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ON FACE VECTORS OF TRIVALENT
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Dedicated to Professor E. Jucovi¢ on his
sixtieth birthday

1. Introduction

A map M on T, will be understood to mean a 2-dimensional topological
complex whose union of cells forms an orientable surface T, of genus g. (For the
definition of a complex see Griinbaum [4]; cells of a topological complex are
topological analogues of those of a complex). It can be easily shown that the graph
of M is 3-connected. The 2-cells (1-cells, 0-cells) will be called faces (edges, or
vertices, respectively). A face (vertex) of M incident with i vertices is called an
i-gon (i-valent vertes) of M. Let p;(M) (or v;(M)) denote the number of i-gonal
faces (or i-valent vertices) of M. A sequence of integers

(p(M)]i=3) (A)

associated in a natural way with a map M on T, is the face vector of M. The vertex
vector of M is defined analogously. (We note that from the definition of M there
follows p:(M) = p(M) = vi(M) =v,(M)=0.)

The present paper is concerned with face vectors of trivalent maps (i. e. maps for
which v,(M)=0 for i#¥3) on an orientable surface T, of genus g for all
nonnegative values of g.

The well-known Euler formula as applied to elements of (A) for trivalent maps
leads to the following condition

3 (6= p(M)=12(1-g). (1)

An interesting property of (1) is that it gives no information about the values of
Ps(M). This brings up the following
Problem: We have a sequence of nonnegative integers

p=(p|3<i#6)
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and a nonnegative integer g such that
3 (6-)p=12(1-g). )

The sequence p and the number g determine the set P(p, g) of all nonnegative
integers such that the sequence p with any element of P(p, 9) added as ps is the
face vector of a trivalent map on T,. The problem is one of the characterization of
P(p, g) for all pairs (p, g).

For g =0 the above problem is equivalent to the same problem for trivalent
convex polyhedra (cf. [4], [9], [15]). Various aspects of solutions of this problem
have been investigated by several authors, e.g. Eberhard [2], Fisher [3],
Griinbaum [4, 5, 6], Griinbaum—Motzkin [7], Jendrol [9], Jucovié
[12, 15], Kraeft [16], Malkevitch [17].

The author of the present paper has obtained the following result for g =0 (cf.

[9D):

Theorem 1. Let p =(p;|3<i+6) be a sequence of nonnegative integers satisfy-
ing (2) for g =0.

@ If > p<2 and 3 p;=0(mod?2),
3<iw0 (mod 3) 3<j6

then there exists a nonnegative integer d such that the set P(p, 0) contains every
even integer =d and no odd numbers.

) If > p<2 and Y p=1(mod?2),

3<im0 (mod 3) 35j%6
then there exists a nonnegative integer d such that the set P(p, 0) contains every
odd integer =d and no even numbers.

(iii) If > ) p: =3, then there exists a nonnegative integer d such that the

3<i®0 (mod 3
set P(p, 0) contains every integer =d.

Certain properties of Ps(p, 1) are discussed in Fisher [3], Griinbaum [5] and
Jendrol—Jucovié [10]. Barnette [1] and Jucovi¢ [13] uave found two
distinct lower bounds for the number m =min {ps: ps€ P(p, g)} as functions of
the elements of p and the number g for any pair (p, g).

In [11], the authors treat the above problem in a more general way. For trivalent
maps their result yields

Theorem 2. The set P(p, g) is empty if and only if g =1 and p = (p:|ps = p =1,
pi=0 for i#5,7).

For a somewhat related result see Jucovié [14, 15].

The aim of the present paper is to find a characterization of P(p, g) for all pairs
of (p,g) with g=2 and to prove that (as opposed to the case g=0, see
Theorem 1) the number of nonnegative integers which are not members of P(p, g)
is finite for each pair (p, g) where g =2. The result is contained in

368



Theorem 3. For every sequence of nonnegative integers p=(p:|3<i+6) and
every g =2 satisfying the condition (2) there exists a nonnegative integer d such
that the set P(p, g) contains every integer =d.

The situation for toroidal maps (i. e. for g=1) is given by

Theorem 4. Suppose that the sequence of nonnegative integers p = (p;|3<i#6)
satisfies the condition (2) with g=1.

() If 26 Di¥2, then there exists a nonnegative integer d such that P(p, 1)
3<is%
contains every integer =d.
(ii) If ps=p,=1, p;=0 for i#5,7, then P(p, 1) is empty.

(iii) If ps=ps=1, p;=0 fori+4,8 or ps=py=1, p;=0 for i+3, 9, then there

exists a nonnegative integer d such that P(p, 1) contains every even number =d.

2. Basic construction elements and certain existential lemmas

In this chapter we shall prove certain existential lemmas valid for all maps and an
orientable surface of genus g for every nonnegative g (i. e. not only for trivalent
maps).

Consider a map M with the sequences p = (p;|i =3) and v =(v;|i =3) as the face
vector and the vertex vector, respectively. The trivial equation >, ivi=, ip; yields

i3 i=3

a useful relationship

vs =§ (33, iv.~> : 3)

i=3 i=4

Fig. 1a Fig. 1b

Basic construction elements: The face-aggregate of a map M as in Fig. 1a
(or its mirror image), or 2a, or 3a called an A, configuration, or a B,, con-
figuration, or a C,, configuration consists of an m-gon, m =6, two hexagons and
one quadrangle, or of an m-gon, m =6, two hexagons and two quadrangles, or of
an m-gon, m=6, two hexagons and three quadrangles, respectively; the men-
tioned m-gon will be called a basic face of a configuration. (We note that in the
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sequel i, j, k, m, n, t, w mean nonnegative integers. We shall denote in the figures
the size of every nonhexagonal face excluding faces of the X configurations,
Xe{A.,Bn., C,,D,E, F, G}, bounded by heavy lines; hexagons are to be
denoted only in more important cases.)

m m+2
. 4
6 6 6 2 6
4 6
Fig. 2a Fig. 2b
m m+2
S . Se
S, S, ﬁ
6 4 6 6 6
S S 6
AR > 4

Fig. 3a Fig. 3b

Basic construction steps: A basic construction step transforms a starting
map M into a map M’ ; it uses the presence of the X,, configuration, X € {A, B, C},
in M (see Figs. 1, 2, 3). For the map M’ we have p,(M’)=ps(M)+1, p,...(M’) =
Pmi2(M)+1, p(M')=p,(M), j¥4,6, m, m+2 and ps(M')=ps(M')+z (z=2,3
or 7 for X=A, B or C, respectively), p,.(M') = p.(M)—1 (if m#6) or ps(M') =
ps(M)+z—1 (if m=6). For continuing the construction it is important that
transforming an A, configuration (a B,, or a C,, configuration) we get a B,..»
configuration (a C,.., or an A,,,, configuration) and a B¢ configuration (a Cs or an
A¢ configuration, respectively) (differing only in their basic faces). If an
(m+2)-gon is needed, we use the basic construction step to the X, configuration ;
if not, use the X,., configuration producing an (m+4)-gon. Note that the
transformation of a C,, configuration yields a new Cs configuration face-disjoint
from A,.., and A, configurations (see Fig. 3b); this C, configuration is not used in
basic construction steps.

Let M=M(q, v, g, a, b, c) be a map on an orientable surface T, of genus g
with the following properties:
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(i) The sequences q =(q:|i=3) and v = (v;|i =3) are the face vector and vertex
vector of M respectively.

(ii) M contains as submaps at least a As configurations, a=0, b Bs con-
figurations, b=0, and ¢ Cs configurations, ¢=0, such that all mentioned config-
urations are pairwise face-disjoint.

A very useful transformation of a map M into a map M’ called the replacing of
edges by hexagons will now be described (cf. [4], [11], [15]). In this transformation
every edge of M is replaced by a hexagon in such a way that a pair of neighbouring
faces in M consisting of a k-gon K and an /-gon L is replaced by a k-gon K’ and an
l-gon L' in M’ which are separated by a hexagon. The vertices of K’ and L’ are
trivalent and at the same time to every w-valent vertex of M there corresponds in
M' a w-valent vertex in the same position which is incident with w hexagons (cf.
Fig. 4a where the original map is drawn by dashed lines). This transformation will
be designated in the sequel as an ‘‘e-transformation”.

The e-transformation changes configurations A,,, B.., C,., m =6, into configura-
tions which will be designated as €(A,.), €(B,.) and &(C,) respectively. Fig. 4b
shows an €(Cs) configuration.

Auxiliary construction elements: The configurations whown in Fig. 5 will
play an important role together with the basic construction elements. The
configuration shown in Fig. 5a will be designated as a D configuration and its
mirror image as a D’ configuration. Figs. 5b, Sc and 5d show configurations which
will henceforth be designated as E, F and G configurations respectively.

Note that the map €(M), which is a result of using the e-transformation on
a map M containing a Cs configuration, will contain an E configuration as a part of
£(Cs). Analogously, (M) will contain an F configuration if the original map M has
contained a pair of adjacent quadrangles.
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Lemmal. a(ae{l,2,...,27};cf.[9, p. 172, Lemma 3a]). Let f =(f;|i=7) be
a sequence of nonnegative integers with a finite number of nonzero elements and
let

j=6+;(i—6)f.~.

If there is a map M=M(q, v, g, a, b, c) with a+b+c#0, then there is
amapM'=M(q’,v', g, a’, b', c') with
q'=(qilgi=as+53, qi=qs+ss, q5=gs+Ss, gs=qs+ s,
qi=gq; forall i=7)
v =(cilvi=v forall i#3; v5=%(2 iqﬁ-—Eiv{));
i=3 i=4

for the values s;, si, Ss, a', b', ¢’ see Tablel, ae{l,2,...,9} if a#0;
aef10, ..., 18} if b#0, ae{19,...,,27} if c#0. The value ss is a constant
depending on the sequence f.

Fig, 5¢ Fig. 5d

Lemma 2. a (a€{1,2, 3, 4}) If there is a map M=M(q, v, g, a, b, ¢) with
c¢#0, then there is a map M =M(q', v, g, @', b', ¢') where for

a=1. ¢'=(4lq;< g, forall i+6, qi=qs+21),
v’=(02|v;=v., forall i#3, vi=v;+41)
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Table 1

a j S3 A Ss a' b’ ¢
1. 6k 0 3k-3 0 a b c+k-1
2. 6k+1 1 3k—-4 0 a—-1 b c+k-1
3. 6k+1 0 3k-3 1 a—1 b c+k-1
4. 6k+2 0 3k-2 0 a-1 b+1 c+k-1
5. 6k+3 1 3k-3 0 a b c+k-1
6. 6k+3 0 3k-2 1 a—-1 b+1 c+k-1
7. 6k+4 0 3k-1 0 a—1 b c+k
8. 6k+5 1 3k-2 0 a-1 b+1 c+k-1
9. 6k+5 0 3k—-1 1 a—1 b c+k-1
10. 6k 0 3k-3 0 a b c+k-1
11. 6k+1 1 3k—-4 0 a+1 b-1 c+k—-1
12. 6k+1 0 3k-3 1 a b—-1 c+k-1
13. 6k+2 0 3k-2 0 a b-1 c+k
14. 6k+3 1 3k-2 0 a b c+k-1
15. 6k+3 0 3k-2 1 a b-1 c+k-1
16. 6k+4 0 3k—-1 0 a+1 b-1 c+k
17. 6k+5 1 3k-2 0 a b—-1 c+k
18. 6k+5 0 3k-1 1 a b-1 c+k
19. 6k 0 3k-3 0 a b c+k-1
20. 6k+1 1 3k—4 0 a b+1 c+k-2
21. 6k+1 0 3k-3 1 a b c+k-2
22. 6k+2 0 3k-2 0 a+1 b c+k-1
23. 6k+3 1 3k-3 0 a b c+k-1
24, 6k+3 0 3k-2 1 a b c+k-1
25. 6k+4 0 3k-1 0 a b+1 c+k-1
26. 6k+5 1 3k-2 0 a+1 b c+k-1
27. 6k+5 0 3k-1 1 a b c+k-1

where t is a nonnegative integer and a’=a, b’'=b, ¢'=c, or for

a=2. ¢'=(qilgi=q:+2, gi=q.—3, qi=q, forall i=5),

and a'=a, b'=b,

v'=vivi=vs—2, vi=v forall i=4)

¢'=c—1 or for

a=3. ¢'=(qilgs=q:+1, qi=qs—2, g5=gqs+1, gs=qs—1,

qi=q: forall i=17),
v'=ivi=v:—2, vi=v vorall i=4)

anda'=a, b’=b, ¢'=c—1 or for

a=4. ¢'=(ql|gi=q:+1, qi=qs—3, q's=qs+3, gi=qs—3,
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q,=gq; forall i=7)
v' =(v/|vi =vs—4, vi=v forall i=4)
and a’=a, b'=b, ¢'=c—1.

Proof. Fora=1, 2, 3cf.[9, p. 173]. For a =4, the modification of Cs necessary
to obtain the map satisfying the statement of the lemma is shown in Fig. 6 (cf. also
Fig. 3a).

3

Fig. 6 Fig. 7

Lemma 3. (cf. [9, p. 174]). If there is a map M= M(q, v, ¢, a, b, ¢) with b#0,
then there is a map M'=M(q’, v', ¢, a, b—1, c), where
' =qla=a+1, ¢i=q.~2, ¢i=qs+1, G%i=4q:—1, qi=aq;
forall i=7) and
v =(vilvi=vs=2, v|=v; forall i#3).

Lemma 4. If there is amap M= M(q, v, g, a, b, c) with at least one D (or D)
configuration, then there is a map M’=M(q’, v', g, a, b, ¢) with the same
number of D (or D') configurations and such that

q'=(qilqi=q: forall i+6, qi=qs+t, where t=0,1,2,...)
and
v'=(vivi=v forall i=4, vi=uv;+21).

Proof. Fig. 7 shows how to obtain one hexagon by inserting one edge into
a D configuration. Note that no other changes outside the D configuration occur in
the map.

Lemma 5. If there is a map M=M(q, v, g, a, b, ¢) with at least one E
configuration face-disjoint from A4 configurations of M, then there is a map M’ =
M(q', v', g, a, b, ¢) with the same number of E configurations such that

q'=(qilq;=q: forall i+6, q;=qs+4t, where t=0,1,2,...)
v'=(vi|vi=v forall i#3, vi=uv;+81t).
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Proof. Fig. 8 shows the modifications made inside the E configuration which
add four hexagons so that another E configuration results. Repeating this ¢ times

leads to M'.
’9

v
o

Lemma 6. a (ae{1, 2}) If there is a map M= M(q, v, g, a, b, c) with at least
one F configuration face-disjoint from a As configurations, then there is
amap M'=M(q’, v', g, a, b, c) with one less F configuration and such that for

a=1. q'=(q!|qi=q: forall i+4,5,6, qgi=q.—2, qi=qs+4,

qé=qs—z, where z=3,4,5 or 6) and

v' =(vi|vi=v; forall i#3, v3=% (2 iqi—> ivi))
i=23 i=4
or for
a=2. q'=(q!|qi=q: forall i#4,5,6, qi=q.—1, qs=qs+2
qs=qs—z where z=1,2,3,4) and
v'=ilvi=v forall i=4, v§=% (2 iq;—zz'v;)).

i=3 i=4

> P “
'p‘ﬂ AR
L) < q
Of¢ A B
Fig. 9a Fig. 9b Fig. 9¢ Fig. 9d

Proof. Figs. 9a to 9d show the modifications made to an F configuration of M
leading to M’ for a =1 (without the dashed lines) or a =2 (with them).

Lemma 7. If there is a map M= M(q, v, g, a, b, c) with at least one G
configuration face-disjoint from a A¢, b Bs and ¢ Cs configurations, then there is
a map M'=M(q’, v', g, a, b, c) with one less G configurations such that
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q'=(q!lqi=q: forall i+4,5,6, qgi=q,—1, qi=qs+2, qi=qs—2)
v'=(vi|vi=uv forall i=4, vi=v;-2).

Proof. Note the difference between the G configuration in Fig. 5d and its
modification in Fig. 10.

Fig. 10

Lemma 8. If there is a map M= M(q, v, g, a, b, ¢) containing at least two
face-disjoint D configurations face-disjoint from a As, b B¢ and ¢ Cs con-
figurations, then there isamap M'=M(q’, v', g +1, a, b, ¢) containing two less
D configurations such that

q9'=(qilei=q:—-2, qi=q.—2, ¢5=qs—2, qi=gq; forall i=6) and
v' =vi|vi=uv, i=4, vi=v,—-8).

Proof. Designate the vertices of the first (second) D configuration S,, S,, ..., Ss
(or Si, S;, ..., S¢ respectively) as shown in Fig. 5a. By cutting out two regions
bounded by graph circuits S;S; ... S¢ and S;S; ... S¢ we obtain two holes in T,.
“Gluing” together these holes by identifying vertices S;and S;_;, i=1, 2, ..., 6, and
the corresponding edges we obtain the required map M’ on T,,,; for which
qi:(M) = g; for all i =6. Note that the gluing together neither disturbs the structure
of the remaining faces nor creates new ones.

Lemma 9. If there is a map M= M(q, v, g, a, b, c) with c=2, then there is
amapM'=M(q',v', g+1, a, b, c—2) such that

q'=(q!lqi=q; forall i#4, qi=q.—6) and
v'=(vilvi=v, forall i=4, vi=v;—8).

Proof. Choose two face-disjoint Cs configurations in the map M on T,. Label
the vertices incident with the quadrangles of the first (second) one S,, S,, ..., Ss and
Si, Sz, ..., Ss, respectively. This is shown in Fig. 3a. Cutting out the regions
bounded by the graph circuits S;S, ... Ssand S;S; ... S; (regions consisting of three
quadrangles each) we obtain two holes. By identifying the vertices S, and S, where
s=1,2,...,,8 and t=s5+6 (mod 8) as well as the corresponding edges we obtain
the required map M'=M(q’, v', g +1, a, b, c—2) on T,.,. The gluing together
destroys six quadrangles; no other face changes its type.

376



Lemma 10. If there exists a map M= M(q, v, g, a, b, c) with at least two
face-disjoint E configurations face-disjoint from a As, b Bs and ¢ Cs con-
figurations, then there exists amap M’ =M(q’, v', g +1, a, b, ¢) with two less E
configurations and such that

q'=(qilqi=q: forall i#4,6, qi=q.—6, qi=qs—4)
v'=(vi|vi=v forall i=4, vi=v,—16).

Proof. Choose two face-disjoint E configurations in M. Label the vertices of the
first (second) one S,, ..., S;s and Sj, ..., Sis, respectively, as in Fig. 5b. Cut two
holes in T, bounded by circuits S;S. ... S;s and S;S; ... Sis. Identify vertices S, and
S;, where s=1,2, ..., 16, t=s+4 (mod 16), as well as the corresponding edges.
The result is the required map M’ on T,., with qi(M)=q;(M) for all i#4,6,
q:(M') = q(M) — 6, qs(M) = qs(M) —4.

3. Proof of Theorems 3 and 4

First we shall prove two lemmas.
Lemma 11. Let p=(p;|3 <i#6) be a sequence of nonnegative integers satisfy-
ing condition (2) with some g, g =0, and condition

ps=4,orps=2andp,=1. (4)

Then there exists a number d such that P(p, g) contains all integers =d.
Proof. First we shall prove the lemma for those sequences p = (pi|3< i+ 6) for
which

3ps+2p,+ps#5. (%)
Put
j=6+> (i—6)pi=6k+r 6)
i=7

where k, r are nonnegative integers such that 0<r<S5.
We shall now consider the following nine cases:

1. r=0 2. r=1 and p;#0 3. r=1 and p;=0
4. r=2 5. r=3 and p;#0 6. r=3 and p;=0
7. r=4 8. r=5 and p;+0 9. r=5 and p;=0

Note that by (2) and (6) ps is odd in the cases 3, 6 and 9.

We shall prove Lemma 11 for one case only ; for the other eight cases the proof is
analogous and we shall limit our consideration of these cases to the numbers of
lemmas which must be used. ‘

Consider, e. g., case 2, i.e. r=1, p;#0. The proof of the existence of the
corresponding maps starts with the map M, shown in Fig. 11a, where M,=
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M(q° v° 0, 1,0, 1). This map contains a pair of adjacent quadrangles face-disj-
oint from Cs and A, configurations. Its face vector is ¢°=(q¢|q? =0 for all i# 4, 6;
q%=6, q¢=10). We shall not write the vertex vector since we are dealing with
trivalent maps and for them v3=% (2 iqi). By Lemma 1.2, since there exists the

i=3

B ARAE
— 3
6

5

Fig. 11a Fig. 11b

map M, (with its A, configuration), there also exists a map M,=
M(q*, v, 0,0, 0, k) such that ¢'=(q3=1, qi=3k+2, q5=0, qi, qi=p: for all
i=7). For our case

_3ps+2p,+ps+12g-7

k

by (2) and (6). Lemma 2.2 is now applied [Lz_l] times to the map M, ; if p; is

even (so that by (2) and (6) ps is odd), Lemma 2.3 is applied afterwards. We obtain
amap M, =M(q? v? 0, 0, 0, ¢*) such that it contains a pair of adjacent quadrang-
les (outside any of the ¢* C, configurations) and if p; is odd (and therefore ps
even), then g2 =(q?|q3=ps, ¢3=3c*+2, q}=0, q2, q?=q! =p: for all i=7) where

c2=% (2ps+ps+12g—4) or if p; is even (and therefore ps odd), then
?=(q%d3=ps, 43=3c3+3, qi=1, q2, qi=p forall i=7)

and c2=é (ps+ps+12g-—7).

The e-transformation is now used on the map M,, i. e. every of its edges is
replaced by a hexagon. This gives us a map M;=¢e(M,)=M(q> v> 0,0, 0, 0)
which contains one F configuration obtained from the pair of adjacent quadrangles
which have been contained in M, and ¢* €(Cs) configurations formed from the Cs
configurations of M,. The face vector of M, is
a*=(q}|q?=q? for all i=3, i#6, qgo=d’, where d’ is a constant).

If ps=4 (or ps=2 and p,=1), we change M; further by applying Lemma 6.1 (or
6.2, respectively) to its F configuration and Lemma 5 to one of its E configurations.
This gives us a map M, = M(q*, v*, 0, 0, 0, 0) with ¢? £(Cs) configurations whose
face vector is

q*=(qilqt=p; for all i+4,5,6, i=3; qi=qi—2 (or gi=qi—1);
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qs=q3+4 (or gi=q3+2, respectively); gé=d*+t, t=0,1,2,...; d* is a
constant). A

Applying Lemma 10 g times to g pairs of E configurations in M, (they are
contained in the £(Cs) configurations — cf. Fig. 4b and Fig. 5b) leads to a map

=M(q% v% ¢, 0,0, 0) on T, which contains ¢*—2g &(Cs) configurations and

whose face vector is

q¢°=(qilqi=p: for all i=3, i#4,5,6; qi=qi—69, qg3=q5, qi=d’+1, t=
0, 1,2, ..., d° is a constant).

Note that three pairwise face-disjoint G configurations are contained in an £(Cs)

5

configuration. Applying Lemma 7 to Ps ) % G configurations of Ms, we obtain
a map Ms=M(q, v, g, 0, 0, 0) where q=(q:|q:=p; for all i=3, i#6, gs=d+1,
t=0,1, 2, ...; dis a constant). This map satisfies the statement of our Lemma 11.

The remaining eight cases are handled analogously. To prove the existence of
a map with the required properties we start with the map shown in Fig. 11a using its
As configuration and a pair of adjacent quadrangles. For the case a,
ae{l,3,4,...,9}, we use Lemma 1. a. In all cases we continue by applying
Lemma 2.2, then at most one of Lemmas 2.3 and 3, the e-transformation,
Lemma 6.1 (or 6.2 if ps=2 and p,=1), Lemma5, Lemma 10 and finally
Lemma 7.

Suppose that 3p;+2p,+ ps=S. To prove the existence of a map with the
required properties we again start with the map in Fig. 11a, regarding it now as
a map with two Cs configurations, i. e. a map M,=M(q° v° 0, 0, 0, 2) where

q3°=(q?|q?=0 forall i#4,6; q3=6; q2=10).

Applylng Lemma 1.27, we obtain the map M, = M(q’, v', 0, 0, 0, 2g) such that
= (q}|qi=p for all i=3, i#4,5,6; qi=6g+2, qi= 1 qi=d', where d' is

a constant) This map will also contain a configuration such as that shown in
Fig. 11b (cf. [9]). Replacing every edge of M, by a hexagon (i.e. by using
e-transformation), we obtain a map M, = M(q?, v, 0, 0, 0, 0) with 2g E configu-'
rations and one F configuration and with g —(q,lq, qi for all i=3, i#6, q2).
Using Lemma 6.1 (or 6.2) together with Lemma S and then Lemma 10 (g times),
we obtain the desired map.

Lemma 12. Consider an integer g =1 and a sequence of nonnegative integers
(p:|3<i#6) satisfying (2) and the conditions
(i) ps=0,1, or ps=2,3 and p,=0
(i) if 9=1, then the sequence does not satisfy the condition

> pi=2.

3<i%6
Then there exists a constant d such that (P(p, g) contains every integer =d.
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Proof. To prove our Lemma it is necessary to consider a large number of
possibilities. We shall limit our description to the construction of the initial maps
M, to which we then apply Lemmas 1.1 to 10 described above. The map M, =
M(q° % 0, a° b° c°) will contain two face-disjoint D configurations and will be
such that a®+ b°<1, q°=(q?|q? <p forall i=7, q3< p;, q3< ps, q2 = d° where d°
is a constant, q2=6+% 2 (i—6)q?> .

3<i#4

To this map M, we apply a suitable Lemma 1. a, a=1,2,...,27 in such
a way that for the elements of the sequence (fi|i=7) mentioned in these
lemmas f;=p,—q?, i=7. We obtain a map M, to which Lemma 4 is applied.
For the resulting map M, =M(q? v?, 0, a?, b? c?) we have q*=|(q?|q}=p: for
all i=7, qi<ps, qi<ps, qg¢=d*+t, t=0,1,2,...; d* is a constant,
q3=6+% > (i—6) q?) . Applying Lemma 8 and then Lemma 9 g—1 times

3s1#4

leads to a map M;=M(q’ v° g, a® b* ) on T,- [%] applications of
Lemma 2.2 and an application of at most one of the Lemmas 2.3, 2.4, 3 and 7
leads to a map on T, which will have the required properties. The whole method
of proof is analogous to that for Lemma 11.

Consider the following eight cases:
1. ps=0, p,=0, p;=0 (mod 2) 2. ps=0, p,=0, p;=1(mod 2)
3. ps=1, ps=0, ps=0(mod2) 4. ps=1, p,=0, p;=1 (mod 2)
5. ps=2, pa=0, p;=0 (mod 2) 6. ps=2, p,=0, p;=1(mod 2)
7. ps=3, ps=0, p;=0 (mod 2) 8. ps=3, ps=0, p;=1(mod 2)

Note that by (2) the number of odd-gonal faces with =7 edges is even for cases
1,4,5 and 8 and odd for the remaining cases.

Case 1. Let Y p2i.1#0; therefore > pyi.i=2. For p,#0 we obtain the

i=3 i=3

starting map from the map shown in Fig. 12a. This map contains a 7-gon and an A,
configuration which we shall use to obtain another odd-gon with at least 7 edges by
the elementary step method described in Chapter 2 of the present paper. If still
another 7-gon is required, it is easy to find an A¢ configuration in the map of
Fig. 12a. In this case the map in Fig. 12a is already the initial map M,.

If p,=0 and ), psis1#0, then the starting map is obtained from the map of
i»2

Fig. 12b. This map contains C,; and A, configurations. These will be used to obtain
the required pair of odd-gons in such a way that the C,; configuration is used to
obtain the required (6i+1)-gon, i=2, and the A, configuration for the other
odd-gon.
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Suppose that .;21 Peis1=0and ; Psis3#0. If po# 0, we start with the map shown
in Fig. 12c, if p,=0, then Fig. 12d shows the starting map.

I If ‘;21 Deis1 =§1 Pei+3=0, then Dzl Dsi+s =2 and we start the construction of the
initial map from the map in Fig. 12e. If no odd-gons with =7 edges are required,
then Fig. 12f shows the initial map, provided p;,#0. If z p2i#0, then we start

i=7

13

Fig. 12a Fig. 12b

Fig. 12¢ Fig. 12d

A 10
4 T 6
4 4/,

Fig. 12¢ Fig. 12f

with the map in Fig. 13a. For > pa=0 the condition (2) together with the

5<i%*6

conditions of the lemma allows only the following possibilities: > p, =0 — the
i=4

initial map is shown in Fig. 13b, for ps=2 we use Fig. 14a, for ps=1, p;,=1
Fig. 14b; for ps=0, p:,=2 Fig. 14c. The possiblity ps =0, p:»=1 applies only to
a map on T, with a sequence p=(p:|ps=2, p.=1, p;=0 for i#3, 6, 12). The
initial map for this case is shown in Fig. 14d.
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Cases 4,5 and 8. With the exception of the possibility of p,»=1, p, =0 for all
i=7, i# 12 the starting maps are the same as in the case 1. For cases 4 and 8 and
the above possibility Figs. 15a and 15b, respectively, show the starting maps.
Case 5 excludes the above possibility owing to (2) but allows the possibility of
ps=1, pi=0 for all i=7, i+ 8 with Fig. 15¢ showing the starting map.

1%
. 4
— s .
6
s\ |
Fig. 13a Fig. 13b
12
6
6
8 A 6 A
8
6 \ 4
Fig. 14a Fig. 14b
12
3
12 2
3
Fig. 14c Fig. 14d
12 12 8
ri 3
N /° l° °
Fig. 15a Fig. 15b Fig. 15¢
6
il .
8
6 9 6
3
% : _—
Fig. 16 Fig. 17
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Case 2. In this case we need an odd number of odd-gonal faces with =7 edges.

If D pyis1#0, we use a map in Fig. 16 to obtain the starting map. The map shown
i=5
contains two face-disjoint D configurations, one C: (or Cs if an 11-gon is required)
and one of the necessary triangles. If 2 P2i+1=0, ps=1 and 2 p2i =0, we start
i=25

i=4
with a map in Fig. 17. If p,=2, then Fig. 12c shows the starting map. The case
pPs=pe=1, p;=0for i+ 3, 9 could occur for g =1 but is excluded by the conditions.
Fig. 12a will be used to obtain the initial map if p,=1.

Fig. 18a Fig. 18b

Case 7. The construction of initial maps is analogous to the case 2 except for
the case p,=1. Every map used to obtain the starting maps in case 2 contains
a triangle surrounded by hexagons as in Fig. 18a. Changing the structure of this
configuration as shown in Fig. 18b, we obtain the necessary maps for case 7 except
for the case po=1and p,=0 for all i =7, i#9. Fig. 19 shows the maps necessary in
this case.

9 9
5 =""/s 6 /
6
5 6 |[4]5
Fig. 19
6
5
7 7
7 6
6
Fig. 21a Fig. 21b

Case 3. Here again an odd number of odd-gons with =7 edges is necessary. If

2 D2i+1#0, then the initial map is obtained from that shown in Fig. 20. If
i=q
2 DP2i+1=0, then p,#0. If p,=3, then the initial map is shown in Fig. 21a. If
i=4
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pr=1, then Y p,#0 since by [10] it is impossible that ps=p,=1, p,=0 for all

i>4

i#5, 6, 7. The starting map for this case is shown in Fig. 21b.
Case 6. Here also >, paiv1 #0. If p2isi #0 for some i =6, then the initial map is

i=3

obtained from that shown in Fig. 22.If py=1and Y, p;#0, then we use Fig. 16.

7<i#11

If pjy=1and E p: =0, then Fig. 23 shows the starting map. If 2 Pp2i+1 =0 and
7<i#11 =5

ps=1, then we start with the map shown in Fig. 20. If p,;,, =0 for all i=4, then

p7#0. If p,#0 and p,;# 0 for some i =4, then we start with the map in Fig. 21b; if

p,=3, then with the map in Fig. 21a.

Fig. 22 Fig. 23

Proof of Theorems 3 and 4. Theorem 3 is an immediate consequence of
Lemmas 11 and 12. To complete the proof of Theorem 4, we must consider the

sequences such that >, p,=2. This comprises the sequences
3<i#6

() ps=p:=1, p=0 for i#5,6,7,
(i) ps=ps=1, p,;=0 for i+4,6,8,
(i) ps=po=1, p=0 for i#3,6,9.

By [10] there exists no map on T; with one 5-gon, one 7-gon ar.. hexagons. Thus
P(p, 1) is empty for the corresponding sequence. To prove that for sequences (ii)
and (iii) P(p, 1) contains all even numbers, starting with a certain number it is
sufficient to start with maps in Figs. 24a and 24b, respectively, then apply
Lemma 2.1 and finally Lemma 9.

8 9
: A
3
L|b|4 I 4 l 14 414 41414 414 |4
Fig. 24a Fig. 24b
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For (ii) we have also a decomposition of T; with an odd number of hexagons, but
this decomposition is not a map. For (iii) we conjecture that there exists no
decomposition of T; containing one triangle, one 9-gon and an odd number of
hexagons.

Remark. The results in the present paper have been presented to the
mathematical public in [8].
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O TPAHEBBIX BEKTOPAX KAPT C PEIYJISIPHBIM
TPA®OM TPETBEN CTEINEHU

Stanislav Jendrol
Pe3ome

ITycte M — KJ1eTOYHBIN KOMILIEKC (KapTa) C peryasipHbIM rpacoM TpeThel CTENEeHNH Ha OPUEHTH-
pyemMo# MOBEPXHOCTH poja g. I'paHeBBIM BEKTOPOM KapThl M Ha3bIBaeTCs MOCHENOBATENbHOCTh
(pi(M)), tre p/(M) — 4ucno rpauneit, orpaHUYEHHBIX i peOpamH.

Kaxoit mocnenoBaTenbHOCTH HEOTPULATENBHBIX LENbIX yucen p =(p;|3<i#6) u HeoTpUUATENDb-
HOMY 4HCIy ¢, YAOBJETBODSIOWIMM CIEACTBHIO TeopeMbl Jiinepa (2), CTaBUTCA B COOTBETCTBHME
MHoxecTBO P(p, g), rie anst mo6oro pe € P(p, g) nocnegoBaTeNnbHOCTL p, JOMIHEHHAs pg, SBIASETCS
rpaHeBbIM BEKTOPOM HEKOTOPOTO KJIETOYHOTO KOMILIEKCa ¢ rpahoM TpeThel CTENEeHNH Ha OPUEHTHPO-
BAHHON NMOBEPXHOCTH pofa g. B pabore HalifieHs! HeKOTOpBIe cBOiCTBa MHOXeCTB P(p, g) nnst Bcex nap

. 9).
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