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ABSTRACT. We introduce a variational metric on R x T'M which is a gener-
alization of Riemannian and Finslerian metrics and is suitable for a geometric
description of time-dependent mechanical systems. We show that a manifold en-
dowed with a variational metric carries a canonical metric semispray connection.
Connections associated with a variational metric are shown to be a global counter-
part of the nonconservative Euler-Lagrange equations, and they can be viewed as
a generalization of the Levi-Civita connection for a Riemannian structure, of the
Cartan connection for a Finslerian structure, and of the Grifone connection for a
generalized Finslerian structure. We also investigate metrizability and variation-
ality of general semispray connections on R x T'M , and obtain a generalization
of Krupka-Sattarov’s theorem on variationality of a Finslerian structure.

1. Introduction

The aim of this paper is to propose a generalization of the concept of Fins-
lerian manifold, suitable for a geometric description of time-dependent noncon-
servative mechanical systerns.

The dynamics of a regular time-dependent mechanical system on a manifold
M is described by a semispray (a “second order vector field”) on the fibered
manifold R x M — R, or equivalently, by a semispray connection which is
an Bhresmann connection on R x T'M (i.e. a section R x A — R x 1AM,
where T2M denotes the tangent bundle of order 2 of Al). Locally it is rep-
resented by a regular system of second order differential equations for sections
of the fibered manifold R x M — R. In case that the manifold M is endowed
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Secondary TOH35.

Kev words: Semispray connection, Locally variational form, Helmmholtz conditions. T'ime
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with a Riemannian metric g, it carries a canonical semispray connection I' such
that the geodesics of I" coincide with the graphs of geodesics of the Levi-Civita
connection V of g; a similar situation occurs in the case of a Finslerian mani-
fold. Moreover, we know that both in Riemannian and Finslerian geometries the
equations for geodesics are variational (i.e. they are the Euler-Lagrange equa-
tions of a lagrangian called the “kinetic energy” of Riemannian and Finslerian
structures, respectively). Hence, the geodesics in Riemannian and Finslerian ge-
ometries can be viewed as geodesics (paths) of semispray connections describing
the dynamics of a Riemannian and Finslerian free particle, respectively. These
two important particular cases of mechanical systems suggest us an idea to inves-
tigate the structure of semispray connections on R x T'M , and to search for all
(semispray) connections describing the dynamics of “free particles”. Naturally,
we will require these connections be variational.

In classical Finslerian geometry, a Finslerian manifold is a manifold M en-
dowed with a Finslerian metric g on T M which is a regular symmetric fibered
morphism g: TM — T9M over idy; (where T9M denotes the bundle of all
tensors of type (0,2) over M), satisfying the following two conditions:

0gij _ 99k

ok~ oii
Omitting the “integrability” condition one obtains a class of metrics which is
studied in a generalized Finslerian geometry (cf. e.g. [13] and the references
therein).

In this paper, we consider regular symmetric fibered morphisms g: RxTM —
T9M over idps (time-dependent metrics on T'M ) which satisfy the “integrabil-
ity” condition, but not necessarily the “homogeneity” condition; we call these
metrics variational metrics on R x TM . A manifold M endowed with a vari-
ational metric is then called a semi-finslerian manifold. Using the results of [7]
we show in Sec. 4 that every semi-finslerian manifold (M,g) carries a canoni-
cal (semispray) connection I'y. The property of variationality of the canonical
connection enables us to introduce naturally the concept of a kinetic energy Ag4
associated with the variational metric g. Since any semispray connection on
a semi-finslerian manifold (M,g) is uniquely determined by the fundamental
connection and a soldering form, the equations for geodesics of a connection on
a semi-finslerian manifold take the form of the Euler-Lagrange equations for a
general nonconservative mechanical system,

or dor
- — —— = [ < <di . .
52 A1 95 F;, 1<i<dimM (1.2)

9a:s
(“integrability”), 6?2 #* =0 (“homogeneity”). (1.1)
i

In comparison to [2], where certain connections determined by a lagrangian
defined on R x T'M are constructed, we are interested in semispray connec-
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tions, since they naturally arise as a geometric counterpart of the “equations of
motion”.

In Sec. 5, we study the structure of semispray connections on R x TM . We
propose a concept of metrizability of such connections, and we get a classification
of metrizable semispray connections. We study conditions of variationality (6]
of a semispray connection (the so called “inverse variational problem” for con-
nections), and investigate the relation between variationality and metrizability.
We obtain a generalization (to metrizable semispray connections) of a theorem
by Krupka and Sattarov [5].

In Sec. 6, we show on a few easy examples from geometry and physics that
our concepts of semi-finslerian manifold and mechanical system are a general
background for mechanical systems connected with Riemannian and Finslerian
geometries and/or described by Grifone’s connections [1]. Finally, we show
that applying our theorem on variationality of semispray connections to linear
connections on M and on T'M one gets the results known in Riemannian and
Finslerian geometries (cf. [5]).

We use some results on Ehresmann’s connections, semispray connections (see
e.g. [6], [10], [11], [12], [14], [15]), and the calculus of variations on fibered man-
ifolds ([3], [4], [9] and references therein); notations and the main concepts are
briefly explained in Sec. 2 and Sec. 3.

The present paper is an enlarged version of the Preprint [8].

2. Semispray connections and regular second order equations

Throughout the paper, all manifolds and mappings are supposed to be
smooth, and the summation convention is used. We denote by * the pull-back,
T the tangent functor, and 0 the Lie derivative. F denotes the ring of smooth
functions on R x T M .

We shall consider a fibered manifold 7: R x M — R, where M is an
m-dimensional manifold, and = is the first canonical projection. The first (resp.
second) jet prolongation of 7 will be denoted by m;: JI(R x M) — R (resp.
ma: JE(R x M) — R). Note that JY(R x M) (resp. J%(R x M)) is canonically
identified with Rx T'M (resp. R x T?M , where T?M C T(T'M) is the tangent
bundle of M of order 2).

The global coordinate on R will be denoted by ¢. If (z¢), 1 <4 < m, are
coordinates on an open subset of M, we obtain a fiber chart (V, %), ¥ = (¢,2")
on R x M. The associated fiber chart on R x TM (resp. on R X T2M) will
be denoted by (Vi,v1), ¥y = (t,z%,d%) (resp. (Va, ), ¥y = (£, 2", 2",&")).
Obviously, for any two fiber charts (V,%), ¥ = (¢,z*) and (V,zﬁ), Y =(t,2")
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such that V. NV # 0, the overlap mapping is defined by

, P oF' ., .. ozt .. oz’ ,
i =z (z") il:—kxl‘.- Tt = — ?:rjsrk—ﬁ—, k;zr’“, 1<i<m.
oxk Oxld Oxk ox
(2.1

If v: R — R x M is a section, then the first (resp. second) jet prolongation
of v is denoted by Jlv (resp. J%v); Jv (resp. J?v) is a section of the fibered
manifold m: JYR x M) — R (resp. mo: J?(R x M) — R). Since ~(t) =
(t,c(t)), where c(t) is a curve in M defined on an open subset of K. we have
Jy(t) = (t,c(t),de/dt) and J?y = (t, (:(t),dc/df,dzc/dt"))A

Recall that a (Ehresmann) connection on R x M is a section of the fibered
manifold R x T2M — R x M . In fibered coordinates, a connection I' is repre-
sented by means of its components I, 1 <i < dim M , defined by (f..0') ol =
(t,I'"). A connection can be identified with the so called horizontal form hy .
or with the wvertical form vr, or with a horizontal distribution Hpr on X x /.
which, in fibered coordinates, are expressed as follows:

S (24r2)s D e T
by — (01‘+F D) @dt, o= Lo de 1),

Hp = span{ ('())t + I 0(37} .

A (local) section v of Rx M — & is called a geodesic (a path. or an integral sec-
tion) of a connection I' if o~y = J!v; this equation, when expressed in fibered
coordinates, gives a system of m first order ordinary differential equations
for ~.

The dynamics of a time-dependent mechanical system on A[ is described by
a semispray connection on R x TM | which is a section I': R x TM — R x T2/
(hence, it is a kind of Ehresmann’s connection on R x TAl). In a fiber char
(V,b), ¥ = (t,2%) on Rx M, I' is expressed by

(t,z', @' 3 ) ol = (t.a'. 0" 17). (2.2)

where I'" are functions on Vi, called the components of 1. Obviouslv. I'".
1 < i < m, transform like the coordinates #' under transformations of fibered
coordinates (cf. (2.1)). A semispray connection T" on R x TN is identified with
the horizontal form hyp of T', or the vertical form vy of 1",

&) i 0 D 0N
s o —_— 4~ rt—= v Y o )
hy (01 - I yro +T 5 ) dt
vp = 9 & (da® — &' dt) + -
(8

0 D o(ditt — T dt).
oxr'

)it
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or the mi-horizontal distribution Hr = Imhr C T(R x T M) spanned by the
vector field

0 ; 0 . 0
=—4&'—+0"—
ot e e
called a semispray.
A (local) section y of 7 is called a path or an integral section or a geodesic
of a semispray connection I' if

FoJly = J%. (2.3)

If y(t) = (t, c(t)) , where ¢ is a curve defined on an open subset of R, we obtain
that v is a geodesic of I' if and only if

(—ld:t—g— — (t,c(t), 3—§> . 1<i<m, (2.4)
in each fiber chart (V,%), ¢ = (t,2%) on Rx M . It is clear that integral sections
of a connection I' and of its horizontal distribution Hr coincide.

Every my o-vertical valued mi-horizontal one-form on R x T'M is called a
soldering form. Soldering forms on R x T'M can be roughly characterized as
“differences of semispray connections”. More precisely, if I', I are two semispray
connections on R x T'M , then the vector valued one-form s defined by

s = h[* - hr/ (25)

is a soldering form; conversely, if s is a soldering form on R x T'M , then there
exist semispray connections I', I such that s = hp — hl.. We shall denote by
S(R x TM) the F-module of all soldering forms on R x T'M .

For more details on connections and semispray connections on fibered mani-
folds we refer e.g. to [10], [11], [12], [14] and [15].

A semispray connection describes the motion of a mechanical system but does
not represent the mechanical system itself. It is easy to find different mechanical
systems represented by the same semispray connection (i.e. possessing the same
“trajectories”): this situation occurs if the corresponding equations of motion
differ from the equations for geodesics by a so called “regular integrating factor”,
i.e. if they are of the form

[Q}l(ll _ Fl)] o J2,>, =0 and [037(11 _ l-\z)] o ‘]27 —0,

where (g/;) and (q?J) are regular matrices (at each point of R x TAl'). As an
example, let us consider a damped harmonic oscillator of mass m, frequency
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w and damping constant k, aml a harmonic oscillator of frequency & whose
mass-accretion is 111 led by meF'. The ((m(\spoudmu (qu(mons of motion are
mi + mki + mw?r = 0 and mc"'(.z + ki + w?r) = 0. which means tha

the motion of both these physical systems is described by the same semispray
connection Fol' = —ki —w?r. Examples from classical mechanics show that the
“integrating factor” carries an important physical information. since it is relared
to the “kinetic energy” of the system. Thercfore, to avoid confusion. it is better
to work with the equations of motion in their “covariant form™. Within the
range of the theory of second (resp. first) order ordinary differential equationis
on a fibered manifold R x M — R this means that we have to consider the
F-module of one-contact 2-forms on B x T*NM (resp. on ]"' x TN which ar

horizontal with respect to the projection mway: R x 1201 - \[ (see e.u i‘
4], 16]); this module is denoted by Slw\y A (B T2A0) (lesp QO (? x TNV

For our purpose it is sufficient to recall that this module (on\.st\ of 2-forms.
which in each fiber chart (V.v). v = (t.2') on R x M are (xple.\w(l in the
form

E=E;dr' Adt. (2.6)
where E; are functions on V5 (resp. on V\), i.e. £ = Ei(t. b iF i) (vesp.
E; = Ei(t,2% &%), 1 < i < dim M. A (local) section ~ of 7: K x M — =
is called a solution of such a form E on R x T?M (resp. on R x 1))
EoJ?y =0 (resp. EoJ'y=0). Clearly, a section v (t.¢(1)) of 7 is a solution
of F € QRX v (R x T2M) (resp. of E € ny A (R TAL) ) if and only if it
satisfies the system of m = dim A second (resp. first) order ordinary differential
equations

E,j(t,(:(t),d('/dz‘,dz(f/dtg) =0, resp.  Fi(t,c(t).de/dt) = 0. (2.7

In this paper, we shall consider a submodule Q'R x T2A) (resp.
QR x TM)) of the module 0! (R x T2M) (resp. S) (R x T
, Rx M \1

which is defined as a module of 2-forms on R x T2 M (resp. B x TA ) satisiving
in each fiber chart the condition

E=F do' ndt. E; = A; + Byiv. (2.8
resp.
E o= E da’ Ade. Eo= A+ Bt (2.9,

where A;, Bip, 1 < ik < m are functions of . /. i/ (resp. of 1. 070,
1<y <m.

A form E € QR x T2M) (resp. E e QU x TAL) ) is ealled rogular i
det(Bj;) # 0. 21
It is easy to see (cf. [6]. [11]. [15]) the following;:
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PROPOSITION 1. Let B € QU(R x T2M) (resp. E € QU(R x TM)) be a
reqular form. Then there exists a unique semaspray connection I' on R x T'M
(resp. an Ehresmann connection T on R x M) such that the geodesics of I’
coincide with the solutions of E. The connection T' is obtained as the solution
of the cquation ' E == 0.

The connection I satisfying the equation I''E = 0 is called associalcd
to 1.

Regular forms Ep, Fy € QU(R x T2M) (resp. in Q"™ (R x T'M)) are called
cquivalent if the semispray connections (resp. Ehresmann’s connections) associ-
ated to Ep and FE5 coincide. This means that equivalent forms have the same
solutions. Hence. we can say that a semispray connection on R x TAl (resp.
a connection on R x M) represents an equivalence class of regular forms in

QU TN (resp. in QYR x TAT)).

3. Locally variational forms and variational connections

We shall need a few concepts from the calculus of variations on fibered man-
ifolds. Our exposition is adapted to the case of second (and first) order ordinary
differential equations on a fibered manifold R x M — R; for more complete
mformation we refer e.g. to [31 [4]. [6]. 9] and references therein.

Recall that a first order lagrangian on a fibered manifold 7: R x Al - F
is detined as a 7-horizontal one-forni A on R x T'A; in fibered coordinates
it is expressed by A == Ld¢, where L is a function of ¢, 2/ and &', If X\ is a
tirst order lagrangian, we denote by Fy the Fuler-Lagrange form of A: we have
o B da’ Adt, where

) ol d oL , .

l),‘ = 51—7 - El_f 5;]‘, 1 § TS M,
are called the Fuler-Lagrange cxpressions of the lagrangian A. It is easy to see
that 5\ € QU(R x T2M).

Let £ e QUR x T2M) be a form. I7 is called globally variational if there
exists a lagrangian A defined on R x T'Al such that E = Fy. FE is called locally
cariational if ¥ x TA{ can be covered by open sets such that the restriction
of 7 to cach of these sets is variational. Recall that E is locally variational if
and only if in each fiber chart {(V.¢). v = (t,2') on R x M the functions F,,
U< 7 <<, satisfy the Helmholtz cond

flon.s

or, o OB OB dok

O ' Ok 0;1'-7_) “dt 0 Gl
L, ok dob, OB |
aak ot A o 2 9F
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If FE is projectable onto R x M, then the Helmholtz conditions are obviously
reduced to

8Ei 0Ek 6Ei 6Ek d f)Ek i
-~ =0 i — — =) 3.2
ozk + ozt ’ ozk  Ox! + dt oz (3-2)

We note that the existence of local lagrangians in general does not imply the
existence of a global lagrangian.

Solutions of a locally variational form are called extremals, and the corre-
spoding equations for extremals are called the Fuler-Lagrange equations.

A semispray connection I' on R x T'M (resp. an Ehresmann connection on

R x M) is called variational [6] if there exists a locally variational form E such
that

I*E =0. . (3.3)

4. Variational metrics, semi-finslerian manifolds

Denote by T9M the bundle of all tensors of type (0,2) over Al. Let g:
R x TM — T9M be a fibered morphism over idys; g will be called a metric
on R x TM if it is regular and symmetric (i.e. if in every fiber chart (V7).
Y = (t,2') on R x M the matrix (g;;), built from the components of ¢. is
regular and symmetric).

We shall say that a metric ¢ on R x T'M is variational if there exists a
regular locally variational form F on R x T?M such that

OF;
oxi’

gij = 1<2,5<m 4.1)
in each fiber chart on R x M. Every (local) lagrangian A such that the form E
is the Euler-Lagrange form of A will be called a dynamical lagrangian for the
metric g. Every 2-form E € QU(R x T?M) satisfying (4.1) will be called a
dynamical 2-form associated with the variational metric g.

PROPOSITION 2. A metric g on R x TM is variational if and only if the
components of g satisfy in each fiber chart (V,4), ¢ = (t,2') on R x M the
conditions

dgij  Ogik

Sk = 9ai 1<i, 53,k <m. (4.2)
ozw O

Proof. Let g be variational. Then the relations (4.2) follow from the
Helmholtz conditions (3.1).

We shall prove the converse. Consider an open ball W C R with the center
at the origin, and denote by (") the canonical coordinates on W. Let g be a
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metric on R x TW satisfying (4.2). Define a mapping x: [0,1] x (R x TW) —
R x TW setting

x(v, (t,2",3") = (t,2°,vi"), (4.3)
and put
1,1
T = ii;i:j/</(gij o X) dv) oxv dv. (4.4)
0 ‘o
Then T dt is a lagrangian on the fibered manifold 7: R x W — R satisfying
o 0T _ ‘BEi(T)
997 Biioi ~ op

where F;(T) are the Euler-Lagrange expressions of T dt.

Now, let m: R x M — R be a fibered manifold, g a metric on R x TAl,
satisfyving the conditions (4.2). Then there exists an open covering O of RxT M
such that on every open set of O the lagrangian T dt (4.4) is defined. From
the transformation properties of the components g;;, 1 < ¢,57 < m, of g and
of the coordinates &', 1 < i < m, it is easy to see that the local lagrangians
T dt define a (global) lagrangian Ay on R x T'M such that for each U € O,
/\(/‘(' = Tdt. For the Euler-Lagrange form E, of the lagrangian A, we have

(4.1), L.e. the metric ¢ is variational.
This completes the proof.

If g is a variational metric on RxT M , then the (global) dynamical lagrangian
A, of g defined in the proof of Proposition 2 will be called kinetic energy of the
metric g. The Euler-Lagrange form FE, of the kinetic energy A, will be called
a canonical dynamical 2-form of the metric g.

By Proposition 1, there exists a unique semispray connection I'g: RxT'M —
RxT*M such that the geodesics of I'y coincide with the extremals of the kinetic
energy Ay, i.e. they coincide with the solutions of the Euler-Lagrange equations

OT A aT

dxt dt dit

This connection is defined by the relation
[ B, =0, (4.5)

and will be called a canonical connection associated with the metric g. Express-
ing the relation (4.5) in a fiber chart (¢,2') on R x A one obtains for the
components I'(g), 1 < i <m of I', the following formulas:

o Iy = I'(g) = !Jiprz)(g) ) (4.6)
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where (g'P) is the inverse matrix to (g;p), and the functions I',(g), 1 < p <m,
are given by

~Tp(g) = Tpgr(9)2%2" + 27 /1 ( %pa |, ") v, (4.7)
0

where
/ 0 0 5] 1 0
1 g Jpr 9qr _ dqr _
Tper(9) = 5/( a;rq + 8;‘1 -2 qu” ) ox d /( = x>v dv. (4.8)
0 0

A manifold M endowed with a variational metric g will be called a semi-
finslerian manifold. According to Propositions 2 and 1, on every semi-finslerian
manifold (M, g) there exists a unique canonical dynamical 2-form E,; and a
unique canonical semispray connection I'y.

Let (M,g) be a semi-finslerian manifold, F;, Es dynamical 2-forms on
R x T2M associated with g. Then obviously E; — Ey € QL. (R x TM).
Conversely, if E; is a dynamical 2-form associated to g, and F is an element
of QulzxM(R X TM), then E; = F; + F is another dynamical 2-form of g.
This leads us to the following definition: A triple (M, g, F) will be called a
mechanical system in the force field F if (M,g) is a semi-finslerian manifold
and F € Qulgi u (R x TM); we shall also say that F is a force on a semi-
finslerian manifold (M, g). A mechanical system (M, g, F) is characterized by
the dynamical 2-form E = E4; + F'. Hence, its motion is described by sections
v of R x M — R which are solutions to the “Euler-Lagrange equations for a
nonconservative mechanical system”

or d oT

— — — 2 =
ozt dt 95 °Jiy=0,

where T' and F; are the components of the kinetic energy A, and the force F,
respectively. A mechanical system (M, g,0) will be also called a free particle,
and will be identified with the semi-finslerian manifold (M, g).

Let (M,g) be a semi-finslerian manifold. Then there arises a canonical iso-
morphism

§:S(RxTM)>s— g(s)=E € Qg (RxTM) (4.9)

of F-modules. It is defined in each fiber chart (V,%), ¥ = (¢,2*) on R x M,
where
s=s2_@dt, E=Edz Adt,
oz’
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by the formula

L = gijs’.

By this isomorphism. on a semi-finslerian manifold, forces can be identified with
soldering forms. This means, however, that a mechanical system (M, g, I') can be
equivalently represented by the semispray connection I such that hp = hp +5.
where s = g 1(F).

Let I be a semispray connection on a fibered manifold R x Al — R. Note
that if it is chosen a variational metric g on R x TA , then [' represents a
unique mechanical system (M, g, F'): it holds F' = g(s). where s = hy — hyp

5. Metrizable semispray connections

In this section, we shall define the concept of a metrizable semispray connec-
tion. and we shall study the conditions of metrizability. We shall be interested in
the relation between variationality and metrizability of a semispray connection.
and we shall obtain a classification of metrizable and variational connections.

Let us denote by MY(R x TM) the set of all fibered morphisms R x T'AM —
TYM over idy; .

PROPOSITION 3. Let I': R x TM — R x T?M be a semispray connection.
The formula

(Dyg)ij =

gij +5)!]i.j &, D9 Pk L (.(/ik ork ork ) L <ij<m.

ot Took T Tk Ty g Yk
(5.1)

defines a mapping Dy MY(R x TM) > g — Drg € MY(R x TM).

Proof. Let g € MY(R x TM). We have to check the transformation
properties of Dpg under transformations of fibered coordinates. Let (V).
v (Lot and (Vg ), ¢ == (6. 2Y) be two fiber charts on R x A, and denote
by gi; (resp. gi;) and T (resp. ') the components of g and I' in the chart
(Voo (resp. (V. O )). Then

ot - o2k oFk . o
G = =g TF = P el B I <i,j,k<m.
‘ art gl Arrox o’

Computing the components of Dpg in the chart (V. 1;) and using the relation

2 0y -t ey - . ; ) —
a=at ox? o e’ d=x’

s e e
DPaFd dxd Oxk O Oxd dak
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we obtain the transformation formula

—_ ox" 0x®
(D) = 55 7

(Drg)rs )

proving our assertion.

The mapping Dr will be called a derivative along T' or a I'-derivative. A
semispray connection I' on R X T'M is called metrizable if there exists a vari-
ational metric g on R x T'M such that the derivative of g along I' vanishes,
ie.

D[‘g =0. (52)

The following proposition is a classification of metric connections on RxTA[ .

PROPOSITION 4. Let ' be a semispray connection on RxTM . The following
two conditions are equivalent:

(1) T is a metrizable connection.
(2) There exists a variational metric g on R x TM such that

hF:hpg+S,

where T'g is the canonical connection of g, and g(s) is an element of
Qin(R x TM) such that (in the notation of (2.9)) B;j = —Bj;.

Proof.

Suppose (1). Let g € M3(RxTM) be a variational metric on Rx T'M such
that Drg = 0. Put in every fiber chart on R x M

Fi = gq;ij .

Then the relation Drg = 0 reads

0gi;  0gij ., 1 (0T; O
FE AR

>:0, 1<i,j<m. (5.3)
Solving this system of partial differential equations for the functions I';. 1 <
i < m, we obtain (cf. [7] for technical details)

1

1
o 1.5k 8973 ({)(].L']‘7 / (‘)(],J (‘)gil.: 69 " . )
17‘:——3.’17/ — <_2,'], de e
' 2 . (< dxk ox’ + ok + 9z O oy dv ot ¢
0 0

1

— ik /< g;k o X) dv + bipi® + a,
0
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where b;; and a;, 1 < ¢,k < m, are functions depending only on ¢t and z?,
1 < p < m, and satisfying the condition

by = —bg; .

Hence, I'; = T';(g)+E; , where the form E = E; dz’Adt belongs to QIN(RxTM).
Using (2.5) and the definition of the mapping § we obtain hp = hpy+ g~ '(E),
as required.

Suppose (2). Denote §(s) = E;dz’ Adt. Since Dryg = 0, we obtain

(Drg)ij:%<—~+ J)20-

01 | 93

Let g be a variational metric on R x TM . A soldering form s € S(R x T'M)
is called potential with respect to g if the form g(s) is locally variational. The
Helmbholtz conditions (3.2) immediately lead to the following

PROPOSITION 5. A soldering form s on R x T'M s potential with respect
to a variational metric g on R x TM if and only if in each fiber chart (V,4),
o= (t,x") on Rx M

g(s) = ((Li -+ blkl‘k) dZLz A dt y

where a; , bip, 1 <1,k <m, are functions on V satisfying the conditions

Obi; _ Oa; da;  Oby;  Obki  Obj

bi: = —b.s = - — :
ij bji ot Ori Oxit’ Oxzk Oz Oxt

=0, 1<d,5,k<m.

Obviously, if a soldering form s on R x T'M is potential with respect to
g, then there exists an open covering O of R x TM and a lagrangian w for
g(s) on each U € O, called a (local) potential energy associated to g. It holds
w=Vdt,

d
V= fi ot 2 (5.1)
dt
where ¢, ¢, f;, 1 < i < m, are functions depending only on t and zP, 1 <
p < m, and such that

ofi  of; O  Ofi

bz3 0z 9 B ot M

The following proposition solves the so called inverse variational problem for
semispray connections on a semi-finslerian manifold.
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PROPOSITION 6. A semispray connection I' on Rx TA is variational if and
only if there exists a variational metric g on R x T'M such that the following
two conditions are satisfied:

(1) Drg=0,

(2) the soldering form s = hp — hyy is potential.

Proof. Let E € Q;{; v (R x TZM) be a locally variational form such that
['"*E = 0. By the Helmholtz conditions (3.1), in each fiber chart on % x M/ . it
holds F = E;dx? Adt, where E; =T, — gij@ . (gi;) 1s a variational metric on
R x T'M and the conditions (1), (2) are satisfied.

The converse follows from Propositions 4 and 5.
From Propositions 4 and 6 we immediately get the following assertion:

COROLLARY.

(1) FEvery variational connection on R x TM is metrizable.
(2) A metrizable connection T on Rx TM is variational if and only if the
soldering form s = hp — hpy is potential.

We shall call the assertion (2) of the above Corollary the gencralized Krupha-
Sattarov theorem (since it can be viewed as a generalization of the Theorem on
variationality of a Finslerian structure by Krupka and Sattarov 5 to
semispray connections on a semi-finslerian manifold).

6. Examples

] iemannian metric. Le g) be a Riemannian manifold. 1e Levi-
1) Riemann etric. Let (M, g) | R fold. ¥ the |
Civita connection of ¢. Putting

[ = —'[‘jk;ifj:i:"’. 1 <7 <dim /.
where
i L (09 9k 09k
ik 2° ok Al el
are the Christoffel symbols of V| we get a semispray conuection 1 on =~ [/

such that the geodesics of I coincide with the graphs of geadesics of X0 Sinee th
metric ¢ satisfies trivially the variationality condition (L2701t s a variational
metric. hence the manifold (A, g) is a particuiar case of a scra-tinsleriag mai-
ifold. We shall show that this semispray connection 1 s the canonical counec-
tion for the semi-finslerian manifold (M. g;. According 1o Sec. 1 the canoniead
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connection I'y is defined by (4.6)~(4.8). Substituting the (time and velocity in-
dependent) metric g into the formulas (4.6)—(4.8) and performing integration,
we get

all 1 agp,’j ag;ﬂ« 0!]]‘1«, ik i
I"(g) = 59]7(03:"’ + o e |FE =T

For the kinetic energy we get from (4.4) the familiar formula 7" = %,{],;_i:i:i.i‘-‘.
Now. every choice of a force F' € QW (R x T'M) gives us a mechanical system
(M, g. F) on the Riemannian manifold (M, g). The geodesics of the correspond-

ing semispray connection (i.e. the “equations of motion”) then are of the form
i ik
G 7+ F.L-j A,.‘I,’] "= F;,

where £ are the components of F'.

(2) Finslerian metric. Let g be a Finslerian metric on a manifold A | i.c. a
regular symnmetric fibered morphism g: TM — TYM over idy;, satisfying the
conditions (1.1). A Finslerian metric on M is obviously a particular variational
metric on R~ TA. We shall compute the kinetic energy A, and the canonical
connection 'y of ¢ according to (4.6)--(4.8) and (4.4), respectively. Using the
formmnlas

1 L 1

I
/ o= / (fo\_\ dv -+ J’/ f)f— o) \1’ v dv =2 /(f O )z)U dv +.I.,'j/ ‘()/‘ OX ’1’2 dv
. o' . or'’

0 0 0 0

for the functions [ = g;; and [ = r‘)_(/,‘,'/'(').’lfl"’., respectively, and using the “homo-
orneity condition™ (1.1) we obtain

1 . . . S L
T == 54{]14,’.1.'7'.)"" R I ](.(1) - "Iﬂj’ls:(.(J)'r];I'k ’

where
w( P9pi . Odpk 0.(1;,’;\'\
dak ot Azl [

I plgh = ,%)-g (6.1)

Since fhe metrie g

J
P g i A
Fooiane. gt

satisies  the “homogeneity condition”™ (1.1). we get

wheve ~5, 1 < 4.5,k < m. are the components of

the Cartan connection (which is a unigne linear connection on A7 such that
the covariant derivative of the Finslerian weiric ¢ vanishes).
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(3) Time-independent variational metrics. Recall that a Grifone connection
is a vector-valued 1-form I' on TM satisfying the conditions JI = .J, T'J = —J |
where J is the canonical almost tangent structure on T'M . The equations for
geodesics of a Grifone connection T' are of the form

# 4Tk =0,

where T (z7,47) are the components of I'. Grifone has shown in [1] that
cach manifold M endowed with a kinetic energy T carries a canonical Grifone
connection such that the equations of geodesics of this connection coincide with
the Euler-Lagrange equations of T'. If the manifold M is endowed with a kinetic
energy T and a Grifone force ¢, which is defined as a 2-form on T'A/ horizontal
with respect to the projection TM — M, he has shown in [1] that there is «

canonical Grifone connection I' on T'M satisfying the following two conditions:

(1) the equations for geodesics of I' coincide with the (nonconservative’
Euler-Lagrange equations

oT d or

- £ — b
o7 At ga T
where ¢;; = —¢;; are the components of ¢, and
(2) the function
E=1- 9L+
oz”

called the principal energy, is constant along the solutions of the equa-
tions for geodesics (hence it is a first integral of these equations).

We shall show that these results are in correspondence with the results of Sec. 4.

Denote by 1 the mapping assigning to each Grifone’s connection I' a semis-

pray connection I' by
Dé gk

where T are the components of T'. Obviously, the geodesics of ©(I') coincide
with the graphs of geodesics of T'. Similarly, by the same letter v'. we denote the
mapping assigning to each Grifone force ¢ a force F = (o) € QlR': 3 (Eox VD
by F; = ¢ia*, where ¢, are the components of ¢; note that this mapping
is not surjective (even in case we restrict Qi{; v (R x AT to time-independent
forces). Let g be a metric on T'A satisfying the variationality condition (4.2).
and denote by A, = T'dt the kinetic energy of g. (M.g) is a semi-finslerian
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manifold, and the canonical connection takes the form

I = Ty (g)i

! 1
v [ 1 99 9y dg _ 3(] .
— P | — rq pr qr q
— 9 (2/(8x’ +(‘)qu 2(%7) oxd / ox |vdv |z .
0 )

If T is the canonical Grifone connection for the energy 1", then obviously
L‘*(f‘) = I'y. Similarly, if ¢ is a Grifone force on T'M , then 1) maps the canonical
Grifone connection corresponding to the kinetic energy T' and Grifone’s force ¢
to the semispray connection I' of the mechanical system (M, g, z/)(¢>)) . Comput-
ing the Lie derivative of E by the semispray ( associated with the connection
I" we get

B oF 5 OF \ _ .ig 2T .k Cdaisk o ki
O E =2 (() e b _8:it-7> = "¢ 557 05F T = gjpp@ir'at = gt =0,

i.e. the “principal energy” FE (which is nothing but the Hamiltonian of the free
particle (M, g)) is conserved. This interesting property, of course, will no longer
last for a general (possibly time—ind«hpendent) force in QIRXM(R x M) (it is
sufficient to take a force F; = <751,£ $ij + ¢ji # 0, which is not the image of a
Grifone force).

(1) Examples of variational metrics in classical and relativistic mechanics.
Consider the manifold R?® with the canonical global chart (x%).

Putting g = mé, where ¢ = &;;dz’ © da? is the Kronecker tensor and m is
a positive constant, we get the semi-finslerian manifold (R?*,mé) which is a free
particle of classical mechanics with mass m; in this case the canonical connection
I'y =0, and E, = (mé;;i#") da? Adt. Considering a force F on (R*,mé) we get
a classical particle of mass m in the force field F', described by the equations
of motion mi' = Fi(t,x, ).

Put g = f(t)6, where f is a nowhere zero function. Then (R®, f(1)8) is a
semi-finslerian manifold. Computing the components of the canonical connection
according to (4.6)—(4.8) we get

i b e df 1 df L
ol = 110 0" &6, i = _f(t) ETI

Hence. the equations of motion of the free particle on (R";, f(f)é) are the New-
ton equations of a classical free particle with nonconstant mass. Considering
a force field I on this semi-finslerian manifold we get the mechanical system
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(R3, f()6, F) which is a classical particle with nonconstant mass moving in the
force field F'.

Let us define a semi-finslerian metric g = g;; dz* ® dz? on R?® by

méij m 6ip:i3p 6kq.’bq

v2)1/2 2 B £>3/2 )
(1 c? (1 c?

where m and c are positive constants, and v? = §;;#'27. Then I'y =0, E, =
(giji?)dz® A dt, ie. (R3,g) is a free particle of special relativity theory. Let F'
be the Lorentz force on the semi-finslerian manifold (R3,g), F = 6(F , ) , where

9ij =

F=eE+ %(6 X ﬁ) . Since I'y = 0, we get the components of the connection

' of the mechanical system (R3,g,F) in the form

i ij e v? i 1o i 1 i
M=giFy =2 /1- C—z(E' +L1@xh) - c—zvlvE).
This connection obviously differs from that describing a classical particle in the
Lorentz force field, i.e. the mechanical system (R®,mé, F); in this case we have

(Ei+%(6x ﬁ)i—ivi).

Fi
02

_ e
T m

The difference between a mechanical system and the semispray connection
describing the motion of this system can be demonstrated on the following easy
example: the semispray connection I'* = kz’ can describe a mechanical system
(R3,mé, F), where F = 6(?, ) F = (ki', ki?, ki3), i.e. a classical particle of
mass m moving in the dissipative force field, or a mechanical system (R3,ekt§),
i.e. a classical free particle with the mass-accretion rule f(t) = me*t, or some
other mechanical system (according to the choice of a semi-finslerian metric
on R3). _

(5) Metrizable linear connections on T M . We shall show that the results on
metrizability and variationality of semispray connections on R x T'M obtained
in Sec. 5. generalize the known results on linear connections on 7'M (and on
M), obtained by Krupka and Sattarov [5].

Let M be an m-dimensional manifold. Denote by I'M the bundle of lin-
ear connections over M . Recall that by a linear connection on T M we mean a
fibered morphism «v: TM — I'M over ids . Denote by V., the covariant deriva-
tive. If g: TM — T9M is a fibered morphism over idjs, then in any coordinates
(z%) on M, V.,g € TYM is expressed by

Gijsk = 31’; % Vord? = Gip Vi — 9ipVik (6.2)
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where (a7,.@") are coordinates on T'M , associated with (x'), and Gij> Vik -
I <i.j.k <m, are the components of ¢ and ~, respectively.

To any linear connection v on T'M we can assign a semispray connection I’
on X x TM . setting in each fiber chart

i — ,7,),;1;;&]]';/-‘ , (6.3)

where ";A 1 <i,j,k < m, are the components of . The semispray connec-
tion I will be called associated to ~. Obviously, geodesics of I' and graphs of
ecodesics of 4 coincide.

A linecar connection vy on TA will be called variational if there exists a
I'inslerian metric g on T M such that

I*E, =0

for the semispray connection I, associated to v and the canonical dynamical
2-form E, of g. Using Proposition 6 we can see immediately that if a lincar
connection 4 on TM is variational, then the associated semispray connection
I" is metrizable, and there is a Finslerian metric g such that Dprg = 0.

A linear connection v on T'M is called metrizable if there exists a Finslerian
mectric g such that Vg = 0.

PROPOSITION 7. Let v be a linear connection on TM , T' the semispray con-

neetion on R xTAM associated to y. Let g be a Finslerian metric. If Vg =0,
then Dyg = 0. and ' =T .

Proof. Suppose that ~ is metrizable, V,g = 0. Then, by (6.1) and (6.2),
the components of v and of the canonical connection I'y of the Finslerian metric
¢ satisfy the relation

2 () — 2 — gij VPt Ogise P s 99k P
21 (e 274 jk Py gkt D Vit O JaiT

=0,

Tere 10 _ T oA » . ; eneity of
where 1'5,(g) = g,,,lﬁj;\,(g) and 4,4 = Gip Vi - Hence, using the homogeneity of
. we obtain

(Fijalg) — e = Uiplg)ilét — 1 =0,

e the associated connection ' of 5 is the canonical connection of the Finslerian
metrie g. Henceo Dyg == Dy g = 0.

Now. by Coroilary to Proposition 6. we get {¢f. [f

-
-
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COROLLARY. (Krupka-Sattarov theorem) Every metrizable linear connection
on TM is variational, and it is the Cartan connection of the corresponding
Finslerian metric.

The situation is further simplified if we consider a linear connection ~ on
M, ie. v € I'M. In this case, while speaking of variationality or metrizability.
we shall naturally have the existence of a metric on M in mind. Similarly as
above, we assign to 7 a semispray connection I' on R x T'Al by (6.3). Now.
however, this mapping is one-to-one, and we have

i LT 61
Wik T T 9 gk (6.4)

For a metric g on M we get (Drg)ij = gij;kka, hence Drg =0 <= V.,g=0.
As a direct consequence of this property and of Proposition 7. we obtain

(cf. [5], [6])

PROPOSITION 8. Let v be a linear connection on M, let I' be the semispray
connection associated to . The following four conditions are equivalent:

(1) ~ is variational.

(2) ~ is metrizable.

(3) T is variational, and there exists a metric g on M such that T =T .
(4) There exists a metric g on M such that Drg = 0.

REFERENCES

(1] GRIFONE, J.: Structure presque-tangente et connexions, I, Ann. Inst. Fourier (Grenoble)
22 (1972), 287-334.

[2] KAWAGUCHI, H.: The d-connections in Lagrange geometry. In: Differential Geometry

and Its Applications. Proc. Conf., Sept. 1989, Brno, Czechoslovakia, World Sci., Singapore.

1990, pp. 230-235.

KRUPKA, D.: Lepagean forms in higher order variational theory. In: Proc. ITUTAN-ISININ

Symp. on Modern Developments in Analytical Mechanics, June 1982, Turin; Atti Accad.

Sci. Torino Cl. Sci. Fis. Mat. Natur., Suppl. al Vol. 117 (1983), 197-238.

[4] KRUPKA, D.: Geometry of Lagrangean structures 2, 3. In: Proc. 14th Winter School on

Abstract Analysis, Jan. 1986, Srni (Czech Rep.), Rend. Circ. Mat. Palermo (2) Suppl. 14

(1987), 178-224; Arch. Math. (Brno) 22 (1986), 211--228.

KRUPKA, D.—SATTAROV, A. E.: The inverse problem of the calculus of variations

for Finsler structures, Math. Slovaca 35 (1985), 217--222.

(3

[5

[6] KRUPKOVA, O.: Lepagean 2-forms in higher order Hamiltonian mechanics. Il. Inverse
problem, Arch. Math. (Brno) 23 (1987), 155-170.
(7] KRUPKOVA, O.: A note on the Helmholtz conditions. In: Differential Geometry and Its

Applications. Proc. Conf., August 1986, Brno, Czechoslovakia, J.E. Purkyné University.
Brno, 1986, pp. 181-188.

334



VARIATIONAL METRICS ON RxTM ...

8] KRUPKOVA, O.: Variational metrics on Rx TM , Preprint, Silesian University at Opava,
Opava (Czech Republic) (1991), 1-15.

[9] de LEON, M.—RODRIGUES, P. R.: Generalized Classical Mechanics and Field Theory,
North-Holland, Amsterdam, 1985.

[10] MANGIAROTTI, L.—MODUGNO, M.: Fibered spaces, jet spaces and connections for
field theories. In: Proc. of the Meeting “Geometry and Physics”, Oct. 1982, Florence,
Pitagora, Bologna, 1982, pp. 135-165.

[11] MODUGNO, M.: Torsion and Ricci tensor for non-linear connections, Differential Geom.
Appl. 1 (1991), 177-192.

[12] SAUNDERS, D. J.: Jet fields, connections and second-order differential equations,
J. Phys. A 20 (1987), 3261-3270.

[13] SHIMADA, H.: Cartan-like connections of special generalized Finsler spaces. In: Differen-
tial Geometry and Its Applications. Proc. Conf., Sept. 1989, Brno, Czechoslovakia, World
Sci., Singapore, 1990, pp. 270-275.

[14] VONDRA, A.: Connections in the Geometry of Non-Autonomous Regular Higher-Order
Dynamics. Thesis, Masaryk University, Brno (Czech Republic), 1991.

[15) VONDRA, A.: Semisprays, connections and regular equations in higher order mechanics.
In: Differential Geometry and Its Applications. Proc. Conf., Brno, Czechoslovakia, 1989,
World Scientific, Singapore, 1990, pp. 276—287.

Received September 14, 1992 Department of Mathematics

Revised April 2, 1993 Silesian University at Opava

Bezrucéovo ndm. 13
CZ-746 01 Opava
Czech Republic

335



		webmaster@dml.cz
	2012-08-01T09:17:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




