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A THEOREM CONCERNING THE RESTRICTION
OF THE 2-STRUCTURE OF A SEMIGROUP 8
TO A SUBSEMIGROUP OF S

FRANCIS PASTIJN

Notations. By &, #, s, & we mean Green's relations for a semigroup S
and &', #', #', ' will be the rclations of Green tor the subszmigroup 8’ of S.
The #-class [resp. #’-class] containing @ will be denoted by L, [resp.L,]and
analogously for what concerns the other relations of Green (1).

Ja [resp. gq] denotes an inner left [resp. right] translation (2).

I'y (H,) means the Schiitzenberger group of H, in the semigroup S’ and
I'; (H,) its dual Schiitzenberger group (3). T's (H,) denotes the set {t € S’ ||
Ht< H}} and T (H,) denotes the set {te 8" ||tH, < H.}.

We shall use the following lemmas, which are mentioned in (4) and (5).
The first one is a direct consequence of Green’s lemma.

Lemma. Let & and b be elements of S" such tha! a b ; then S contains elements x
and x' such that av = b and bz’ = a. The mappings o | L, and ox | L, are
mutually inverse H-class preserving one-to-one mappings between L, and L.
If aR'b, then oz | La N S" and oz | Lo NS’ are mutually inverse X’'-class pre-
serving one-to-one mappings between Ly N S and L, N S’ ; in this case oz | Lo N S’
and oy | Ly NS map L'-classes onto L'-classes and H'-classes onto H'-classes.

Lemma. If a is any regular element of S’, then H, = D, N H,.
Now we prove our main theorem.

Thzorem. Let D be a regular PD-class such tha’ the L-classes and R-classes
which have a non-void intersection with D N S, contain af least one idempotent
in D N 8'. Then the following conditions are equivalent:

(i) IfaeDNS, then D, N Hy = H.,.

(i) If e, f are idempotents in DNS', ac L, "R, NS, and o' € R, N Ly
ts an inverse of @ in 8, then the mappings

O :H,->H, x> ava’
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and
O':H, - H,, y—aya
are mutually inverse isomorphisms.

(iii) If a,ag € RaNS’, with g€ S, then H,g = H,,, and, if b, gb € Ly NS’
with q € S, then ¢H, = H,

qb

(iv) If e is an idempotent of DN S', and a € Le NS, b € R, N S’ then akl,
=Hpb=HH, = H,

b

(v) Ife, f are idempotents in D N S'. and a € Le N Ry N S, then T's (H))
=Ts (H)) and T (H) =T, (H,).

(vi) If e, f are idempotents in DNS', ae LeN BN S, and ¢’ € B. N Ly
18 an tnverse of a in S, then the mappings

P :]",\," ([{4,1) - I,,\,' (H,), e ] [14: ke )"u’lrl [[v”
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and

¢ T (H) T (H), A | H > |H,

p:Ts (H) > Ts (), o |H,>ou I,

and

v s (H) > T's (H),  ou| Hy > o | H,,
are pairs of mutually inverse isomorphisms.

Proof.

-(i) implies (ii). Since a.%e, with ae = @ and a’a = ¢, the left inner translation
Ja | R, is a one-to-one mapping of R, upon R,. Moreover, this mapping 7, R’
is Z-class preserving (4). D, N H, = H, implies R,N L, — H,, and
D,N H, = H, implies R, N Ly = H,. Thus 2, | H, is a onec-to-one mapping
of H, upon H,. Since a#f, with aa’ = f and fa = a, the inner right translation
oo | L, is a one-to-one mepping of L, upon L}. Moreover, this mapping is
P-class preserving (4). D, N Hy = H, implies L, N Ry, = H,, and D; N H,;
= H} implies L; N Ry = H;. Thus g, | H, is a one-to-one mapping of II,
upon H;. We conclude that @ = (74 | I,) o (0o’ | H,) is a one-to-cne mapping
of H, upen H;. Dually, ©" = (0 | H}) o (A« | H,) is a one-to-one mapping
of H, upon H,. Clearly @’ is the inverse of @. If x and y are clements of H,
then (xy)@ = axya’ = azeyas’ = axa'aye’ = (x)O(y)0. We conclude that @
and O’ are mutually inverse isomorphisms.

(i) implies (iii). Since aZag, the right inner translation g4 | L, is a one-to-one
mapping of L, upon L, and since this mapping is #-class preserving,
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(L, N Ry)g = (L, " R,;). DN S’ contains the idempotents e and f such that
acLNRNS. We know that H.nD,=H, and H;N D;=H; (4).
Let a’ be the inverse of @ contained in B, N L;. Let b be an element of L’ N R, .
The inner right translation gq | L; is a one-to-one mapping of L; upon L,.
More precisely, g4 | L; will map L; N R, upon L, N R,. We can put Ly N R, =
= H}, since Hf N\ D)= II;. Thus b = aa for some x € H,. By (ii) a'b =
= a'za € H,. The inner left translation 1, | B, is a one-to-one mapping of R,
upon R,. More precisely, A, | B, maps B, N L, upon R, N L,. Since a’za €
eB, N L,, we have a(a’za) eR, N L,, or, fracR,N L,, or b= za€R,.
We conclude that L, N R, = H,. In a similar way we can prove L,, N\ R, =
= H,,. Hence H,g = H,,. The rest follows dually.

(i1i) implies (iv). If e is an idempotent of D N §’;anda e L. N S, be R, N S,
then aHy, = Hyb = H,Hy = Hgp (6). Evidently ab € By N Ly N S’, and. there-
fore, by (iii) Hb = aH, = H,,. Let ce H,, then cH, = H,, by the same
argument. Since ¢b € H,b = H,, we must have H,, = H,,, and so ¢cH, = H,,
for any ¢ € H,. We conclude that H,H, = |J cH,= H,,.

esH’a

(iv) implies (v). Let ¢ e Ts'(H,). Then g. | L, N S is a #’'-class preserving
one-to-one mapping of Lg N 8’ upon itself (4). If e is an idempotent contained
in Ly N 8’, we must have R, N L, = H,, and hence et € H,. The element ¢
therefore belongs to T's'(H,), and we can put T's/(H,) < Ts(H,).

If in (iv) b = e, then aH, = H,, This implies H,/Ts(H,) = aH,Ts(H)) =
= aH, = H,, and so T's(H,) < T's(H,).

We conclude that T's(H,) = Ts(H,). The rest follows dually.

(v) implies (vi). If s € L, 8" and e e D N S’, @’ is any inverse of @ in R,,
we know that A, | He is a one-to-one mapping of H, upon H,, and Ae | Hg
is its inverse. Furthermore, ae = a. By (v) a2T's/(H,) = oTs(H,), or, aH, =
= H,. Hence, A, | I, and Ao | H, are mutually inverse one-to-one mappings
between H. and H,. If | H, € I'y(H,) and z € H,, then

(@) o (A | Hy) o dar = (a) (A | H,) o 4,
= (th)lar
= a'tax € H, .

Thus, (| H) o (| H) o (ke | H) = Ayw | H,ely(H,). This implies
I'y(H))p < T',(H.). Analogously I's(H.)¢' = I'¢(H,). Tt should be clear that
(e | H)o@' = Aponaw| Hy, = M | H,, and consequently @’ is the identity
mapping of I',.(H,). Similarly, ¢'¢ is the identity mapping of I'y(H,), and
so ¢ and ¢’ are mutually inverse one-to-one mappings between I'y.(H.) and
I'i(H)). Let us now assume that 4, | H, and 4, | H, are elements of I's.(H.).
Then

(e, | Ho) o (b | H))p = (Za | Hy) o (24, | Ha) o (R, | Hy) o (Rar | H,)



 Gal H) o Gy T GG ) GalHY oGy ) (e H)
[ H,;)(p
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= (4, | H)p (4

Therefore ¢ and ¢’ are group morphisms. We conclude that ¢ and ¢ are
mutually inverse isomorphisms. The rest follows dually.

(vi) implies (i). If ¢ is an idempotent of D N S’, and @ € L, N S, then St
contains an element @' such that a'a =e. Then 7, | R. N L, ¢ H, and
Ja | B, O\ Ly are mutually inverse one-to-one mappings between H, and
R, N L, (4). Let ¢ be an element of R, N L,, then St contains a ¢ such that
ta = ¢. Consequently a'ta € H, and Jgua | H, € I'y(H)). By (vi)

(}"u’m l H:,)(]’)’ = (;"a' | H(Z) ° (;'u/m ! H;) > ()“!l H:) € ]'/\(Hl’l) ’

or,
’ v’ ’
)‘(m'f(m’ [ Ha € ],\"(Hu) .
Therefore
(aa'tad’)w e H,,
or

aa’ce € H,, ,
’
as'c e H, .

Since Aq | B, N L, and 2, | H, are mutually inverse one-to-one mappings
between R, N L, and H,, we must lave aa'c —ceH, We hove
R, N L, = H,. Dually we can yrove that L, N R, = H,. We conclude that
D,NnH, = H,.
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