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NOTE ON THE INTEGRAL WITH RESPECT
TO THE PRE-MEASURE

ANNA KOLESAROVA

In [1] the integration process was defined with respect to the pre-measure
(non-negative, monotone, in an empty set vanishing set function) and it was shown
that the integrability of the function |f| implies the integrability of f. In [2] it was
proved that the integrability of f and |f| is equivalent for a wide class of
pre-measures, namely for strong submeasures (for definitions see below). The
question arises whether this equivalence holds in the case of the general pre-measu-
re too. We give an example which shows that the answer to this question is in
general in the negative. Our pre-measure will be a continuous strong supermeasure.

First we recall the definition of the integral given in [1]. Let (X, ¥) be
a measurable space and let u be a pre--measure on &. Let & be a family of all
finite subsets of ( — o, o) which contain zero. Let Fe & with

F={bp,=bn1=...Sbo=0=ac=a,=...Za,.1=a,)}

and let f be an ¥-measurable function.

We put
S( )= 3 (@-a-du((x; fx)Zan+
+l§§:m(bi bi-Du({x; f(x)=b;})

if the right-hand side expression contains no expression of the type o — o,
Since ¥ is directed by inclusion, the triple (S(f, F), %, o) is a net. We put

Iuf= [ f du=lim S(f, F)

if the limit exists. The function f is called integrable iff Iuf is finite.
The properties of Iuf which we shall mainly use are:
"~ (1) Iu is a monotone functional.
(2) If f* and f~ are integrable, then f is integrable and Iuf = Iuf* + Iuf-.
(3) If the function |f| is integrable, then f is also integrable.

Now we recall the definitions of a continuous pre-measure, a strong submeasure
and a strong supermeasure.
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Let (X, &) be a measurable space. The pre-measure p defined on & is

(a) a strong submeasure if
w(AnB)+u(AuUB)=u(A)+u(B)

(b) a strong supermeasure if
uw(AnB)+u(AuB)Zu(A)+ u(B)

for every A and B in &.

We say that the pre-measure u defined on & is continuous if it has the following
two properties '

(1) A/A > u(AL)/u(A)
(2) ANA, p(A)<® o u(A.)\p(A)
for Ae¥ and A, €%, n=1, 2,3, ...

Further we shall need the following lemma, which is an easy consequence of
Lemma 1 proved in [2].

Lemma 1. Let u be a finite measure on &. Let f be a real valued, increasing,
convex, continuous function with f(0)=0. Then the set function v defined on & by
v(A) = f(u(A)) is a continuous strong supermeasure.

Before we give the promised example we shall prove this lemma.

—i—,%>, let B(X) be the family of all Borel subsets

of X and p the Lebesgue measure on X. Let g be a function defined by

Lemma 2. Let X=<

g(x) = exp (—i— for x € (0, ©) and g(0)=0. Then the set function v defined
on B(X) by v(A) = g(u(A)) is a continuous strong supermeasure on B(X).

Proof. Itisclear that 0=pu(A) é% for every A € B(X). Since g is a continuous,

convex, increasing real function on the interval <0, -;—> with g(0)=0, by Lemma 1

we get that v=g(u) is a continuous strong supermeasure on B (X).
Now we give an example which shows that in the case of the integral with respect
to the pre-measure the integrability of f and |f| is in general not equivalent.

Example. Let X=< 1 l>. Put

T3

exp (%) xe(O, %>
f(x)= —Zx (__1_ x=0_l

P Zx) A\ Tw 0)
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Let v be a continuous strong supermeasure on B(X) from Lemma 2. Then the
function f is integrable on X with respect to v and |f| is not integrable.

Proof. Let h be a function defined on <O, %> by

0 x=0
=4 k+1 1 >k>8
h(x)= xe(Zln(k+1) '2Ink
8 xe<21n8 4>

The range of h is the set H = {0, 8,9, ...}. Since the function h is non-negative, Lh
exists. It is easy to see that

Lk =lim [8"((0, %» 1_9"«0’ 2In (11 ~ 1)>)]

—8exp( 4)+llm2exp< ———i——-):
2In(i—-1)

=8 exp (- 4)+hmi (_il?)=

k i=9

B =1 &1
—86Xp(—4) gk— EF
—8exp( 4)+ g 1

Hence h is integrable on <0, %>

Since in the interval <O, %>f* =f=h and I, is a monotone functional, f* is also

integrable on '<0 %) As f*=0 on <—%, 0> we get that f* is integrable on X.

The integrability of f~ can be shown similarly.

Since f* and f~ are integrable on X, by the property (2) of I, we get that fis
integrable on X.

To show that [f| is not integrable it is enough to find a function ¢ defined on X
with 0= @ =|f| and I = .

Put
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11 1 1
7 "G< 3 21n8>u(21n8’4>

1 1 1 1
1 =<l sk i) £
?(x) *\ "2k 2D/ Bnmkr ) 2k K38

0 x=0

Since @ is non-negative, L@ exists. It is clear that

L =lim 2 (=G=-Dv({x; e(x)=i}) =

1=i=k

=7 exp (=2)+lim > exp(——;——)
k

8=i=k
2Ini
) |
=7 exp (=2)+lim > 14 exp (=2)+ D, +
k s=i=k &k

Using the fact that the series Z 1 is divergent we have I, = + o, which means
k=8

that @ is not integrable on X with respect to v.
Thus we found a function @ defined on X with the properties

0=@=|f] and L@=+x.

Hence we have L |f| = + o because I, is a monotone functional. This implies that
|f] is not integrable on X with respect to v.
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3AMEYAHHUE K UHTEI'PATY 11O INPEOMEPE
Anna Konecaposa

Pesome

B craThe NpHBEACH MPHMEP, KTOPbIl MOKA3LIBAET, YTO [/ MHTETPaNa Mo NMpeAMepe, BBEACHHOrO
B [1], He BepHO, 4TO byHKUMA [ MHTErpupyema TOTAA M TOJNbKO TOTAa, Korma |f| umrerpHpyema.
BrInenpuBee HHbIIA IPUMEP NIOKa3bIBAET, YTO CYLIECTBYET (PYHKIMSA f U IPEAMEPA (4, YTO MHTETPaK OT
f mo u cymecrsyer, no dyHkuus |f| yxe He uHTerpHpyema.
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