"1 . (30) 

By (27) and (28) we can easily obtain that 

hn < Wr\h) + 2^/H^-,)(/o)(qo + < - | ) ( l 0 ) ) + ao2]-,. (31) 

To show (26), using (24), and (31), it suffices to show (H), which is true by 
hypothesis. 

By applying Theorem 1 to the triplet (f, xn_u xn) we deduce (21). That 
completes the proof of the theorem. 

Note that t>y using (3) we can easily deduce that 

vCC) = w0(t) 

and 

Htf°(0 = WoK"" 2)(0, K - X)(t)l n = 2, 3, .... (32) 

Let us assume that the sequence {w^n)(t0)} is bounded above by q0. Then, using 
(32) and (19) it can easily be seen that (H) is satisfied for all n = 1,2, .... 

We can now improve the results of Theorem 1 through Theorem 2 as follows: 
Proposition 1. Under the hypotheses of Theorem 2 the following are true: 
(a) For all n= 1,2, ..., the triplet (f xn_u xn)eC(zn, qn, r„), 

| |x„ -x* | | <c2(n) = 

= [^2-i + ll^„ — -xw_tll ( l l ^ _ i — ^ „_ 2 | | -h ||-xw — ^ - t l l ) ] , / 2 — ^ , -1 (33) 

and if 

d„>a0, n = 0 ,1 ,2 , . . . , (34) 
then 

c2(n) < c(n), (35) 

where we have denoted 

d„(z„, q„, r„) = d„ = J - [(1 - z„q„f - Az„r„f\ n = 0, 1, 2, .... (36) 
2z„ 
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(b) / / 

an>a0, n = 1, 2, ..., (37) 
then 

cx(n) < c(n) for all n = 1, 2, .... (38) 

(c) Moreover, for all n = 1, 2, ..., l/ze triplet (f xn_x, xn)eC(h0, qn, rn), 

\\xn-x*\\<cM = 

= [el-, + llx„ - xn_ x || (\\xn_x - xn_2\\ + \\xn -xn_x II)]12 - en_ x (39) 

arzd // 
en> a0, n=\,2, ..., (40) 

then 
c3(n)<c(n) for all n=\,2,..., (41) 

where we have denoted 

en(qn, rn) = en = ±- [(1 - h0qnf - 4h0rn]^2, n = 0, 1, 2, .... (42) 
2h0 

Proof, (a) By (30)—(32) it follows that the triplet (f,xn_ x,xn)eC(zn,qn,rn). 
By applying Theorem 1 to the triplet ( / xn_x, xn) we obtain (33). Using (14), 
(33) and (34), the inequality (35) follows immediately. 

(b) Using (14), (21) and (31), the result (38) follows. 
(c) The triplet ( / xn_x, xn)eC(h0, qn, rn), since the proof of (26) can be 

repeated with hn = h0 and h0 dominated by the right-hand side of (31). Applying 
Theorem 1 to the triplet ( / xn_x, xn) we obtain (39). Using (14), (39) and (40) 
the result (41) follows. 

That completes the proof of the proposition. 
Facts. The functions an, dn, and en are decreasing with respect to each of their 

variables separately. Therefore, they are decreasing in the sense that if P is a 
function of the three variables h, q and r, hx < h2, qx < q2 and rx < r2 implies 

P(h2,q2,r2)<P(hx,qx,rx). (43) 

Indeed, we get 

P(hx, qx, rx) > P(h2, qx, rx) > P(h2, q2, rx) > P(h2, q2, r2). (44) 

Note that: 
(a) Inequality (34) holds if 

qn < qo? (45) 

rn<r0, (46) 
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and 
zn<z0, for all n = 0, 1, 2, .... (47) 

(b) Inequality (37) holds if 

qn < qo, 

r„ < r09 

and 
hn<h0, for all n = 0, 1, 2, ... . (48) 

(c) Inequality (41) holds if 

r„ <ro 
and 

qn< qQ9 for all n = 0, 1, 2, .... 

Moreover, since the sequence {xn}, n = — 1, 0, 1, 2, ... converges, there exists an 
integer jY > 1 such that (45) and (46) hold for all n> N. 

With the exception of the scalar case, the cost of computing hn may be very 
high. However, the dns and z^s can be computed. 

By (30) we can easily check that (47) is true if 

11*0-*,.-J + ll*-i - *„ - i l l + ll*„-i - * J I -^2a0 for all n = 0, 1, 2, .... 

(49) 

It turns out that under certain assumptions the conditions (45) and (46) are 
satisfied. 

In particular, we can show the following: 
Proposition 2. Assume: 
(a) the hypotheses of Theorem 1 are true. 
(b) The following estimates are true: 

>o < qo, (50) 
and 

2h0(r0 + q0)< 1. (51) 

Then 

wt"\t0) < w{"-l\t0) < r0, for all n = 1, 2, ..., (52) 
^ < ^ o 

and 
qn < qo-

Proof. It suffices to show (52). The rest will follow from (14), (24) and 
(50). We first show that (52) is valid for n = 1. 
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That is 

H^CO) < rQ9 (53) 

which is true by (19) and (61). 
Assume now that 

-1 = <"-]\to) < Htf- 2 )( / 0) = V2< W^-3 )( l0) = V3. 

We must show that 

w0(v2, v,) = w{
0

n)(t0) < w^-])(t0) = w0(v3, v2), 

which is true since the function w0 is increasing in both variables. 
That completes the proof of the proposition. 
Let us denote by A and B the left-hand sides of (11) and (51), respectively. 

It can easily be seen that 

A < \</>B< 1, 

but both can hold at the same time. 
Let us take for example: 

h0=\,q0= .5andr0 = —; then ^ = .785744285 and B = 1.040816327 

49 

or 

h0=\^q0= .29andr0-- .2, then A = 1.184427191 and B = .98 
or 

h0= 1, q0 = r0= . l , thenA (= .732455532 and B = .4. 

Furthermore, we can produce the following a posteriori error estimates on 
the distances ||x„ — x*||. 

Theorem 3. Assume: 
(a) the hypotheses of Theorem 2 are true 

and 
(b) the linear operator 8/(x, y) is such that 

mx,y)(x-y)=f(x)-f(y), for all x,yeV. (54) 

Then the following inequalities are true: 

c2(n)< \\xn + x-xn\\ (55) 
and 

\\x -x*\\< Uri) = 1 ~ 2hollX° ~ *"" ~ V 0 ~ 2HJX° ~ X j ) 2 ~ ^o l l^o" 1 / ^ ) 
2/Í 0 
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11=1,2, . . . . (56) 

Proof. Using (30) and (33) it can easily follow that 

^ ^ ^ I - Z t o t l l x o - ^ I I + I l * - , - * * ! ^ ^ 

which implies (55) for sufficiently large n. By reordering the sequence {*„}, 
n = — 1, 0, 1, 2 we can assume that (55) is true for n = 1, 2, Let us consider 
the linear operator D, given by 

D = 5f(x*, xn). (57) 

We will show that D is invertible for all n> N. Indeed, we have by (9), (15), and 
(27) and (55) for n > N, 

\\D0~'(f'(x0) - D)\\ < h0[\\x0 -x*\\ + \\x0 - x„\\] 

<h0[2\\x0-xn\\ + \\xn-x*\\] 

<h0[2\\xQ-xn\\+c2(n)] 

<h0[2\\x0-xn\\ + \\x„+i-xn\\] 

< Ao[20*o - a0(w^(t0)) + wP(t0)] 

< 1 - h0[w<,n)(t0) + qQ + 2 Jwi"\t0)(q0 + w™(t0)) + a2
0] < 1. 

According to Banach's lemma it follows that the linear operator D is invert­
ible for n > N and that 

IKAr'^r'H < [1 " K(2\\x0 - x„\\ + \\x„ - x*\\)]-\ (58) 

Using the identity 

D(x„-x*)=f(x„), 

(57) and (58), we obtain 

\\x„-x*\\<\\(D0'D)-i\\-\\D0*f(x„)\\ 

< [1 - /.0(2||x0 " *.H + II*. - **H)Y1 ll-5o-7(*,)ll. (59) 

The inequality (56) follows now from (59). 
That completes the proof of the theorem. 
We now compare the estimates c4 and c0. 
Proposition 3. Under the hypotheses of Theorem 2 the following inequality is 

true: 

c4(n) < c0(ri), n= 1, 2, ..., (60) 
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where c4 and c0 are defined by (56) and (16), respectively. 
Proof. Using the identity 

f(x„) =f(x„) -f(x„_l) + hf(x„_u x„_2)(x„ - x„_,) 

and (7) we obtain 

||ATf(x„)|| <hodlx , -x„- , l l + l l x , - 2 - * „ - i l l ) I k . - * „ - , l | . (61) 

Moreover, it can easily be seen that 

1 - 2h0||xo - x„\\ > 2h0(s0 - \\x„ - xoll). (62) 

The estimates c4(n) and c0(n) can be written, respectively, 

cA(n) = ||D0-7(xJII{2[l - 2h0\\x0 - x„\\ + ((1 - 2h0||xo - *„ll)2 -

-^o l l^o- 1 / ^ ) ! ! ) 1 2 ]} - 1 (63) 

and 

Coin) = h0(\\xn- x,.-ill + II*,.-i -x , . -2ll) lk. - x„_l\\{h0[(s0- \\x„- x0\\) + 

+ ((so - \\x„ - x0||)
2 - (||x,7 - x„_ , || + ||x„_ . - x„_2||) ||x„ - x„_, II)12}"1. (64) 

Using (61) and (62) it can easily be seen that the numerator of (63) is smaller 
than or equal to the numerator of (64). Whereas the denominator of (63) is 
greater than or equal to the denominator of (64). The estimate (60) now follows. 

That completes the proof of the proposition. 
Moreover, we can show: 
Proposition 4. Assume 
(a) the set Cx(zk, qk, rk) denoting the class of all triplets (f xk_u xk)e 

eC(zk, qk, rk) satisfies the estimates (50) and (51) for some fixed k, k = 0,1,2, .... 
(b) For k = 0, 1,2, ... the sequences {zk} and {qk} are decreasing. 
Then for every fixed k, k = 0, 1, 2, ... the following inequalities are true 

\\x„-x*\\<Gk(w^(tk)), with tk = (qk,rk) (65) 

and 

o i .« ( ' * ) ) < obOCCo)) for all n = k,k+\,..., (66) 

where we have denoted 

..•*(/) = nk{q, r) = r\q + "\ (67) 
r+2y/r{q + r) + dk

2 

and 
ak{t) = r-dk + Jr{q + r) + dl (68) 
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Proof. The result (65) follows immediately by applying Theorem 1 to the 
triplet (f9xk_X9 xk)eC(zk9 qk9 rk) a Cx(zk9 qk9 rk)9 for each fixed k9 k = 0, 1, 2, .... 

By (3) we have for k = 0, 1, 2, ... 

°o«(to)) = cJ0(w0(pX9 p2)) with P] = w<"-2)(t0)9 p2 = w!>"-"(t0) (69) 

and 

Cyk«\h)) = CTk(wk(P39 p4)) With p3 = (w£-2Xtk)9 P4 = Wl"~]\tk) 

n = k+ l , k + 2, .... (70) 

The functions w09 wk9 <T0, ak are increasing in both variables. Therefore (66) 
is true if 

wt\t0) > wJT \tk)9 m = k9k+\9.... 

The above inequality is true as equality for k = 0. 
Assume 

w(
0

m)(t0) > w\T\ for fixed k = 0, 1, 2, ... and all m = k9 k + 1, ... . (71) 

Then we must show 

* • _ « - "M, wirKto)) = <+°(lo) > <+l\tk+,) = 

= H w O v f t - , 0 ^ , ) , <+\(t* + ,)) (72) 

or, since 

wt + %k) > < + ,,(t, + 1) > wftVV* + .), 

we must have 

H>r+1)(lo) > wMm-l\tk), W{m)(tk))9 

which is true by (71) and the fact that the functions w0, wm are increasing in both 
variables. 

That completes the proof of the proposition. 
A lower bound on \\xn — x* || can be given by the following: 
Proposition 5. Under the hypotheses of Theorem 2 the following inequality 

holds for n = 1, 2, ... 

||x„_i - x * | | > q9 

where q is the positive root of the equation 

ltolKIV'A,-,)-1!! k,_,-x*||2 + 
+ (l + | | (D o - | o n _ 1 ) - , | | | | x „_ 1 -x„_ 2 | | / z 0 ) | | x n _ 1 -x* | | - | | x „_ l -x„ | | =0 . 
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Proof. Using the identity 

xn-xn_x = x* -xn + (D^D^r'D^nx^-nx^^-D^^-x^,)], 
(7) and the triangle inequality, the result follows immediately. 

That completes the proof of the proposition. 
Note that q depends on \\(D0~

]Df1_])~
] ||, which in practice can be replaced by 

the right-hand side of (28). Denote by q the resulting quantity. Then we will 
certainly have 

||x/7_, — x*|| > q > q for all n = 1, 2, — 

III. Applications 

Let us now compare the estimates (33) with (14) and (56) with (16), on a very 
simple example. We consider the quadratic equation 

f(x) = x2- 16. (73) 

Take x_, = 3, and x0 = 3.2 and 5f(x, y)(x — y) =f(x) — f(y). Then h0 = —, 
62 

q0 = .2 and r0 = .92903225. 
The condition (11) is now satisfied, since 

h0q0 + 2y/hor0= .806451609 < 1. 

It is easy to see that (f x_,, x0)eC(h0, q0, r0). 
The secant method for (73) becomes 

. v „ + l - * " - | X " + 1 6 , n = 0, 1,2, .... 

Note that x* = 4. 
We can now compute 
.v, = 4.129032258, 
x2 = 3.985915493, 
.Y3 = 3.999776048, 
x4 = 4.000000395, 
•Y5 = 4, 
a 0 =1.8 , 
d0 = a0, 
d, = 2.461392145, 
cU = 3.014220162, 
d, = 3.092844865, 
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and 

d4 = 3.099887432. 

Using the above values, (33), (14), (56) and (16), we can tabulate the follow­

ing results f within a precision of - 10" 

V 2 

n error 
error 

estimates (33) 
error 

estimates (14) 
error 

estimates (56) 
erroг 

estimates (16) 

1 
2 
3 
4 
5 

.12903226 

.014084507 
2.23952-Ю"4 

3.95-Ю~7 

ì . i . ю - " 

.27096774 

.030974961 
3.608997-Ю"4 

5.Ю8-Ю-7 

1.4.10-" 

.27096774 

.042129881 
6.042855-Ю~4 

8.777498-Ю-7 

2.46-10-8 

.25675941 

.02443182 
3.8946524-Ю"4 

6.8693502-Ю"7 

1.9.10-" 

.27096774 

.03492694 
4.945036-Ю"4 

7.182-lO"7 

2.0.10"" 

The above table indicates that our estimates (33) and (56) are better than the 
corresponding ones given by (14) and (16), respectively. Note, however, that the 
additional information (computation) IIA^/OOII *s u s e d by (56). 

Similar favourable comparisons can be made between the lower bound 
obtained here and the corresponding one in [[8], formula 12]. 

The above strongly recommends the usefulness of our estimates in numerical 
applications. 
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