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EXISTENCE THEOREMS FOR A CERTAIN
NON-LINEAR BOUNDARY VALUE PROBLEM OF
THE THIRD ORDER

JAN RUSNAK

Introduction

In the paper we shall investigate a boundary value problem (abbr. BVP) of
the form

(1) x" = f(t, x, x’, x"), (t, x, x’, x")ela,, a;] x R?,
ox'(a) — a3x"(a)) = 4,
(2 x(a) = 4,
72x'(a3) + v3x"(as) = 43,
@, %, 1 1320, +a>0, +71>0, o,+7>0,
a<a<a.

Denote I = [a,, a3), I, = [a,, a)}, I, = [a,, a;)-

This BVP is a special case of BVP with general linear boundary conditions
at boundary points investigated in [3, Theorem 1] where under assumptions
that fis continuous and bounded on I x R? there was deduced that BVP (1) and
(2) has at least one solution.

We shall prove existence theorems for a solution of (1) and (2) which lies
between its lower and upper solutions and its derivative also lies between the
derivative of lower and upper solutions, all this under hypotheses that both fis
bounded and f need not be bounded. Similarly as in [3] there are utilized
methods of proofs from [1]. In [1] K. Schmitt considers a non-linear two
point BVP of the second order with general linear conditions at boundary
points.

A function ae C;(I) (C5(I) is the space of all functions with continuous
derivatives of order < 3, on I) will be called a lower solution of BVP (1) and (2)
if there holds

3) a’ 2 f(1, @, @, ),
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xa'(a) — ia'(a) £ 4, aa) =4,

“4) , "
e (a;) + 30" (a;) = 4.

Similarly e C;(I) will be an upper solution of BVP (1) and (2) if
®) p = ft, B, B, B,

of(a) — ap'(a) 2 4,, Pa) = 4,,

(6) , ”
7.B(a;) + v B'(ay) = A;.

Moreover let there hold for @ and B (from above)
@) a(t) = (), Vteel
Denote
o, ={{t, x, x): tel,, B(t) £ x < a(t), a'(t) £ x" < B(1)},
o, ={(t, x, x'): teh, a(t) < x < (1), (1) < x" < B(1)},
0= 0 0,
Y <=y

01, Y2, y3) = {yz, NWENMSYs, Y1 V2 V3ER.
YISy <)

Let the function f be continuous and bounded on 7/ x R* and let there exist
functions a, fe C;(I) that are lower and upper solutions of BVP (1) and (2),
respectively. Let us modify the function f to F as follows:

for tel,:

F(t, x, x', x") = f(t, 6(B(2), x, a(1)), 6(a’(1), x', B'(1)), x") +

() " x' = 8(a'(r), x', B(1)
1+ x7 ’

for te I, F has the same form as for r€ I, we just must formally interchange the
symbols a(?) and S(t).
Hypotheses of f, @ and Bimply that Fis continuous and bounded on I x R’.

Existence theorems

Theorem 1. Let the function f be continuous and bounded on I x R*® and let
there exist functions a, fe€ C;(I) which are lower and upper solutions of BVP (1)
and (2), respectively.

Let f be non-decreasing in x for te I, and x: f(t) < x < a(t) and be non-increas-
ing in x for tel, and x: a(t) < x < B(¢).
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Then there exists at least one solution x of BVP (1) and (2) such that

9) (t, x(1), x’(t1))ew, Vtel
Proof. Consider a modified equation to (1):
(10) x" = F(t, x, x’, x").

From properties of F we have that there exists at least one solution x(z) of
BVP (10) and (2). Further we prove that for this solution x(z) the property (9)
is fulfilled and therefore with respect to the definition of F x(¢) is also the
solution of BVP (1) and (2).

Let us form a functionu = x — @, v = x — f. From (2), (4) and (6) there holds

au'(a) — azu’(a) 2 0, u(ay) =0,
vau'(as) + yu'(as) 2 0,

av'(a) — ayv”(a) £ 0, v(a) =0,
vv'(as) + y3v”(a;) £ 0.

(an

We are to prove
ut) £ 0, v()=z0, Veel,
(12) u@®)=0, v(@)=0, Viel,
w20, v()s0, Viel

First we prove that u’(¢) 2 0, Vel

Suppose that u’(a;) < 0. Then from the first condition of (11) we have
u"(a;) £ 0. First, consider the case u”(a;) < 0. Hence there exists such tye (a,, a;]
that Vte(a,, 1) u’(t) < 0and Vte(a,, t,) u”(t) < 0. Suppose that u”(f,) = 0 and
investigate the value u”(t,). Let there, e.g., for values x(t,), a(t,), p(¢,) hold
B(t,) — a(ty) £ u(ty) < 0 and ¢,e1,. Then by (3), (8) and the hypothesis that fis
non-decreasing in x we get

u" (1)) = x"(t) — a"(to) = f(ty, x(t), &'(15), a"(1)) +

+ X0 = 2 _ g atey), @' (1), @) <.
1 + x"(%,)
From this result there follows that 4”(¢#) > 0 in some left pure neighbourhood of
t,, which is a contradiction; hence we have u"(¢)) < 0. Similarly we proceed in
further relations among x(¢,), a(t,) and p(t,). Let us form the set M = {¢,e
€(a,, a;): u'(t) < 0 on [ay, t) u"(t) < 0 on [a,, t)}. Let t3 = sup M. From above
we have u"(t,) < 0, for any ¢ e M, and since t§e M, u"(t}) < 0. Let ¢t} < a;. Then
there exists such a ¢, € (¢, a;] that has the property of elements of M, which is
a contradiction. Therefore we can put ¢§= a;. When u’(a;) <0, u"(a;) < 0, we
obtain a contradiction with the third condition in (11). Similarly we also can
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delete the case u’(a;) < 0, u”(a;) = 0. Hence u'(¢,) = 0. Finally we have that both
u'(t,) <0 and u"(¢,) < 0 cannot hold at any ¢,€[qa,, a,).

Let at some t,€(a,, a;] u’(¢,) <0 and u"(z,) = 0. Then in the same way as
above we can prove thatV ze[a,, t,) u’(¢t) < 0 and u"(¢) > 0 from which for t = a,
we get a contradiction with the first condition in (11) and also with the result
u'(a)) 2 0.

Thus we have just proved that Ve u’(¢) = 0 holds. The proof of a fact that
v'(t) £ 0 Vtel is analogical. From the 2nd and 5th conditions in (11) other
inequalities in (12) follow. This completes the proof.

Lemma : Let the function f be continuous on I x R>.

Let there exist functions a(t), p(t) e Cs(I) such that a(a,) = P(a,) = A, and let
(7) hold.

Finally let there exist a positive constant L so that

l_f(t’ X, x/9 x”) _f(ta x’ x” ,V")| é le” - y'll’
V(i x, x)ew, x",y"eR.

(13)

Then there exists such a positive constant R, that for any solution x(t)e
€ C;(I) of (1) on I which satisfies (t, x(t), x'(t)) € w ¥V te I we have

(14) Ix"(t)| < R,, Vel

Proof. Consider a solution x(¢) of (1) which fulfils the hypotheses of the
Lemma. Then by (13) we obtain

LA, x(1), x'(0), x"(1)) — f(2, x(2), X'(1), @" ()] = L|x"(2) — a"(1)],
Ix" (O] = I/, x(1), x'(1), x" ()] =
= LIx"(1) — &"(0)] + (5, x(1), x'(0), @"(D)] =
= LIx"()] + Lla"(0)] + (2, x(1), x'(¢), 2" (D)] =
= Lix"(0)] + max (L|e"(0)] + /1, x, x’, a"(D)))).

Denote by m the maximum vzlue in the last expression and put ¢(s) = Ls + m.
Further, if we denote R, = max (m?xla’(t)l, max |5'(¢)], then by [3, Lemma 5]

there is warranted the existence of a constant R, which depends only on ¢(s),
R, and h = a; — a,.

We note that [3, Lemma 5], the so-called Nagumo lemma, is derived from
Lemma 5.1 in [2, pg. 503].

Theorem 2. Let all assumptions of Theorem 1 be fulfilled except the bounded-
ness of the function f which need not be satisfied. Further let the hypotheses of
Lemma be satisfied and let for the constant R, from Lemma R, = |a"(t)|, |5"(?),
Vt>1TIhold
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Then there exists at least one solution x of BV P (1) and (2) for which (9) is true.
Proof. Define a function &(¢, x, x’, x”) on Ie R® by means of f as foll-
ows: let there hold for @ on we R

D, x, x', x") = f(t, x, x’, 6(— Ry, x", Ry))
and let there be an extension to the whole domain of definition 7 x R?
D(t, x, x’', x") =

_ {q)(t, 8(B(), x, a(t), 8(a’'(t), x', B1), x"), Viel,
D(t, 6(a(t), x, @), 8(a’(t), x’, B (1)), x"), Vitel,.

Consider a modified equation to (1)
(15) x" = (1, x, X', x").

The function @ is (on I x R®) continuous and bounded. Fruther, @ is non-
decreasing in x for tel, and x: B(¢) < x < a(t) and is non-increasing in x for
tel, and x: a(t) < x < B(t). The functions a and S are also the lower and the
upper solutions of BVP (15) and (2), respectively. Thus all assumptions of
Theorem 1 are fulfilled for BVP (15) and (2) considering instead of (1) the
equation (15). Therefore there exists at least one solution x(z) of BVP, for which
(9) holds. From the definition of @ it follows that x(¢) is also a solution of BVP
(1) and (2).

Remark 1. If the definitions of the lower and the upper solutions of
BVP (1) and (2) are replaced by new stronger definitions which arise from the
original definition after replacing (3) and (5) by the following conditions:

am ;f(t, x, a/, an), ﬂm _S_f(t, x’ ﬂ/’ ﬂ”),
Vtel,, x: f@)=x=a®) and Vi> 1L, x: a(t) = x = BQ),

then from the existence Theorems 1 and 2 we can delete the hypotheses that f
is non-increasing and non-decreasing in x.

Remark 2. From the proof of Theorem 2, we get for the above found
solution x(¢) of (1) and (2) the estimate of the absolute value of its second
derivative, which is expressed by (14). By [3, Lemma 5], the delimiting constant
R, can be determined from the equation
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TEOPEMbBI CYWECTBOBAHUA U1 HEKOTOPOW HEJIMHEHMHOM
KPAEBOM 3AJAYMN TPETBEI'O INOPAJKA
Jan Rusnak
Pe3rome
B craTtbe paccmaTpuBaeTcs KpaeBas 3ajaya: x” = f(t, x, x’, x"), &yx'(a)) — a;x"(a)) = A,

x(ay) = A,, ¥,x'(a3) + y3x"(a;) = A;. Jloka3aHbl TEOPEMbI CYLIECTBOBAHHMS IUI DPEILUEHHS 3TOM
3aJa4YM, KOTOPOE HaXOIUTCS MEXAY HHXHHM U BEPXHMM PELICHHEM 3aJayH.
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