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TWO HEURISTICS FOR THE ABSOLUTE p-CENTER
PROBLEM IN GRAPHS

JAN PLESNIiK

1. Introduction

Given a connected graph G (finite, undirected, without loops and multiple
edges), we denote by V(G) and E(G) the vertex and edge sets, respectively; also
we put n: = |V(G)| and m: = |E(G)). It is supposed that each vertex ve V(G) is
assigned a nonnegative real number w(v), called the weight of v, and each edge
e€ E(G) is assigned a positive real number a(e), called the length of e. For any
two vertices u, ve V(G), d(u, v) is the minimal sum of the edge lengthsof a u — v
path and is called the distance between u and v. This definition can be extended
also to the case when u and v are any two points of a geometric representation
of G (the edges are considered as simple geometric curves with the correspond-
ing lengths). The distance between a vertex ve V(G) and a point set X of G is
d(v, X): = min{d(v, x)|xe X}. A p-set is a set of cardinality p.

Given G and p, the absolute p-center problem is to find a p-set X of G such
that the objective function, the weighted eccentricity of X,

n(X): = max {d(v, X) w(v)}

is minimized. An absolute p-center is any optimal p-set X. The optimal value of
n(X) is called the absolute p-radius. If the stronger constraint X < V(G) is
required, then the problem is referred to as the p-center (or vertex p-center)
problem. The corresponding notions are a p-center and the p-radius.

We can suppose that d(u, v) = a(uv) for any edge uv, because otherwise the
edge uv could be deleted without affecting the optimal weighted eccentricity of
a p-set. Further, it will be assumed that the distance matrix (with entries d(u, v)
for all u, ve V(G)) is available.

Since the appearance of Hakimi’s seminal paper [4] in 1964, the literature on
network location problems has grown rapidly. At present, there are about one
hundred papers concerning p-centers or absolute p-centers (e.g. see [1, 8, 9, 12,
13, 14].

While both problems are polynomially solvable if p is fixed (see e.g. [8]), they
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are NP-hard in general, even in very special cases [3, 7, 8, 10]. Moreover, the
corresponding g-approximation problems are NP-hard whenever ¢ < 2 [7, 10]
(o0 means a worst-case error ratio). On the other hand, there are 2-approxima-
tion polynomial algorithms for these problems and clearly, they are best poss-
ible, unless P = NP. For special cases of the p-center problem see [2, 5, 6] and
for the general case see [11] where we developed a 2-approximation O(n?*logn)
algorithm, called CENTER, for the p-center problem and a 2-approximation
O (mn*log n) algorithm, called ABCENTER, for the absolute p-center problem.

The aim of this paper is to give two faster heuristics for the absolute p-center
problem. In Section 2 we approximate an absolute p-center by a p-center in a
graph obtained by introducing k — 1 new vertices into each edge. This yields a
(2 + 2/k)-approximation O (kmn log kmn) algorithm. In Section 3 we modify
CENTER (from [11]) which results in a 2-approximation O (n*logn) algorithm
for the absolute p-center problem. This paper strongly depends on our previous
paper [11] and the reader shquld consult it.

2. A subdivision approach

Let k> 1 be a given integer. To approximate an absolute p-center of a
graph G, each edge e€ E(G) is subdivided into k new edges of length a(e)/k by
inserting kK — 1 new vertices of weight zero, where a(e) is the length of e. The
resulting graph is denoted by G. Our heuristic is based on the following result;
the special case k = 1 was proved in [11].

Theorem 1. For any absolute p-center A of G and any p-center C of G*), we have

n(A4) < 1(C) < (1 + i) n(A).

Moreover, these bounds are best possible. v

Proof. The left inequality and its tightness are trivial. The right inequal-
ity becomes equality e.g. if G has only one edge uv with length k, w(u) =
=w() =1and p=1. If k is an odd integer, then n(4) = k/2 while n(C) =
= (k + 1)/2. Thus it remains to prove the right inequality.

Let x,, ..., x, be the points of 4. We will show that any point x€A can be
replaced by a suitable vertex of G* without changing weighted eccentricity 7(A4)
too much. We can assume that in every edge uv € E(G) there is at most one point
x € A lying strictly between u and v (otherwise the closest points to u or v can be
replaced by u or v, respectively, and the other points can be deleted without
increasing 17(A4)) and if u, or v, or both belong to A, then there is no other point
- of A lying'on uv (otherwise, such a point can be replaced by v, or u, or deleted,
respectively, without increasing 17(A4)).
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Now we are going to show that if every point x € 4, which is an internal point
of an edge u’v’ of GW, is replaced by u’ or v’ (properly chosen), then n(4) can
increase at most 1 + 1/k times. All the vertices of G are contained in p subsets,
“regions”, S, , ..., Sxp such that for S, the point x; is an absolute 1-center with
weighted eccentricity at most 7(4) (i.e., St = {ve V(G)ld(x;, v) w(v) < n(A4)}).
Clearly, any two distinct points of 4 can be handled separately and thus we can
confine ourselves to one point x€ 4. Let x be an internal point of an edge u'v’
in G such that its ux section contains u’. The region S, can be decomposed into
two sets T, and T, where a vertex y € V(G) belongs to 7, iff a shortest x — y path
contains u; the other vertices of S, belong to T,. If the region S, cannot be
covered in G® by either u’ or v’ without exceeding weighted eccentricity
(1 + 1/k) n(A), then there are vertices u, € T, and v, € T, such that

d@’, v) w(vy) > (1 + 1/k) n(4) 0]
d(v’, up)) w(u) > (1 + 1/k) n(4) 2
(because all the new vertices have weight zero). Since the triangle inequality
holds, inequality (1) yields
[d@’, x) + d(x, v)]w(v) > (1 + 1/k) n(4) >
2 (1 + 1/k)d(x, v;) w(v).

Thus
du’, x) > d(x, v,)/k. . 3)
Fully analogously, (2) yields
dv’, x) > d(x, u)/k. 4
Summing up (3) and (4), we obtain
kdw’, v') > d(u,, x) + d(x, v,). ®)

Clearly, kd(u’, v') = d(u, v) = a(uv) but u, € T, and v, € T,. Therefore d(u,, x) +
+ d(x, v,) = d(u, v) and (5) gives a contradiction. &

Now, given G and k, we can suggest the following approximation algorithm
for the absolute p-center problem.

Heuristic SUBDIVISION

Step 1. Construct the n[n — 1 + (k — 1) m]-multiset D of non-null weighted
distances in G®.

Step 2. Apply the heuristic CENTER [11] to G® (to the multiset D) and output
the obtained p-set B of vertices of G® as a p-set of points of G and end.
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Since it is assumed that the distance matrix of G is available and that
n < O(m), Step 1 can be performed in time O (kmn). Thus (see [11]) Step 2 is
of complexity O(kmn logkmn), which is the overall complexity of SUBDI-
VISION. -

As CENTER is a 2-approximation algorithm, Theorem 1 implies that for
any p-center C of G® and any absolute p-center 4 of G, we have n(B) <
< 2n(C) < (2 + 2/k) n(A). Thus SUBDIVISION is a (2 + 2/k)-approximation
O (kmn log kmn) algorithm for the absolute p-center problem.

Clearly, for K - co SUBDIVISION runs to a 2-approximation algorithm but
then the complexity of SUBDIVISION will be rather large when compared to
O(mn®logn) of ABCENTER [11]. Thus SUBDIVISION is recommended to use
for small k and sparse graphs (e.g. if m < O(n)).

Note that instead of CENTER one can use in SUBDIVISION also the
heuristic PROXICENTER which will be developed in the next section.

2. A common 2-approximation algorithm

In this section we develop a heuristic like CENTER [11] which works for both
the p-center problem and the absolute p-center one.

Theorem 2. For any real number r > 0, if there exists a p-set X of points of G
with 1(X) < r, then there exists a weighted distance R < 2r between two vertices
of G such that the following procedure finds a set S < V(G) with |S| < p and
n(S) <R

Procedure DISTRICT

Step 0. At first all vertices of G are unlabelled; S: = 0.

Step 1. If all vertices are labelled, then go to Step 2. Else choose an unlabelled
vertex u of the maximum weight and put S: = Su {u}; label the ver-
tex u and every unlabelled vertex v such that w(v)d(u, v) < R; go to
Step 1.

Step 2. Output S.

Proof. Let X consist of points x,, x,, ..., x, and let “the regions” corres-
ponding to these points be S, S,, ..., S,, respectively (i.e. ;U ...u S, = V(G)
and for every i = 1, ..., p, we have w(v) d(x;, v) < r whenever ve S). Let

R: = max {d(u, v) w(v)|d(u, v) w(v) < 2r; u, ve V(G)}.
By Step 1, we have w(v) d(S, v) < R for any ve V(G) and hence n(S) < R. To
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prove that |S| < p we will show that at most one vertex of each S; belongs to S.
Let us consider an iteration of Step 1. Let u be the chosen vertex and let ue S;
(posibly, there are several such sets). Then for every unlabelled vertex v of S; we
have w(v) < w(u) and the triangle inequality gives

w(v) d(u, v) < w)[d(u, x;) + d(x;, v)] <
< w(w)d(u, x)) + w(v)d(x;, v) < 2r.

According to the definition of R, we see that w(v)d(u, v) < R. Therefore one
must label all the unlabelled vertices of S; and thus no other vertex than u will
be added to S. &

Now we can give the following heuristic for both the p-center problem and
the absolute p-center one.

Heuristic PROXICENTER

Step 1. Arrange the n(n — 1)-multiset of weighted distances d(u, v) w(v) with
u, ve V(G) into a non-decreasing sequence and deleting duplicates
reduce it to an increasing sequence

h<h<..<[f,. (6)

Step 2. Find R*, the least value of Re{f,, ..., f;} for which DISTRICT yields
an output S with |S| < p. )
Step 3. Augment S arbitrarily to a set S” of p vertices. Output S’ and end.

Formally, PROXICENTER is the same as CENTER from [11]. Thus the
complexity of PROXICENTER is O(n*logn).

According to Theorem 2 we have 7(S") < n(S) < R* < 2r*, where r* is the
absolute p-radius of G. Hence PROXICENTER is a 2-approximation strongly
polynomial algorithm for the absolute p-center problem (and simultaneously for
the p-center problem).

Note that PROXICENTER is of a lower complexity than ABCENTER from
[11] (its complexity is O (mn?logn)). Although in a worst case, the error ratio of
approximations is the same, one can see that in some cases PROXICENTER
provides better results than ABCENTER or CENTER (because it may be that
R* < 2r¥*).

We also note that PROXICENTER is a best polynomial heuristic as to the
error ratio in a worst case because the g-approximation absolute (or vertex)
p-center problem is NP-hard whenever ¢ < 2 (see [10] or [7, 10], respectively).
Nevertheless, we have the following result. First we need a definition.

Given a real number b with 1 < b < 2, &, denotes the class of all instances of
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the p-center problem such that the (vertex) p-radius 7. and the absolute p-radius
n, fulfil the inequality

Ne=bny.

(It is well known [11] that always n, < 1. < 21,.)

Theorem 3. For any class %, of p-center problems PROXICENTER is a
(2/b)-approximation algorithm.

Proof. Let us consider an instance of the p-center problem from £,. Let
ncand n, be its p-radius and the absolute p-radius of the corresponding absolute
p-center problem, respectively. PROXICENTER provides a p-set S’ of vertices
with n(S") < 2n,. Since n, < n./b, we have n(S’) < (2/b) ., as desired. @

Consequently, we see that in the class 4 PROXICENTER provides an exact
solution of the p-center problem. We must admit, however, that we are unable
to find out quickly whether or not a given instance belongs to a class &,
Therefore Theorem 3 seems to be interesting from the theoretical view-point
only.

Remark. Although PROXICENTER seems to be a superior heuristic,
ABCENTER [11] or SUBDIVISION can be combined with other heuristics
(e.g. the interchange heuristic [12]) and thus can give better results because they
can output also points different from vertices, while PROXICENTER always

yields only vertex p-sets.
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JABE 3BPUCTUKHN IJ1A 3AHAYN ABCOJIIOTHOI'O p-LHEHTPA HA TPA®AX
Jan Plesnik
Pesome
IpennaratoTcs QBa 3BPHCTHYECKHX MOJTHHOMHAIIBHBIX aITOPHTMA JUIS HaXOXIeHHS abcomoT-
HOro p-ueHtpa rpada c qmmHaMu pebep u Becamu BepiinH. OIMH U3 3THX aJrOPUTMOB HaXOAUT

P-MHOXECTBO, CTOUMOCTb KOTOPOr0 B CAMOM XY/IIEM ciy4ae He 6oJiblie, 4eM BABOE ONTHMAJb-
HOM CTOMMOCTH.
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