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ABSTRACT. The problem of computing the mean squared error (MSE) of the
best linear predictor (BLP) in finite discrete spectrum with an additive white noise
models(FDSWNNMs) for an observed time series is considered. This is done under
the assumption that the corresponding vectors in models for finite observation of
this time series are not orthogonal.

1. Introduction

We shall consider the problem of prediction of time series which is based on
modeling time series by linear regression models. In this approach the best linear
predictor (BLP) minimizing the mean squared error (MSE) of prediction, can be
found. This method is known in an engineering literature as kriging, see [2], [1],
[5], and [6]. For a given time series data we can use different regression models
and thus the problem of computation of the MSE of the BLP in different models
arises.

We shall compute the MSE of the BLP in a finite discrete spectrum with an
additive white noise model (FDSWNM). These models were already studied in
[6] and [7], where it was assumed that the vectors which we get from functions
generating these models are orthogonal. Models with orthogonal vectors can be
used in many practical applications of time series theory, but it is necessary to
study also the situation where the model vectors are not orthogonal.
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An FDSWNM for a time series X (-) is given by, see [6],

l
X(t) =) Yii(t)+w), t=12..., (1)

where Y = (Y1, Y5, ...,Y]) is a random vector with E[Y] = 0 and with an covari-
ance matrix Cov(Y) = diag(c?). v;(+), 4= 1,2,...,l, are given known functions,
w(-) is a white noise with a variance D[w(t)] = 02 which is uncorrelated with
random vector Y = (Y1,Ys,...,Y])".

As an example we can consider a time series Y (-) with a finite discrete spec-
trum, see [4]. This can be written in the form
1/2
Y(t) =) (UicosAt+ Zsin\it) ,  t=1,2,..
i=1
where Y = (Uy,Us,...,Uij2,21,22,...,2)5)" and where Ay,... )/, are some
frequences from (0, 7). Let D[U;] = 02 and D[Z;] = k2. Then the covariance
function R(:,-) of Y'(-) is
1/2

R(s,t) = Z (01-2 cos \;s cos \it + k2 sin \;ssin Ait) s,t=1,2,....
i=1

*

Time series Y (+) is covariance stationary if D[U;] = D[Z;] = 02,i=1,2,...,1/2,
and its covariance function in this case is given by

1/2
R(s,t):Zafcos)\i(s—t), s,t=1,2,....
i=1

Realizations y(-) of time series in this example are simply linear combinations of
goniometric functions, but this is not realistic in practise. More realistic situation
is that a realization of a white noise is added to this linear combination and thus

we get the FDSWNM. This approach is similar to that used in a classical linear
regression model.

Time series X (-), given by FDSWNM, have covariance functions R, (-, ) given
by

l
Ry(s,t) =0%0s¢ + Y _otvi(s)ui(t),  st=1,2,..., (2)
=1
where v = (02,0%,...,0?)" € (0,00) x (0,00)! = T.

For this model we get for a finite observation X = (X(1),... ,X(n)) of X(-)
the model

X=VY +w,
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where the n x | matrix V = (v1,...,v;) has columns, n x 1 vectors, v; =
(vs(1),... ,vi(n))', i=1,2,...,1. In this model E[X] = 0 and covariance matri-
ces ¥, v € T of X are positive definite and are given by

! l
¥, =d’l+ Zafvivé = Zcr?Vi,
i=1 i=0
where Vo = I, V; = v;vl, with ranks (V;) = 1,4 =1,2,...,1, and 0 = o2.

It should be remarked that for time series Y (-) which was considered in the
preceding example the vectors v; = (cos A\;1,...,cos \;n)" and v; = (sin AL, ...
...,sin \;n)’ in general are not be orthogonal.

According to the classical theory, see [2], the best linear predictor X*(n + d)
of X(n + d) is given by

X*(n+d)=r2'X, (3)

where r, = Cov, (X; X(n + d)) and

MSE,[X*(n+d)] = E,[X*(n+d) — X(n + d)]*

4

=D, [X(n+d)] —r, 5, 'r,. @

In [6] the explicit expressions, as functions of vectors v; and variances o and

02,i=1,2,...,1, for X*(n+d) and for MSE, [X*(n + d)] are given under the

assumption that the vectors v;, ¢ = 1,2,...,[, are orthogonal. In this article we

derive these expressions for [ = 2 and under the assumption that the vectors vy,
v are not orthogonal.

2. Mean squared error of the BLP in a nonorthogonal
finite discrete spectrum white noise model

The following lemma gives a basic result for FDSWNMs with two components
in the case when the vectors v;, vg are not orthogonal. Some other useful results
on matrix algebra can be found in [3].

2

LEMMA 1. For any n X 1 vectors v1, v2 and any real positive numbers o<, af

and 0% we have
1

-1
(01 + ov1v] + oFvavh)” = = (I

_diVi+dyVa — dida(v1,v2)Vi2 (5)
1 — dida(v1,v2)? ’
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where
-1
di = (o%/o? + |uil®) ™,
Vi = vy, Vig =v1v) + vov],

(v1,v2) =vivy and ||vZ||2 = (v3,v4), i=1,2.

Proof. By a direct computation we can verify that, see [6],

2 A=1y o A—1
_ 03AT v A

A 2 /I\—1 :A—l
(4 +03v305) 1+ o2vhA~1vy

for any positive definite matrix A. Let A = 021 + o?v;v], then we have
- _ 1
Ah = (0®1 + ofvyv)) 7t = S —din),

and

2 2, 0 2, ry\—1
02 (0?1 + o2v1v] + o2vvh)

(03/0*)(I — diVi)vavp(I — di V1)
1+ (02/02)vh(I — d1V1)v,
(03/0°)(Va — di(v1,v2)Vi2 + d3 (v1,v2)2 V1)
1+ (05/02)(”’02“2 - dl(vly'UZ)Q)

=T —dV; —

—I—dV; -

After some computation we get
1+ (03/02)(””2”2 — dy(v1,v2)?)

2 /52
=1+ (02/02) ||lva|? = (¢2/0? %
(03/0%) llv2ll” — (03/ )H(U%/UQ) E
(1+03/0%) lvz]|* = di(03/0%) (v1, v2)°

(1+03/0%) [[va]|* (1 — drda(vs, v2)%)

(vly '1)2)2

and thus
(03/02)(Va — dy(v1,v2)Viz + d (v1,v2)% V1)
1+ (02/02) ([lvall* = da(v1,v2)?)

_ daVa — dida(vy,v2)Vig + dida (v, v2)2 V4
B 1 — dyda(v1, v2)? ’
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Using this result we get

a*(aI + ofviv} + Ugvgvé)_l
daVa — d1da(v1,v2)Vag + d2da(v1,v2)2 V4
1 — dida(v1,v2)?
diVi + daVa — dida(v1,v2)Viz
1 — dida(v1,v2)?

=I-dV; -

=I-
and the lemma is proved. O

This result can be used for computing the BLP, X*(n + d), and its MSE in
an FDSWNM. In such a model we have, using (2) and (5),

et =

2
= (Z Z—gvi(n + d)’Ui>l (I _ 1] + davyvy — dida(v1, v2) (0105 + vz”i))

p 1 — dida(v1,v2)?

and, after some computation, we get

05 = ot dl+ Do+ it
v<=v - O' 1 0 by
2 !/
o1 di ”111” v} + da(vy,v2)v5
- d
2U1(n+ ) 1 — dida(v1,v2)2
_%v (n+d) dida(v1, ) ([Jo1])? v + (v1,v2)v})
o 1 — dyda(vy,v2)?2
2

da [|ve|” v + di (v1, v2)}
1 — dyda(v1,v2)?
dyda(v1,v2) ([Jva]|® v} + (v1, v2)vh)
1 — dida(v1,v2)?
1—dy [Joi])? o
1 — dida(v1,v9)%

1—dyva|®
1 — dida(v1,v2)? 2

g
—0_—3’1)2(71 + d)

o3
—E’U ( +d)

2
o
= —ém(’n +d)

02
73
21) 2(n + d)

Using the expression

2 o?
1—d; ||vil| :?di, 1=1,2, (7)

i
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which follows from (6), we get

dy (vi(n + d) + da(vy, v2)v2(n + d) ,

/2—1 —
Tvsw 1 — dyda(v1,v2)? ! (8)
L a@o+d+d,umn+d)
1 — dida(v1,v2)? 2

and this expression can be used by computing the BLP, X*(n + d).

To compute the mean squared error of this predictor, which is given by (4),
we use the expression

D,[X(n+d)] = o? + Z o?v2(n+d), (9)

i=1

and for 7/, ¥ 1r, we get, using (2) and (8),

dy (vl(n+d) +d2(l)1 '112)’U2(n+d
/2—1 — )
v T 1 — dida(v1,v2)? (;U vz(n—f—d)(vl,vl))

dz (v2(n + d) + dy (vy, v2)v1(n + d))
" 1 — dydy(vy,v2)? (ZU vi(n + d)(vz,v1)>

After long and tedious computations we can write

7"/ 2—1
21— di [Ju1]® = da(v1,v2)? lvi) =% + dida(v1,v2)?
_U ~—'U1 (n+d) ” “ I 1 _ d]_dQ(Ul 02)2 ! ! )
2
+ 20201 vl(n + d)va(n + d) (v, v2) X

L 1-di o1]| = da JJvel|® + dida Jlo || Jlva))?
1 —dyda(v1,v2)?
1 — dy [|va||® — di(v1,v2)? [Jv2]| 2 + dada(v1, v2)?
1 — dida(v1,v2)?

2‘73 2 2
+0o FUQ(n-f—d) [|v2]]
(10)
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Thus, using (4), (9) and (10), the expression for the MSE, [X*(n + d)] can
be written as

MSE, [X*(n+d)] =
=0’ 40 -—vl(n+d) X

1= of v “2 — da [loal® = da(v1,v2)? 0|2 + dada(vy, v2)?
0'2 1 1-—- d]d2(U1,U2)2

-2 201 93 (n + d)vz(n + d)( ) x
o 0_2 0_2’01 n (PARL) V1, V2

o L1=di [v1]]> = da ||va||® + dadz |Jv1 || [Jva))?
1 — dyda(v1,v2)?

2‘7% 2 2
— o —3va(n+d) 1-—llv2||

o L1—do lv2]|? = di(v1,v2)? Jval =2 + dida(v1,v2)?
1-— dldg(vl,v2)2

(11)

Next we have from (7)

ot [[o1]|? 1—dy [[o1]|* — da(v1,v2)? [[vr | * + drda(v1, v2)?
g2 1 1 — dida(v1,v2)?
_1- (03/0?) [lua? (1 —dy flor]l?)
1 — dida(v1,v2)?
_ 1 Jul (/03 + e *)
1 — dyda(v1,v2)?
(02/0})d

T1- dida(v1,v2)2’

1-—

and, by analogy,

1 —dy [|vo]|® — di(v1,v2)? |va]| =2 + dida(vi, v)?
1-— dldz(’vl, ’02)2

2
ag
1= 22 |y

_ (0%/03)dy
1 —dida(v1,v2)?
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We can also derive that

02 03 1 —dy ||v1]|* — da ||val® + dady [loa|]® vl

02 g2 1 —dida(v1,v2)?
o203 (1= dy o)) (1 = da [la])
(72 02 1—d1d2(’l)1,’02)2
dids

T1- dida(vy,v9)?

Using these results and (11) we get, after some computation, the expression
for the MSE, [X*(n + d)], which is given in the following theorem.

THEOREM 2.1. The BLP, X*(n+d), of X(n+d) in an FDSWNM

X(t)=> Yw)+wlt), t=12,...,

E[Y]=0, Cov(Y) = diag(c?)
is given by
N _dyvi(n +d) +dida(vi,v2)v2(n +d)
Xr(n+d) = 1 — didz(v1,v2)? nX
+d2v2(n + d) + dldg(vl,vg)vl(n + d) ,

1 — dida(v1,v2)? v X
and
MSE,[X*(n+d)] = o2 (1 + dlv%(ln :Ld(?(;(jivi(; - d)>
_9p? d1dav1(n + d)va(n + d)(vy,v2)
1 — dyda(v1,v2)? ’
where

di = di(v) = (6?02 + |uil?) ™", i=1,2.

Remarks. It should be remarked that in the case when the vectors v; and vs
are orthogonal, that means (v1,v2) = 0, we get

X*(n+d) = divi(n+ d)vi X + dava(n + d)vy X

and
MSE,[X*(n+d)] = 0*(1 + divi(n+ d) + dov3(n + d))

what is the result which is given in [6].
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The expression for the M SE, [X *(n + d)] can be used to find conditions on
functions v;(-) and v () by which

lim MSE,[X*(n+d)] = o,

n—oo
the variance of the white noise only.

All results derived above can also serve as a base for computing the mean
squared error of the best linear unbiased predictor, see [6], in a linear regression
model

k
X@t) =Y Bifit) +et), t=12,...,
=1

textwhere
l
e(t) =Y Yui(t) +w(t), t=1,2...,
=1

is given by the FDSWNM. But this is not the objective of this article.
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