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EXTENSION OF MEASURES AND INTEGRALS
BY THE HELP OF A PSEUDOMETRIC

BELOSLAV RIECAN

There are various methods of constructing an extension of a measure u from
aring R to a o-ring & containing . One of them is the following: An extension g
of u is constructed (j need not be a measure, e.g. 4 may be the outer measure
induced by i) and a pseudometric is defined by the equality o(E, F)=a(EAF).
Then the family =R~ (the closure with respect to g) is one of the convenient
o-rings. (Of course, some assumptions concerning the finiteness of u are neces-
sary; see e.g. [6], [9].)

A similar method can be used for integrals (see e.g. [3], [7]).

Here we shall study the method from a general point of view. We shall work with
functions J: S— ( — o, ), where S is a sublattice of a given lattice H. If H is a set
of sets then the measure extension theory is obtained ; if H is a set of real-valued
functions then the integral extension theory is obtained. The same idea has been
realised (only with different constructions) in papers [1], [8], [11], [12], [13].

Generating function

First we shall construct a function for generating our pseudometric. Its construc-
tion and corresponding proofs are known.

Assumptions. 1. H will denote a lattice with the following properties :

1.1. H is relatively o-complete, I.e. every monotone bounded sequence has the
least upper bound and the greatest lower bound. If (x,).., is an increasing
sequence and x is its supremum, then we write x, /'x; the symbol x,\,x has an
analogous meaning. We use the symbols also for the lattice R of real numbers.

1.2. H is o-continuous, i.e. the relations x,/'x, y./'y (x.\xx, y.\\y) imply
X AVl XAY (X VY. \XVY).

2. A is a sublattice of H satisfying the following condition: To every x € H there
are a,€e A (n=1, 2, ...) such that ‘
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(\7 a, is the supremum of (a,,),’.‘=,).

n=1
3. J,: A> R is a real-valued function with the following properties :
3.1. J, is increasing, i.e. x=y, x, y € A implies J,(x)=J,(y).
3.2.J, is a valuation, i.e. J(x v y) + Jo(x Ay)=J(x) + J(y) foreveryx,ye A.
3.3. J, is upper continuous in the following sense: If x, /'x, x,€ A (n=1,2, ...),
x €A, then J(x,)/ J(x).
We shall extend the function J, in the following two steps.

Lemma 1. Let xeH, x.€A, y.€eA (n=1, 2, ..). x./x, v,/ x. Then
lim J,(x,) = lim Ju(y.).
Proof. [1, Lemma 1], [11, Lemma 2.4], [12, Lemma 1].

Definition 1. By B we denote the set of elements b € H such that there exist
a,€eA (n=1, 2, ...) for which a,/ b. Further we denote by J, the mapping
J,: B— R defined by the equality

Ji(b)=lim Jy(a,),

where a,/'b, a,e A (n=1, 2, ...).
Definition 2. Let x € H. Then we put
J(x)=inf{J,(b); x=b, b € B}
if the set {J,(b); x=b, be B} is non empty; otherwise J(x)= .
Theorem 1. The function J is increasing and it is an extension of J,. If x, /" x, then
J(x)=lim J(x, ). |

Proof. See [1, Prop. 3.1], [11, Theorem 3.1], [12, Theorem 1].
Of course, E. M. Alfsen does not assume that to any x € H there are a, € A such

that x = v a,. But then, in the case of lim J(x,) <, we are not able to prove that

n—soo

{J(b); x=beB}+#0 although {J(b); x,=beB}+0 (n=1, 2, ...) and hence
there are b, € B, b,=x, (n=1, 2, ...). H need not be g-complete and therefore
v b, need not exist. It seems to us that this detail in the Alfsen theory is not correct.

A pseudometric

Now we shall not follow the excellent Alfsen definition o(x, y)=
=J(xvy)—J(xAy), since we want to say a little more about the algebraic
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structure of investigated lattices. We shall introduce axiomatically two binary
operations on H: A and +. Further we shall assume that all the elements of H are
non-negative and hence H has the least element. If H is a set of sets, then aA b is
the symmetric difference of a, b and a + b is the union of a,. 5. If H is a set of
functions, then @ + b has the usual sense and a A b = |a — b|. The reader can easily
verify that in the classical cases all our axioms are satisfied. Recently a similar
algebraic structure has been studied in [4] and [5], where two binary operations
+ and \ are given. With respect to the Brehmer system (the so-called C-lattice)
our operation A can be defined by the formula aAb = (a\b)+ (b\a).

Assumptions. H has the least element O. On the lattice H there are given two
binary operations A\, + satisfying the following identities :

'1.3. alAa=0, aAO=a.

14. alAb=bAa.

1.5. a+b=b+a.

1.6. . aSb>a+c=b+c.

1.7. a,/a,b,/'b>a,+b,/a+b.

1.8. aAb=(alc)+(bAc).

1.9. (avb)A(cvd)=(aAc)+(bAd).

1.10. (anb)A(cad)=(aLc)+(bAd).

1.11. (a+b)A(c+d)=(alLc)+(bAd).

1.12. a=(alLb)+b.

A is closed under the operation +.

Jo has moreover the following properties:

3.4. J(0)=0.

3.5. J(a+b)=J,(a)+J(b).

Lemma 2. For any x, ye H it is J(x + y)= J(x)+ J(y).
Proof. Take first a, beB and a, €A, b,€e A (n=1, 2, ...) such that a, a,
b,/ b. Then by 1.7 also a,+ b,/ a+ b, hence a+ b € B and -

Ji(a+b)= li_rg.ﬂ,(a,. + b,.)§limm1(,(a,,) +lim Jy(b,) =

=Ji(a)+Ji(b).

Finally let x, y e H, J(x)<°o J(y)< . Then to every € >0 there are a, beB such
that x=a, y=b and

J(x)+§>1.(a), J(y)+-2€>1.(b).

By 1.5 and 1.6 we have x+ y=a+ b, hence
Jx+y)Sh(a+b)=J(a)+1(b)<J(x)+J(y) +€.
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Lemma 3. Let H={xe H; J(x)<x}. Thena+beH,, aAbe€H, forevery a,
beH,.
Proof. It follows from Lemma 2 and 1.8.

Definition 3. Let H,={xe H; J(x)<»)}. We define a mapping o: H, X H— R
by the equality o(x, y)=J(xAy).

Lemma 4. 9o Is a pseudometric on H,.
Proof. It follows from 1.3, 1.4, 1.8 and Lemma 2.
Now we can finish our extension process.

Definition 4. Let (H,, o) be the pseudometric space defined in Definition 3.
Since J is an extension of J, and J,, is finite on A, we have A c H,. Therefore we can
define S=A" (the topological closure) and J=J|S (the restriction of J to S).

Lemma 5. For all x, y € H, it holds |J(x)—J(y)|<J(xAYy).
Proof. By 1.12 and Lemma 2 we have J(x)<.l(xAy)+J(y) and similarly
J(y)SJ(xAy)+J(x).

Theorem 2. S is closed under the operations +, v, A ; Jis a valuationon S.

Proof. Evidently x € S if and only if to every £>0 there is such an a € A that
J(aAx)<e. Then the first three assertions follow from this fact, 1.9, 1.10, 1.11
and Lemma 2. v -

Now we prove that J is a valuation. Take x, y € S. Let £ be an arbitrary positive
number. Then there are such a, b€ A that J(xAa)<e, J(yAb)<eg, hence by
Lemma 5

[J(x)=J(a)|<e, |J(y)-J(b)|<e.

Further, by 1.9

[J(xvy)=J@avb)|=J((xvy)A(avb))=
SlxLa)+J(yAb)<2e.

Analogously we have by 1.10

[J(xay)=J(anb)|=SJ(xry)A(anb))=
SJ/xAa)+J(yAb)<2e.

Finally
[J(xvy)+J(xay)=J(x)=T(y)|=
=|J(xvy)—J(avb)|+|J(avb)+I(anb)—Jy(a)—
= Jo(b)| + |Jo(@) = J(x)| + | Jo(b) — J(y)| +
+ | J(xAy)=J(anb)|=
=2e+0+e+e+2e=6¢.

Since £ was arbitrary, we have |[J(xvy)+J(xAy)—J(x)—J(y)|=0.
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A quasilinear structure

From the point of view of the applications it is useful to have some identity like
J(x+y)=J(x)+J(y) or J(x—y)=J(x)—J(y). Since no such identity holds for
measures, we shall work only with the implication x =y > J(y)=J(x)+ J(y\x).
This implication holds for measures as well as for integrals. In the first case y\x is
the set-theoretic difference and in the second case it is the difference of functions.
Now we shall axiomatically introduce a binary operation \. However, in the case of
functions we must be careful. Namely, we work only with non-negative functions
and the difference of two non-negative functions need not be non-negative.
Therefore we interprete a\b in this case as a\b =a —(aAb)=a —min(a, b) (see
(4], [5]. [10], [14]).

Assumptions. On the lattice H there is given a binary operation \ satisfying the
following conditions :

1.13. . (a\b)A(c\d)=(aLc)+(bAA).

1.14. Ifa=b, then aAb=b\a.

1.15. If a=b, then a=b\(b\a).

1.16. If a,/a, then a, \b/a\b.

1.17. If a,\ua, then a\a, /" a\a.

The set A is closed under the operation \.

Jo has moreover the following property:

3.6. J(b)=J(anb)+ J(b\a).

Theorem 3. S is closed under the operation \. For every x, y€S we have
Jy)=J(xAy)+J(y\x).

Proof. The first assertion follows from 1.13 and Lemma 2. Let x, ye S, £€>0.
Then there are a, b€ A such that J(xAa)<e, J(y Ab)<e. Further

T —J(xAy) —J(y\0)| = |J(y) - J(b)| +
+ |[J(B)=J(anb)—J(b\a)| +|J(anb)—J(xry)| +
+|J(b\a)—J(y\x)|=
SJyAb)Y+0+J((anb)A(xay))+I(B\a)A(y\x))=
SJyAb)+J(aAx)+J(bAy)+J(bAy)+T(xLha)<Se.

Limit theorems
Now let all the assumptions 1.1—1.17 and 3.1—3.6 be satisfied.

Theorem 4. Let x,€S (n=1, 2, ...), x,/x, lim J(x,) <. Then x € S (and, of
course, J(x)=1lim J(x.) by Theorem 1).
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Proof. By Theorem 3 we have
J(x)=J(x,, Ax,)+T(x,.\x,).

Since x./x, then by 1.2 and 1.16 x.AX./XAX.,, X.\X.”x\x, hence by
Theorem 1

J(x)=J(xAax,)+J(x\x,)=J(x,)+J(x\x,).

We know (Theorem 1) that J(x)=lim J(x,)<%. Since J(x)<w, J(x,)<o and
also J(x\x,) <o, we have

J(x\x,) =J(x) = J(x.),

and therefore
linl J(x\x,)=0.

Hence to every £€>0 there is n such that J(x\x,)<é&/2. By 1.14 we have
x Ax,=x\x,, hence

o(x, x,.)=J(xAx,.)<§.
But x, € S, hence there is a € A such that
£
o(x,, a)< >

and therefore

o(x,a)<e.
We see that xe A™=S.

Theorem 5. Letx, e S(n=1,2,...), x,\\x.*) Thenx € S and J(x) =lim J(x,).
Proof. First we prove that x€ S. By 1.17 x,\x,\yx,\x. But
J(xl\x,,)=.’(x|)‘-f(x,.)

by Theorem 3, hence lim J(x,\x,) <. Hence by Theorem 4 x,\x € S and
J(x\x)= l'i_r‘ril(x,\x,,) =J(x)—lim J(x,).

*) lim J(x,)> — » automatically, because J is a non-negative function.
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Now 1.15 and Theorem 3 imply that
x=x\(x\x)€eS.

Moreover by Theorem 3
lim J(x,)=J(x) = J(x\x)=J(xAx)=J(x).
Linear case

In this sectior we shall deal with lattice ordered groups and we adopt the
terminology used in [2].

Theorem 6. Let G be an Abelian lattice ordered group, which is o-complete (i.e.
every non-empty countable bounded subset of G has the supremum and the
infimum). Let F be a subgroup of G closed under the lattice operations. Let there
toeveryxe Gexista,e F(n=1, 2, ...) such that x = v a,. Finally let I,: F— R be
a linear positive operator such that x,\\x, x,€F (n=1, 2, ...), x€ F implies
L(x. )\ Lo(x)- ’ '

Then there are a subgroup T containing F and closed under the operations
x—x*, x—>x~ and a linear positive operator I: T— R, which is an extension of I,
and is continuous in the following sense: If x,/x (x,\\x), x, € T for bll n and

(I(x,))~-: is bounded, then x € T and I(x)= lim I (x,).

Proof. Put H={xe G;x=0}, A=FnH, J,=IL|A. Further let + be the
group operation, a\b=a—(aAb), aAb=|a—b|. Evidently all assumptions
1.1—1.17, 3.1—3.6 are satisfied and hence all assertions of Theorems 2—5 hold.
Of course, S need not be a subgroup and we do not know whether J is linear.

First we prove that J is linearon S. Let f, g€ S. Evidently f, g=0. Put A=f + g.
Then A=f, hence

J(f+g)=J(h)=J(f)+IJ(h\f)=
=J(N+IJ(h—-H)=J()+J(g).

Now we define the set T={xeG; x=y—2z, yeS, z€S}. Evidently T is
a subgroup. If xe T, Then x =y — z, where y, z€ S. Hence

x*=xv0=(y—-2)v0=(y—-2)v(z—-2)=
=(yvz)—z€eT
and
—x =xA0=(y—2)A0=(yAz)—z€T.
Hence we can define I: T— R by the equality
Ix)=J(x")=J(x7).
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If x=y—2z wherey,zeS, theny—z=x"—x ,hence v+x =x" +: and by the
linearity of J

JY)Y+J(x )=J(x")+J(2).
whence
Jy)=J(@)=J(x")=J(x )=I(x).
If xeF,thenx™, x eAcS, hence x=x"—x e T. Moreover,

I(x)=J(x")—J(x )=J(x")=Js(x )=
=10(x*)_[n(x )=[n(x).

hence I is an extension of I,.
If x,, xeT, x,=y,—2, L2=y.—2, W, V. o, :€8. then x,+x,=
:(,Vl +y:)—(21 + Zz) and

I(x+x)=J(yp+y.)—Jz+2)=
=J(y) —J(z) +J(y=) = J(22) = 1(x)) + I(x:),

I is linear. I is also positive, since x=y—z=0, y, ze S implies y =z, hence
J(y)=J(z) and I(x)=J(y)—J(2)Z0.

Finally, let x,/x, x,eT, (I(x,)).-, is bounded. Then x,/ x", x,\x .
Moreover,

0=J(x,)=I(x)+J(x)=I(x,)+J(x7),
. 0=J(x,)=J(x,),
hence both sequences (J(x,)).-, and (J(x,)).-, are bounded. By Theorems 4 and

S5, x",x €S and J(x")=Ilim J(x7). J(x )=lim J(x ,), hence xe T and

I(x)=J(x")—=J(x7) ZE.iE I(x,).

The dual assertion follows easily by the linearity of L.

Remark. In any Abelian lattice ordered group the two definitions of
pseudometric

o(x,y)=J(xAy)
and

oi(x,y)=J(xvy)—J(xnry)
coincide. Indeed, in the case

l[x=yl=(xvy)—(xAy)
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(see [2], ch. XIV., § 4., Th. 8; of course, the proof is not very difficult). Since J is
linear, we obtain

J(lx=yD=J(xvy)—J(xAy).

Measure
For measures we do not obtain any new result.

Theorem 7. Let H be a relatively o-complete Boolean algebra, AcH be
a Boolean ring and J,: A — R a finite measure. Then there is a measure J’ defined
on the é-ring D generated by A that is an extension of J,.
- Proof. We again apply Theorems 2—5. Here a+b=avb, a\b=anb’ (b’ is
the complement of b), aAb=(a\b)v(b\a). The theorem will be proved if we
show that Dc S. But S is a ring closed under countable infimums, hence S is
a d-ring over A. Therefore S contains the least 6-ring over A.
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MPOOOIXXEHHUE MEP U UHTETPAJIOB I1PHU [TOMOUM IMCEBOOMETPUKH
BenocnaB Puevau
Pe3ome
B pa6oTe npoponxaeTcs qeHCTBUTENbHAs DYHKUMS J, ONpeAeIeHHas Ha HEKOTOPOW! NOACTPYKTYype
R nanunon ctpyktypsl H. Ilpu nomoluu noaxoasiuer nceBIOMETPHKHM Ha H npoponxkaetcs J, Ha
3aMbikaHve R~ MHoxecTBa R. Ecnu B kayectBe H B3AThb HEKOTOPYIO CTPYKTYPY MHOXECTB, TO

BO3MOXHO MOJIYYHTh TEOPEMY O NMPOAOJXKEHHN MEPbI, ECITH B3ATh CTPYKTYPY PYHKUMHA, TO BO3MOXHO
MONYYNTh TEOPEMY O MPOAOJIKEHHM MHTErpana.
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