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ON THE STRUCTURE OF SOLUTION SETS OF 
DIFFERENTIAL EQUATIONS IN BANACH SPACES 

DARIA BUGAJEWSKA 

(Communicated by Milan Medved') 

ABSTRACT. In this paper, we investigate topological s t ructure of solution sets 
of the Cauchy problem in Banach spaces which are defined on an unbounded 
interval. 

The main condition in our results is formulated in terms of the Kuratowski 
or an axiomatic measure of noncompactness. 

1. Introduction 

The topological structure of solution sets of differential equations in Banach 
spaces where the argument is defined on a bounded domain was investigated 
by many authors (see [9] and references given there). But recently there have 
appeared papers in which a bounded domain is replaced by an unbounded one 
(see e.g. [4], [5], [8], [14], [15], [16], [17], [18]). In this article, we consider the 
following initial value problem 

x' = / ( i , x ) , x(0) = s 0 , (1) 

where f:IxE->E,I= [0, + oo) and E is a Banach space. We shall give 
sufficient conditions which guarantee that the set of all solutions of (1) has the 
Aronszajn property, i.e. it is an R5. 

The proofs of our theorems are based on the following theorem. 

THEOREM 1. ([14], [17]). Let K be a convex unbounded subset of a normed 
space, E be a Banach space and let C = C(K, E) denote the Frechet space of all 
continuous locally bounded functions K —j> E with the topology of locally uniform 
convergence. Assume that F: C —r C is a continuous mapping such that 

1° there exists tQ G K, xQ G C such that 

F(x)(tQ) = xQ for every x G C, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34G20. 
K e y w o r d s : Aronszajn type theorem, axiomatic measure of noncompactness, Cauchy prob­
lem, Kuratowski measure of noncompactness . 
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2° the family F(C) is locally equiuniformly continuous, 
3° for every s > 0 the following implication holds 

X K. 
£ 

V\K =* F(X">\K =F(y)\i{ ' x,yeC. 

where K£ = Kr\B(t0, e) and B(t0,e) denotes the closed, ball of center tQ 

and radius e, 
4° every sequence (xn)ne^, xn ^ ^, such that 

limJxn-F(xn))=0 

has a limit point. 

Then the set of all fixed points of F is an Rd, i.e. it is homeomorphic to the 
intersection of a decreasing sequence of compact absolute retracts. 

Moreover, in what follows, we apply the following result from [10]. 

THEOREM 2. Suppose that <f),u: R+ -> R+ are continuous and cp(t) is not 
identically equal to zero. Then the solutions of the problem 

r = (/)(t)u(r) 

are defined in the future if and only if LJ G 1Z0, where 1Z0 is the family of 
continuous functions v: R+ —J> R+ such that 

+ oo 

/

ds 
—— = -foo for some 5 > 0 . 
v(s) 

d 

The main condition in our theorems is the Cellina type assumption (cf. [7]) 
formulated in terms of the Kuratowrski or axiomatic measure of noncompactness. 
Recall that for any bounded subset A of a metric space the Kuratowski measure 
of noncompactness a is defined as the infimum of positive numbers e such that 
A can be covered by a finite number of sets of diameter < e (for examples and 
the basic properties see e.g. [2] or [6]). The definition and some properties of an 
axiomatic measure of noncompactness we recall in Section 3. 

Finally, for the completeness, let us recall Krasnoselski-Krein's lemma. 

LEMMA. Let J = [0, d] C R be a compact interval and let f • J x E -> E be 
a continuous mapping. Then for any u G C(J,E) and e > 0 there exists fi > 0 
such that 

s u p | | / ( t . s ( 0 ) - / M t ) ) | | < £ 
teJ 

whenever x G C(J,E) and sup \\x(t) — u(t)\\ < 8. 
teJ 
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2. Main result 

Consider the problem (1). Assume that 
1) f : I x E —> E is a, continuous function; 
2) there exists u e TZ0 and a continuous function ip: I -+ R+ such that 

\\f(t,x)\\<ip(t)u>(\\x\\) for all tel and xeE] 

3) for each bounded subset B C E and for each interval [0, a], a > 0, there 
exists a continuous nondecreasing function hB a: R+ -> M+ such that 
the inequality 

t 

u(t) < jhBa(u(s)) ás , t € [0 ,o ] , 
o 

has only the trivial solution u = 0 and 

a(f(AxX))<hBJa{X)) 

for A C [0,a] and X C B. 

Now, we prove the following theorem. 

THEOREM 3. Under the above assumptions the set S of all solutions of (1). 
defined on I, is an Rd. 

P r o o f . In view of 2) it is clear that each solution of (1) satisfies the in­
equalities 

l i m s u p M ± M L l M I < 11^)1, = \\f(t,x(t))\\ < <p(t)U(\\x(t)\\), 

t e l . 

By Theorem 2, we infer that the maximal solution r0{t) of the problem 

r ' r - ^ M r ) , r(0) = ||xo | |, 

is defined on J. Thus by the theorem on differential inequalities (see [11]) we 
obtain 

||x(i)|| <r 0 ( t ) for t e l . 

Let y : E -» [0,1] be a continuous function such that i!>(u) = 1 if \\u\\ < 1 and 
Hu) = 0 if ||u|| > 2. Put p(5,x) = ^ ( T T ^ ) / ( « s , x ) , sel, xeE. Define the 
mapping 

F{x){t) = x0+ p(s, x{s)) ds , ^ G i , £ E C, 
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where C = C(I,E). It can be easily verified that x G C is a solution of (1) if 
and only if x = -F(x). Thus it is enough to prove that the set of all fixed points 
of F is an R5. Obviously, F(C) C C. Further, in viewT of the inequality 

ti t2 

WFixWJ - F(x)(t2)\\ = Jp(s,x(s)) ds - jp(s,x(s)) ds 

b o 

= / p(s,x(s)) ds 

ti 

t2 

/
ip(s) max u(t) ds , x G C , 0 < £- < £0 < a , 
^V /e[0,2(ro(a)+lV)r , _ 1 2 -

where a is any positive number, we deduce that F satisfies 2°. Moreover, by 
Krasnoselskii-Krein lemma ([13]) and 2° we infer that F is continuous. Now 
we show that F satisfies 4°. Let (xn) be a sequence satisfying the condition 
in 4°. Set V = {xn : n G N}, V(t) = {xn(t) : n G N} , t G I . Since 
V C (Id-F)(V) + F(V), from 2° and condition in 4° it is clear that V is 
equiuniformly continuous on [0, a] for every a > 0. Fix a > 0 and let B be the 
closed ball in E of center 0 and radius 2(r0(a) -F l ) . In view of the properties 
of a we have 

a(p(A x X)) < <*(*(1+*(A))f(
A >< x)) <a[ U A/(AxA-)j 

= a ( / ( - 4 x X ) ) < f t B ] 0 ( a ( X ) ) , 

for any subset X C B and A C [0, a]. 
Now let W = F(V) , v(t) = a(F(t)) and u'(t) = a(W(t)) for * G I. From 

the basic properties of the index a we obtain 

v(t) < a((Id -F)(V)(t)) + a(W(t)) = w(t) (2) 

and, similarly, 

a(V(T)) < a(W(T)) for each compact subset T C I. 

Further, we have 

K t . ) -« ; ( t 2 ) | = |a(F(Y)(<1)) - a ( F ( y ) ( t 2 ) ) | 

< sup H F ^ ) ^ ) - E(«)(t2) - F(v)(t,) + F(v)(t2)\\ 
U,V 

< 2 sup HF^)^. ) - F(u)(t2)\\, t^t2el. 
uEV 
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By the above inequality and equiuniformly continuity of W on every bounded 
subset of I, we deduce that w is continuous on / . 

Divide the interval [0, t], t < a, into n parts: 0 = t0 < tx < • • • < tn = t in 
such a way that ti — ti_l = ^ for i = 1,... , n . Put Ti = [ti_1,ti], i = 1, . . . , n. 

Since W is equiuniformly continuous and uniformly bounded on every 
bounded subset of 7, by A m b r o s e t t i ' s lemma ([1]) and the continuity of w 
there exists pt G T- such that 

a(W(Tt)) = sup a(W(t)) = sup w(t) = w(pi). 
teTi teTi 

In view of the mean value theorem, for every x G V we obtain 
t 

F(x)(t) =x0+ p(s:x(s)) ds 

0 
n p n 

= xo + J2 I M5 ' x(s)) ds € xo + E M^)convp(T x x(T ) ) , 
Z = l rp 1 = 1 

where [i denotes here the Lebesgue measure. 
Thus 

n 

F(v)(t) c x0 + V^(r.)convp(:r. x F(r.)). 
2 = 1 

Hence, by the properties of index a, we obtain 

w(t) < ^^MPpi x V(Tt))) < JZtiTJh^aiViTi))) 
i=l i=l 

< JZtiTJh^aiWiTJ)) = J2^Ti)hB,a(w(Pi)) • 
i=l i=l 

If n —> oc, in view of the continuity of h and w we obtain 
t 

w(t) < f hBa(w(s)) ds, «€[0 ,a] . 
o 

Thus, by the assumption 3), w(t) = 0 and therefore by (2), v(t) = 0 for every 
t G [0, a]. Hence V(t) is relatively compact for t G [0, a]. Since a is arbitrary, 
in view of Ascoli's theorem wre infer that V is relatively compact. Hence the 
sequence (xn) has a limit point. 

We see that F satisfies all assumptions of Theorem 1 and therefore the set 
of all its fixed points is an Rs. This completes the proof. • 

Remark 1. An analogous result to Theorem 3 in the case of a bounded interval 
was proved in [3; Theorem 3], but their proofs are different. 
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3- Axiomatic measure of noncompactness 

In this section we extend Theorem 3 applying an axiomatic measure of non-
compactness. Recall that this notion was introduced by B a n a s and 
G o e b e 1 [1] and found many applications in the theory of differential and 
integral equations in Banach spaces or in the fixed point theory (see [2], [5], [12]). 

Denote by AiE the family of all bounded subsets of a given Banach space 
E, and by AfE the family of all relatively compact subsets of E (briefly: M 
and A/", respectively). 

DEFINITION 1. ([2]) A function [i: M -* [0,+oo) is said to be an axiomatic 
measure of noncompactness if it satisfies the following conditions: 

5° the family ker/x = {X G M : (JL(X) = 0} is nonempty and kerti C j\f; 
6° XcY => iA(X)<fi(Y); 
7° /i(convX) =n(X); 
8° n(XX + (1 - X)Y) < \/JL(X) + (1 - X)n(Y) for A G [0,1]. 

If additionally a measure /J, satisfies the condition 

9° n(X\JY)= max{/i(X), / i (F)} for any X,Y G _M, 

then we say that ji has the maximum property. 

Our next result is given by the following theorem. 

THEOREM 4. Assume that the function f satisfies 1), 2). Moreover, let the 
measure /i have the maximum property and satisfy the following conditions: 

10° fi({x}) = 0 for any x e E, 
11° fi(A + X) < fi(X) for any bounded subsets X C E and A G ker n. 

If for each bounded subset B of E and for each interval (n — l.rc], n G N. 
there exists a continuous nondecreasing function hB n: R+ —• R+ such that the 
inequality 

t 

i(t) < / hBtn(u(s)) d s , t G ( n - U ] , 

n - 1 

has only the trivial solution u = 0 on [n — l ,n] and 

n{f(AxX))<hBJn(X)) (3) 

for X C B and A C (n — l , n ] , then the set of all solutions of (1), defined on 
I, is an R6 . 
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P r o o f . Analogously as in the proof of Theorem 3 we define the mapping 
F and verify that it satisfies 2° and it is continuous. 

Now, we verify that the mapping p satisfies (3) (in which we replace / by p). 

Let p(s,x) e ip (1+^,4) ) / ( - 4 x X ) , where A C (n- l ,n] , X C B. Then p(s,x) 

= AH, where yef(AxX), \e [0,1]. Thus p(s,x) e conv({0} U f(A x X)), 

so ^(l+*(A))f(AxX) Cconv({0}U/(AxX)) . Hence, in view of 6°, 7°, 9°, 

10° we have 

^(l+^(A))f{A X X)) ~ ̂ m v({f}U/(^ x X))) 

= »({0}l)f(AxX)) 

= m^{fi({0}),fi(f(A xX))} = fi(f(A x X)) 

<hBJn(X)). 

Now arguing similarly as in the proof of Theorem 3 and developing tech­
niques suitable for axiomatic measures of noncompactness (see [19] for details) 
we obtain 

t 

w(t) < I ҺB1 (w(s)) ds , te [0,1]. 

Thus, by the assumption on hB 1, w(t) = 0 and therefore v(t) = 0 for t e [0,1]. 
Now, let t e (1,2]. By 11° we have 

w(t) = v(F(V)(t)) = L*({*0 + }p(s,x(s)) ds: xe v}) 

= /if <{x0 + /p(s,x(s)) ds + /p(s,x(s)) ds : x e V >) 

<v({fp(s,x(s))ds: xev}). 

Arguing similarly as in the case when t e [0,1] we can show that v(t) = w(t) = 0 
for t e (1,2]. Hence v(t) = 0 for every t e I. In view of Ascoli's theorem we 
infer that V is relatively compact, and therefore the sequence (xn) has a limit 
point. 

Hence it is clear that the operator F satisfies all assumptions of Theorem 1, 
and therefore the set of all its fixed points is an Rs, what completes our proof. 

• 

Remark 2. Theorem 4 extends also Theorem 5 from [5]. 
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