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A NOTE ON THE EXTENSIBILITY OF STATES

SYLVIA PULMANNOVA

In the paper the extensibility of states from a Boolean subalgebra of a logic to the
logic is treated.

1. Notation and kann results

Let (L, <) be a partially ordered set (poset) with the least element 0 and the
greatest element 1. An orthocomplementatibn on L is a mapping a~>a* on L such
that (i) (a*)* =a, (iii) ava™ exists and is equal to 1, and (iii) a<b if and only if
b*<a". A poset admitting an orthocomplementation is called orthocomplemen-
ted. A pair a, beL is said to be orthogonal, denoted alb, if a< b*. An
orthocomplemented poset is called an orthomodular poset if (i) a Lb implies that
av b exists, and (ii) a< b implies that thereisa d e L suchthatd Laand b=avd.
An orthomodular poset is called a logic if v{a;, i=1, 2, ...} exists provided a; La;,
i+j,i,j=1,2,.... A logic which is a lattice, will be called a lattice-logic.

Let L be a logic, a mapping m: L—[0, 1] satisfying (i) m(1)=1, (ii) if {a,
i=1,2,...} are pairwise orthogonal, then m(v.a,)=2m(a,) is called a state. The
set of all states is strongly convex, i.e. if m;, i=1, 2, ... are states, then m(a)=
Zitm;(a) (ae L), where 0y, <1, I, =1 is also a state. A set of states is said to be
quite full for L if {me M: m(a)=1} ¢ {meM: m(b)=1} implies a<b [1]. A set
M of states is said to be unital for L if for every ae L, a+ 0, there exists a state
m € M such that m(a)=1[2]. If M is quite full for L, then it is also unital for L [1].

A subset Lo < L containing 1 is called a sublogic of L if it is a logic with the same
ordering <, orthocomplementation L and the operation v as L. If the sublogic L,
of L is a Boolean o-algebra, it is called a Boolean sub-o-algebra of L. Two
elements a, b € L are said to be compatible, written a < b if there are elements a,,
bi, c € L mutually orthogonal and such that a=a,vc, b=b,vc. A logic L is
a Boolean o-algebra if and only if a<> b forany a, b € L. If L is a lattice-logic, then
a collection of elements of L are mutually compatible if and only if the collection is
contained in a Boolean sub-g-algebra of L [3,4]. A Boolean sub-g-algebra is
called maximal if it is not contained in any other Boolean suib-g-algebra.

177



An element g e L is called an atom if b<gq, beL implies b=0or b=q. A
Boolean o-algebra is discrete if it is generated by an at most countable set of
atoms.

An observable x on the logic L is a 0-homomorphism from the Borel subsets
B(R) of the real line R to L. We denote the range of x by R(x). R(x) is a Boolean
sub-o-algebra of L. If x is an observable and u is a Borel function on R, we define
the observable u(x) by u(x)(E)=x(u"'(E)) for all E€ B(R). If x and y are
observables, then R(x) = R(y) if and only if there is a Borel function u« such that
x = u(y)[5]. The spectrum o(x) of the observable x is the smallest closed set C<= R
such that x(C)=1. An observable x is bounded if its spectrum o(x) is bounded.
Observables x, y on L are compatible, written x &y if x(E)< y(F) for any E,
Fe B(R). Let X be a set of observables and y be any observable ; we shall write
yo X if yox for every x e X. If x is an observable and m is a state, then the
expectation of x in the state m is m(x)= [Am(x(dA)) if the integral exists.

A logic is countably generated if every Boolean sub-g-algebra of it is countably
generated. If L is a lattice-logic which is countably generated, then the following
theorems hold true [3], [6].

Theorem 1. A subset of L is the range of an observable if and only if it is
a Boolean sub-o-algebra.

Theorem 2. {x,: a € A} are compatible (i.e. x, < xs, a, € A) if and only if
there exist an observable x and Borel functions u, such that u,(x)=x., a€A.

Let L(H) be the logic consisting of all closed subspaces of a complex, separable
Hilbert space H with dim H=3. It is known that L (H) is a countably generated
lattice logic. By the Gleason theorem [7], [4], each state on L(H) is of the form
m(a)=Zt(@:, a) (a e L(H)), where 0<t,<1,3¢#,=1and ¢, € H, ||@||=1. The
set of all states is quite full for L(H). The (bounded) observables on L(H) are in
a one-to-one correspondence with the (bounded) self-adjoint linear operators on
L(H). Let us denote by O the set of all bounded observables on L(H). Then O is
the self-adjoint part of the von Neumann algebra B(H) of all bounded operators
on H. Any operator x € B(H) can be written in the form x = x, +ix,, where x,,
x,€ 0. For any x, ye 0, x <y is equivalent with xy=yx. If A =« B(H) is a von
Neumann algebra, then the set of all projection operators in A is a sublogic of
L(H). In the sequel we shall need the following theorems [8, p. 68, Ex. 9 and 10].
We recall that the ultraweak topology on B(H) is defined by the system of

seminorms: y € B(H), y'—>'2(ytp,-, w,»)l, where {@:} and {y:} are sequences of
i=1
vectors from H such that > ||g]|* < and 3 ||yi]|* < .
i=1 i=1

Theorem 3. Let A c B(H) be a von Neumann algebra and g a positive linear
functional on A. The restriction of g to the logic L(A) consisting of all projection
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operators in A is a o-additive state on L(A) if and only if g is ultraweakly
continuous on A and g(1)=1.

Theorem 4. To ewery positive, ultraweakly continuous linear functional g on
a von Neumann algebra A — B(H) there exists a positive, ultraweakly continuous
linear functional g~ on the algebra B(H) such that /A =g and g~ (1)=g(1).

2. Extensibility of states

Theorem 5. Let L be a logic such that the set of states M is unital for L. Let B be
a discrete Boolean sub-o-algebra of L. Then any state on B can be extended to
a state on L.

Proof. Let {a,, a., ...} be the set of all atoms in B. If m is a state on B, let us set
m*(b) = Z.m(a;)m(b), b € L, where m; are states on L such that m;(a;)=1 for
i=1,2,.... Then m*(1) = m(va) = Zm(a;)=1, because the atoms of B are
mutally orthogonal and v.a;=1. From this it follows that m* is a state on L.
Clearly, m*(a;)=m(a;), i=1,2, ..., which implies that m*(b)=m(b) for any
beB. Q.E.D.

We shall say that the sublogic L, of L has the extension property if any state on
Lo can be extended to a state on L.

Theorem 6. Let L be a lattice -logic and Iet the set of all states be unital for L.
Moreover, let any state on L have the following property: m(a)=1, m(b)=1
(a,beL) imply m(aanb)=1. Then a finite sublogic L, of L, which is indeed
a finite orthomodular sublattice of L, has the extension property if and only if it is
a Boolean subalgebra of L.

Proof. If L, is a Boolean subalgebra, it has the extension property by
Theorem 5. Now let L, have the extension property. Then to any state m on L,
there is a state m* on L such that m(b)= m*(b) for any b € L,. From this it follows
that m(a)=1, m(b)=1, a, b € Lyimply m(a Ab)=1 for any state m on L,. On the
other hand, the restriction of a state m on L to L, is a state on L,. From this it
follows that the set of states on L, is unital for L,. By [2, Theorem 4.3}, L, is
a Boolean algebra. Q.E.D.

Theorem 6 for the special case L = L(H) is proved in [2, Theorem 5.3].

Theorem 7. Any Boolean sub-o-algebra of the logic L(H) has the extension
property. ‘

Proof. Let B< L(H) be a Boolean sub-o-algebra. Let B” be the bicommutant
of B in B(H). A theorem of Bade [9], [10, XVII, P. 286] proves, that for
a complete Boolean sublattice C of L(H) the following holds:

C={Pe(C": Pisprojection operator}.
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As H is separable, any Boolean sub-o-algebra of L(H) is a complete lattice [11].
From this it follows that B is the logic of all projection operators in the von
Neumann algebra B”. For any x € B” we can set x = x; +ix,, where x,, x,€ B” are
self-adjoint operators such that R(x;), R(x;) =B [8]. Let m be a state on B. We
define a functional f on B” by setting

f(x)= [ tm(xi(dD)) +i[ tm(xx(at))

for x € B", x = x; + ix,. We shall show that f is a positive linear functional on B". It
is enough to show the linearity of f on the set of all self-adjoint operators in B". Let
X1, X26 ONB”. As R(x,) and R(x,) are contained in the Boolean sub-o-algebra
Bc L(H), x, and x, are compatible. Let R(x;) v R(x;) be the minimal Boolean
sub-g-algebra of L(H) containing R(x,) and R(x;). Then R(x,)vR(x;)=B. Let
X, be an observable with the range R(x,)= R(x,)VvR(x.). There are real Borel
functions u; and u, such that x; = u,(x,) and x,=u.(x,). For any a, f € R then

flax, + b’x;) = [ tm((ax, + Bxz)(dr)) = [ tm(aui(xo) + Bua(x0)(d1)) =
= [ (au (1) + Bux())m(xo(d)) = @ [ us()m(xo(dt)) + B | ua(t)m(xo(dr)) =
=a [ tm(x,(dt)) + B [ tm(x.(dt)) = af (x1) + Bf(x2).

By Theorem 3, f is ultraweakly continuous and by Theorem 4 there is a positive,
ultraweakly continuous extension f of f to B(H). Then f/L(H) is a o-additive state
on L(H)and f/B=f/B=m.

Q.ED.
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3AMEYAHHE O INMPOOOJIXEHUU COCTOSAHHUM
Coinusi [lynmaHHOBa

Pe3oMe

B naHHO# cTaThe MCCIEfyeTCs BO3MOXHOCTbL NMPOJOJIKEHMS COCTOAHMHA M3 GyJieBOH mopanreOpbl
HaHHOM JIOTHKH Ha BCIO 3TY JIOTHKY.
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