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NONOSCILLATORY SOLUTIONS OF A SECOND
ORDER NONLINEAR DELAY DIFFERENTIAL
EQUATION

JAN OHRISKA

In the delay differential equation
u"()+ p(u(z(1))=0 (1)
for a function u(t) we suppose throughout the paper that
(i) 0<p(t) € Cip =, p(2) is not identically zero in any neighbourhood o(x),
(i) 1(t) € Cro, y, T(t)<t, !193 T(t) =
(ili) a=r/s, where r and s are odd natural numbers.

Suppose that there exist solutions of equation (1) on an interval of the form
[b, ), where b = to. In the sequel we shall use the term “‘solution’ only to denote
a solution which exists on [b, ©). Moreover, we shall exclude from our considera-
tions solutions of (1) with the property that u(¢)=0 for t = T = t,. A solution is said
to be oscillatory if it has arbitrary large zeros, otherwise it is said to be
nonoscillatory.

It is well known (cf., e.g., [2]) that nonoscillatory solutions of (1) can be only of
the following three types:

@) |u(t)|—>c, u'(t)»0 (0<c) for t— oo,
(®) |u(®)|—> o, |u'()]>c (0<c) for t—,
(©) |u(@®)|—>=, u'()—0 for t— oo,

The purpose of this paper is to investigate nonoscillatory solutions of (1) of the
types (a) and (c).

Remark 1. According to (iii) we have that with a solution u(¢) of (1) also
—u(t) is its solution. This enables us to consider, e.g. only positive nonoscillatory
solutions of (1). Further, by (i) and (ii), if u(¢) is a nonoscillatory solution of (1)
such that u(t)>0 for t=1, then there exists a number t,=1t, such that u(t(¢))>0
for t=t, and now we see from (1) that u"(t) <O for t = t,. However, this means that
u'(t)>0 for t=t,.
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Theorem 1. Suppose that a >0 and

fmt't“(t)p(t) dt <, 2)

Then (1) has not a nonoscillatory solution of the type (c).
In order to prove this theorem we need the following result which is proved in

(3.

Lemma 1. Let f(t) be a continuous and non-negative function defined on some
neighbourhood o(«). Let k be a natural number. If

!i_m sup t"J:mf(x) dx = oo,
then
r t“f(t) dt = .
Proof of Theorem 1. Let u(t) be a positive non-oscillatory solution of (1) of the
type (c). Then, by Remark 1, there exists t,=t such that u(¢)>0, u(z(t))>0,

u'(t)>0 and u"(t)<O0 for t=1.
Integrating equation (1) from ¢ to «(t=1t) we have

w()= [ peou(ax) dr. 3)

Since the function u(t) is increasing and concave with lim u’(t) =0, there exists
t—> 00

a number >0 such that u(x) < fx for sufficiently large x, e.g. for x=£=1t, and
now by (ii) there is a point t3= t, such that u®(7(x)) <pB°t*(x) for x = t;. Therefore
for t=t, it follows from (3) that

u'(t) Sﬁ“[wp(x)r“(x) dx.

Integrating the above inequality from t; to t (¢=1t), we have
w(ty<u(t) + Bo[(t - t,)f r*(x)p(x) dx +[ (x - 6)7*(x)p(x) dx].
As !im u(t)= oo, from the last inequality, according to Lemma 1, we obtain

fm xt*(x)p(x) dx =,

which contradicts (2). This completes the proof.
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Remark 2. It is clear that if I tr*()p(t) dt< o, then f tp(t) dt < oo,

lrt“(t)p(t) dt <o and (for =(t)=t) also j t°p(t) dt <. On the other ha.nd,

from paper [2] we know that
1° equation (1) has a nonoscillatory solution of the type (a) if and only if

f tp(t) dt <« and it is true for 0 < o <1 as well as for a >1 and also for 7(t) <t as

well as for t(t)=t (from the corollary 2.1 in [7] we know that this is true for a =1

too),
2° equation (1) has, in the case t(¢)<t and 0<a <1 or a > 1, a nonoscillatory

solution of the type (b) if and only if j *()p(t) dt < oo,
3° equation (1) has, in the case 7(t)=t and 0<a <1 or a>1, a nonoscillatory

solution of the type (b) if and only iff t°p(t) dt < . From this we see that (1) has

not a nonoscillatory solution of the type (c) if f tt*(t)p(t) dt < but it has
nonoscillatory solutions of the types (a) and (b), which is true for () <t as well as
for T(t)=t and also for 0<a <1 as well as for a>1.

Theorem 2. Leta=1 andf tp(t) dt = . Let there exist a number <1 such

that the function P(t) = p(t)t*(¢)t® is non-decreasing (for all sufficiently large t).
Then every nonoscillatory solution of (1) is of the type (c).
The following results from [4] and [7] will be used in the proof of Theorem 2.

Theorem 3. (Theorem S in [4]). Let & >0. Let there exist a number <1 such
that the function P(t)= p(t)t°(t)t* is non-decreasing (for all sufficiently large t).

Then for every nonoscillatory solution u(t) of (1) the condition lim u’'(t) =0 holds
true.
Theorem 4 (Corollary 2.1 in [7]). Let a >0. Equation (1) has a nonoscillatory

solution u(t) such that llirg u(t)y=a+0 if and only if

rtp(t) dt< oo,

Proof of Theorem 2. Let u(t) be a non-oscillatory solution of (1). From the
assumptions of Theorem 2 we see that by Theorem 3 the solution u(¢) must be of
the type (a) or (c), and by Theorem 4 u(t) must be of the type (b) or (c). Hence
u(t) is of the type (c) and the theorem is proved.
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Remark 3. The above Theorems 3 and 4 allow to pronounce Theorem 2 for
a >0 but such an assertion would give empty information in the case 0 <a <1.
_ Namely, by Theorem 1 in [5] we know that for 0<a <1 all solutions of (1) are

oscillatory if and only if J' *(t)p(t) dt=», and by [2] equation (1) has

a nonoscillatory solution of the type (b) if and only if J °(t)p(t) dt <. Then,

just for @ =1 equation (1) can have non-oscillatory solutions only of the type (c),
or only of the type (a).
Example 1. Consider the equation

u”(t) + 4% u7/3(t3/7) — O.

It is easy to see that assumptions of Theorem 2 are satisfied for this equation
(P(t)=%ifb‘= 1). Thus, by Theorem 2, every non-oscillatory solution of the

above equation is of the type (c). One of such solutions is u(t)=1t"2.

We start the following part of the paper by two preliminary lemmas.
Lemma 2. Let u(t)e Cir, - and let
u(t)>0, u'(t)>0, u"(t)<O0 for te[T, ).
Then for each k € (0, 1) there is a T, =T such that

u(t(t))=k # u(t), t=T..

Proof of Lemma 2 may be found in [1].
Lemma 3. Let u(t)e Cir,« and let
u(t)>0, u'(t)>0, u"(t)<0 for te[T, ).
Then for each ke (0, 1) there is a T.= T such that
u(t)=ktu'(t), t=T..
Proof of Lemma 3 may be found in [6].

Theorem 5. Let a>1 and let

f "[ j " (0)p(x) dx]m_u ds <o, @)

Then every solution of (1) is either oscillatory or of the type (a).
Proof. To prove Theorem 5 we show that if (1) has a non-oscillatory solution
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u(t) and the assumptions of Theorem 5 are fulfilled, so the solution u(t) is of the
type (a).

Let u(t) be a non-oscillatory solution of (1), e.g. such that u(¢)>0, u(z(t))>0
for t=t;=t,. Then u'(t)>0 and u"(t)<O0 for t=t, and by Lemmas 2 and 3 we
know that for any k € (0, 1) there is t,=t, such that for t=1t, we have

u(r(t)) = kr(t)u'(t). (5)
Now, if we estimate u(t(t)) in (1) by (5), we obtain
u"(t)+ kep()r*()(u'())* <0, t=t,.
Sinée u'(t)>0 for t=t,, from the last inequality we have

(,f,"((,‘))),,s—k“r"(r)p(t). ©)

If we put u'(t)=1z(¢t) and z'7*(t) = v(¢), then v'(t)=(1—a)z7*(t)z’(t) and we
can write the inequality (6) in the form

v'()=ct*()p(1),

where ¢ =(a—-1)k*>0.
Integrating this inequality from ¢, to ¢(t=1t,) we have

v()=zv(tL)+ cJ" *(x)p(x) dx,
or

W@Oy=c[ e dx, )

because v(t) = (u'(t))'~*=0. Since a >1 and u’(t) >0, the inequality (7) gives
e

u'()< [CJ: °(x)p(x) dx]

and integration from t; to t (t>t;> 1) yields

u()<u(t:)+cv= J: [J" *(x)p(x) dx]Ti: ds.

n

Now we see that the non-oscillatory solution u(t) of (1) is bounded, i.e. u(t) is of
the type (a). This completes the proof.
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HEOCUUIIIUPYIOIIUE PEWIEHU A TP PEPEHIIMATIBHOI'O YPABHEHU A
BTOPOT'O ITOPAJKA C 3AITA3JIbIBAHUEM

Jan Ohriska

Pesome

B pa6ote paccmatpuBaetcs guddepenHnmansHoe ypaBHeHue
w'()+p(Ou(z(t))=0, xne p(t)=0wu t(t)<t.

IIOKaSlaHO HECKOJILKO TEOpEM 06 HEOCUWUIMPYHOLIUX PELIICHUSAX OMNMpEAc]ICHHbIX TUNOB
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