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Math. Slovaca 33,1983, No. 1, 87—97 

LEVELS IN L-SYSTEMS 

ALICA KELEMENOVA 

1. Introduction 

L-systems, as a kind of parallel rewriting systems were created on the basis of the 
formal model suggested by A. Lindenmayer in [6] for the development of simple 
biological organisms. 

Nowadays we have an intensively developing theory of L-systems, which 
originated the study of such interesting mathematical subjects as iterated 
homomorphisms and substitutions [9] and also the study of formal power series 
from the point of view of computer science [10]. The theory has considerable 
influence in the research activity in classical formal language theory. An exhaustive 
information on the theory of L-systems can be obtained on the basis of mono­
graphs [2, 9, 10, 13] and proceedings [7, 8]. 

Roughly speaking, an L-system is a rewriting system determined by the initial 
word (i.e. by a finite string of symbols over a fixed set, called alphabet) and by 
a finite set of production rules (which are prescriptions for replacing the letters in 
a derivation process). The derivation of words in an L-system proceeds in discrete 
time instants in a parallel manner, and starting with the initial word it produces 
a word in every time instant. (All symbols of a given word are simultaneously 
rewritten into the words according to the production rules.) 

A growth function and a letter occurrence function are-examples of such notions 
of L-systems which have biological origin. The growth function of a deterministic 
L-system (i.e. a system with a uniquely determined step of derivation) is a function 
defined for nonnegative integers. Its value for t is given by the length of the t-th 
word produced by L-system. A detailed survey of results concerning the growth 
functions can be find, e.g., in [11]. 

Some symbols in words can be more significant or important than others (e.g. in 
the biological original they can be more accessible or easier measurable than 
others. This, for example, is the case in the model of cell cycle [4]). This motivation 
leads to the study of a letter occurrence function, i.e. a function, which associates 
with the natural number t the number of occurrences of a given letter in the t-th 
word produced by an L-system. 
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In the present paper we wish to stress connections between the type of a growth 
function or a letter occurrence function of an L-system and the structural 
properties of an alphabet given by its production rules. For this purpose structural 
properties will be characterized by levels of an L-system, which are equivalence 
classes on the alphabet of the L-system defined by production rules. (In the 
context-free grammar a grammatical level is an equivalent tor the level of 
L-system. Grammatical levels are used as the basis for the study of the structural 
complexity of context-free languages [1, 5].) 

Throughout the paper we shall deal only with deterministic L-systems without 
interactions (abbreviated as DOL-systems). 

After the present Introduction, Section 2 contains definitions and preliminary 
results. In Section 3 various types of levels of an L-system are investigated. 
Section 4 contains definitions of the structural complexity measures of L-systems, 
which are later used for the reformulation of results from [11] and [3] to obtain 
a proper characterization of the type of growth functions or letter occurrence 
functions. 

Analogical characterizations of the deterministic table L-systems (DTOL-syst­
ems) are studied in [12]. 

2. Definitions and preliminary results 

We shall briefly review definitions and notations as well as propositions used in 
the following parts of the paper. The readers wishing more detailed information on 
the topic are referred to, e.g., [11] or [9]. 

We shall use the following notations: 
W* for the set of all words (finite strings) over the set W, i.e. W* = 

£v{aia2...an: ate W,l^i^n, n is a natural number}, where e is the empty 
word (i.e. the string, which does not contain any symbol); a, is also called 
a letter; 

Z* for the set of all nonnegative integers; 
\w\ for the length of the word w; 
$a(w) tor the number of occurrences of the letter a in the word w. 

Definition 2.1. A DOL-system (a deterministic Lindenmayer system without 
interaction) is a triple G = (W, h, w), where Wis a finite nonempty set called an 
alphabet, we W* is an initial word and h: W—• W* determines the production 
rules. 

We extend the domain of the function h to W* and define in natural manner 

h(e) = e 
h(aw) = h(a)h(w) for a e W, weW*. 
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For an integer t, t^2 and for weW* let ht(w) = h(ht~\w)). 

In the paper we shall consider only reduced DOL-systems, i.e. such systems, in 
which all letters in Ware accessible from w, i.e. for every a e Wthere is an integer / 
such that h*(w) = xay, xye W*. 

Definition 2.2. Let G = (W,h,w) be a DOL-system. Then the function fG: 
Z*-+Z+ defined by fG(t) = \ht(w)\ is said to be the growth function of G. 

Definition 2.3. Let G = (W,h,w) be a DOL-system and let ae W. Then the 
function oG,a: Z*-*Z* defined byoG,a(t) = #a(h'(w)) is said to be an occurrence 
function of the letter a in G. 

A function g: Z+^>Z* is said to be of the type 
i) exponential or type 3 if there is a real number x>\ such that 

lim sup ^ > 0 ; 

ii) polynomial or type 2 if g(t) is unbounded, i.e. limsup g(t)>c for all 

constants c and there exist polynomials p, q such that p(t) ^g(t)^ q(t) for all t; 
iii) limited or type 1 if there exists an integer m such that g(t)^m for teZ* 

and {/: g(t)=frO} is infinite; 
iv) terminating or type 0 if there is an integer t0 such that g(t) = 0 for all 

t^to. 
Now we shall list some structural properties of letters in a DOL-system 

G = (W,h,w). 
A letter a e W is mortal, a eM, if hl(a) = e for some /€Z + ; a letter a e W is 

recursive, aeR, if h*(a)e W*aW* for some i-^l; a letter aeW is 
monorecursive, aeMR, if h*(a)eM*aM* for some / ^ l ; a letter aeW is 
expanding, aeE,iihi(a)e W*aW*aW* for some i^l.For ze Waletter ae W 
is z-mortal, aez-M, if #z(h*(a)) = 0 for all i^i0; a letter aeW is 
z-monorecursive, aez-MR, if hi(a)ez-M*az-M*; a letter aeW is 
accessible from ve W*, ae U(v), if h*(v)e W*aW* for some /-."-* 1. 

Results in [11, pp. 140—144] and in [3] can be reformulated as the following 
propositions: 

Proposition 2.1 [11]. The only possible types of growth functions for DOL-syst­
ems are the types 0, 1, 2 and 3. 

Proposition 2.2 [11]. Let G = (W,h,w) be a reduced DOL-system. The growth 
function fG is of the type 0 iff all letters in w are mortal; fG is of the type 1 iff all 
recursive letters accessible from w are monorecursive; fG is of the type 2 iff G does 
not contain an expanding letter and it contains a recursive letter, which is not 
monorecursive; fG is of the type 3 iff G contains an expanding letter. 
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Proposition 2.3 [3]. The only possible types of letter occurrence functions for 
DOL-systems are the types 0, 1, 2 and 3. 

Proposition 2.4 [3]. Let G = (W, h, w) be a reduced DOL-system and let aeW. 
The letter occurrence function oG, a is of the type 0 iff all letters in w are a-mortal; 
oG,a is of the type 1 iff all recursive letters producing the letter a and accessible 
from w are a-monorecursive; oG,a is of the type 2 iff G does not contain an 
expanding letter and it contains a recursive letter, which is not a-monorecursive; 
oG,a is of the type 3 iff G contains an expanding letter b and aeU(b). 

3. Levels of L-system 

Binary relations > , > + , >* and = , defined below are known from the 
descriptional complexity of formal languages. 

Definition 3.1. Let G = (W,h,w) be a DOL-system and let a, beW. 
a>Gb iff h(a) = xby for some x, ye W*; 
>G is transitive closure of >G; 
>G is the reflexive and transitive closure of >G; 
a=Gb iff a>Gb and b>Ga. 

Definition 3.2. Let G = (W,h,w) be a DOL-system and let aeW. The 
equivalence class [a]G = {b: beW, b = oa}e WI=G is called the level of the 
L-system G generated by a. 

The subscript G in [a]G will be omitted if it is clear, which G is under 
consideration. 

We shall use the following notations: 
Let [a], [b] e WI=G and let t be a nonnegative integer. 
Then 
a) [a]<[b] iff b>*a; 
b) [a]t = {b1b2...bt: bte[a], 1 ^ / ^ t } ; 
c) [a]* = ev{b1b2...bk: k is a positive integer, b{e [a] for l^i^k}. 

Lemma 3.1. Let a, b, zeW, be [a] and P is one from the sets M, R, E, MR, 
z-M, z-MR. Then aePiff beP. 

Proof. Follows easily from the definitions. 

Definition 3.3. The level [a] is said to be mortal, recursive, monorecursive, 
expanding, z-mortal, z-monorecursive if the letter a is mortal, recursive, expandin-
g, z-mortal, z-monorecursive, respectively. 

Definition 3.4. Let G = (W, h,w) be a DOL-system. A graph of levels of G is 
a digraph GL(G) = (W/=G,EG), the nodes of which are levels of G and 
([*]> [b]) e EG iff c>Gd for some c e [a] and d e [b]. 
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Lemma 3.2. A level [a] is recursive iff [a] has at least two elements or if 
[a] = {a} and h(d) = xay for some x, ye W*. 

Proof. The case h(a) = xay is trivial. Suppose that [a] contains two different 
elements a and b. Then a>*b, b>*a, i.e. there are integers /, / such that 
hi(a) = xiby1 and hi(b) = x2ay2 for xu yu x2, y2eW*. Hence hi+i(a) = 
hi(xi)x2ay2h

i(yi) and [a] is recursive. 

Lemma 3.3. A level [a] is mortal itf every [b] satisfying the condition [b] ^ [a] is 
nonrecursive. 

Proof. If [a] is mortal, then hi(a) = e for some / and obviously [a] is 
nonrecursive. 

Let us suppose by contradiction that there is a recursive level [b] in G and 
[b] <[a]. Then h!(a) = Xibyi and hk(b) = x2by2 for some integers /, k and for xu x2, 
yi, yie W*. This implies that hi+sk(a) contains at least a letter b for every natural 
number s and therefore [a] is not mortal. 

Because of the finiteness of VVthe assumption that all [b]-s, satisfying condition 
[6]<[a], are nonrecursive implies the mortality of [a]. 

Corollary 3.1. If [a] is mortal, then [b], satisfying condition [b]<[a], is mortal. 
By ea we shall denote a mapping erasing from words in W* all letters x, x ̂  [a], 

i.e. ea: W*-*[a]* such that 

ea(x) = x for Jte[a], 
ea(x) = e otherwise for xeW and 

ea(xy) = ea(x)ea(y) for x, yeW*. 

Lemma 3.4 [11, p. 141]. A level [a] is expanding iff there is xe[a] such that 
e.(h(x))e[aY[a)*. 

Lemma 3.5. A recursive level [a] is monorecursive iff it is not expanding and all 
levels [b], [b]<[a] are not recursive. 

Proof, a) Monorecursivity of the level obviously implies that the level is not 
expanding (according to the Corollary 3.1). 

Suppose that [&]<[#]. Then b^ [a] and from the monorecursivity of [a] it 
follows that [b] is mortal, so [b] is nonrecursive by Lemma 3.3. 

b) Suppose that [a] is recursive and nonexpanding and that [b] is nonrecursive 
for every [b], [b]<[a]. Then h!(a) = xay for some / and x, y do not contain any 
letter from [a] because of Lemma 3.4, i.e. for z being a letter of xy, we have 
[z]<[tf]. Since [z] is nonrecursive, by Lemma 3.3 we get that all letters of xy are 
mortal, i.e. [a] is monorecursive. 

Lemma 3.6. a) A level [a] is z-mortal for z e [a] iff [a] is not recursive, 
b) A level [a] is z-mortal for z $ [a] iff [z] < [a] does not hold or if [z] < [a] and 

each [b], [z]^[b]^[a] is nonrecursive. 
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Proof, a) If [a] is recursive and z e [a], then obviously hl(a) contains a letter z 
for infinitely many indexes /. 

If [a] is not recursive, then according to the Lemma 3.2 [a] = {a} and h(a) does 
not contain a letter a, therefore [a] is a-mortal. 

b) If [z] <[a] does not hold, then trivialy [a] is z-mortal. Suppose that [z] < [a]. 
The assumptions that l°[a] is recursive or 2° that for some [b], [z] < [b] < [a], [b] 

is recursive lead immediately to the conclusion that [a] is not z-mortal. 
If [z] < [a], then hl(a) = Xizyi. Since all levels [b] such that [z] ̂  [b] ^ [a] are not 

recursive, there is a finite number of indices such that hl(a) contains a letter z, i.e. 
[a] is z-mortal. 

Lemma 3.7. a) A level [a] is z-monorecursive for z e [a] iff [a] is recursive and 
nonexpanding. 

b) A level [a] is z-monorecursive for z ^ [a] iff [a] is recursive and [z] < [a] does 
not hold or if [z] < [a], [a] is recursive and nonexpanding and all levels [b], such 
that [z]^[b]<[a] are nonrecursive. 

Proof. The z-monorecursive level is obviously recursive, a) Suppose that z e [a]. 
Let moreover [a] be expanding. Then hl(a) = xayaz for some index / and 

obviously [a] is not z-monorecursive. 
Let [a] be a nonexpanding level. Then by Lemma 6.3 ea(h(x)) e[a]2[a]* for all 

* e [ a ] , i.e. ea(h'(a))e[a] for all indices / = 0, 1, ..., i.e. hi(a) = xay and a is not 
a letter of the word hl(xy), / = 0, 1, .... Since z e [a], then z is not a letter of h'(xy), 
i = 0, 1, ... and therefore [a] is z-monorecursive. 

b) Suppose that z ^ [ a ] . 
1st case: if [z]<[a] does not hold, it is trivial. 
2nd case: [z]<[-?]. 
i) Let [a] be z-monorecursive. Using the same method as in the proof of part a) 

of the present lemma one can prove that [a] is nonexpanding. 
Suppose for a moment that for some level [b], [z]^[b]<[a], [b] is recursive. 

Then there are indices /, /', k such that hl(a) = xay, h\a) = X\byu hk(b) = x2by2 for 
x, y, X\, yi, x2, y2e W*. We shall discuss two cases: 

a) i^j. Since [b] ^[a] there can be chosen a letter ceW in such a way that 
h'(a) = X3cy3ay or h'(a) = xax3cy3 and hJ~'(c) = x4by4. The level [b] is recursive 
and [z] ̂  [b], therefore there is an index s such that hs(b) = x5zys. Since hJ~i+kr+s(c) 
contains a letter z for r = 0, 1, ..., we have a contradiction with the assumption that 
[a] is z-monorecursive. 

P) / > / . A letter ceW can be chosen in such a way that for some Jt3y3G W*, 
hl(a) = X3cy3ay or h*(a) = xax3cy3 and for 

k [ k \ 
(i.e. s is the rest of the integer division of i — / by k), h'(b) = x6cy6 and c produces 
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a letter z infinitely many times. Therefore c is not z-mortal. This is the 
contradiction with the assumption that [a] is z-monorecursive. 

ii) Let [a] be nonexpanding and all levels [b]9 [z] ̂  [b] < [a]9 are nonrecursive. 
Suppose for a moment that [a] is not z-monorecursive. Then for some integer / 

and for some x9 y9 ze W*9 h\a) = xaycz or hl(a) = xcyaz and c is not z-mortal. 
According to Lemma 3.6 there is a recursive level [d]9 [ z ] ^ [ d ] ^ [ c ] , which is 
a contradiction with the assumption that all levels [b]9 [z]^[b]<[a] are nonrecur­
sive. 

4. Characterizations of growth functions 
and letter occurrence functions 

For a DOL-system G = (W9h9w) and for z e l ^ w e shall denote by Lev(5 the 
number of levels in G9 by RLevG the number of recursive levels in G9 by 
MRLev G the number of monorecursive levels in G9 by ELev G the number of 
expanding levels in G9 by z-MRLev G the number of z-monorecursive levels in G. 

R e m a r k 4.1. Trivially for a given DOL-system G 

L e v G ^ R L e v G ^ M R L e v G + E L e v G ^ O 

and moreover at least one of the inequalities above is strong. 

Theorem 4.1. There is an effective procedure which, for DOL-system G = 
(W, h, w) and for zeW9 produces the values of Lev G, RLev G, MRLev G, 
ELev G and z-MRLev G. 

Proof. Let G be a given DOL-system. Construct the graph GL(G) of the levels 
of system G. According to Lemmas 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 test whether 
a given level is recursive, mortal, expanding, monorecursive, z-mortal or z-monor­
ecursive, respectively. The total number of levels with property P gives a value 
PLev. 

Theorem 4.2. Let G = (W9h9w) be a reduced DOL-system and let fG be the 
growth function of G. 

Then a) fG is of the type 0 iff RLevG = 0; 
b) fG is of the type 1 iff RLevG = MRLevG^O and ElevG = 0; 
c) fG is of the type 2 iff R L e v G > M R L e v G and ELevG = 0; 
d) fG is of the type 3 iff E L e v G > 0 . 
Proof. Following the Proposition 2.2 we have: 
a) fG is of the type 0 iff all letters in w are mortal. If RLev G = 09 then trivially all 

letters of G are mortal (see Lemmas 3.2 and 3.3). For a e W9 a being a letter of w9 

[a] is mortal and so [a] is not recursive. For a e W9 a being not a letter of w9 there is 
a letter b in w such that [£]>[#] . According to Lemma 3.3 [a] is not recursive, 
therefore RLevG = 0; 
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b) fG is of the type 1 iff only recursive letters accessible from w are monorecur-
sive. This together with part a) of this theorem gives immediately equivalent 
conditions RLevG = MRLevG!^0 and ELevG = 0; 

c) fG is of the type 2 iff G does not contain an expanding letter and it contains 
a recursive letter which is not monorecursive, i.e. iff ELevG = 0 and RLevG> 
MRLevG; 

d) fG is of the type 3 iff G contains an expanding letter, i.e. iff ELevCr>0. 

With a DOL-system ^(W,h,w) and with aeW we shall associate 
a DOL -system Ga = (W, ha, w), where 

ha(x) = h(x) for x>* a 
ha(x) = e otherwise. 

Remark 4.2. Let Ga=(W,ha, w) and let Ma be the set of all mortal levels in 
Ga. 

Then a) {[c]e W/=G: [c]>[a] does not ho ld}cMa , 
b) [c]>G[a] iff [c]>Ga[a]. 

Lemma 4.1. Let G = ( W, h, w) be a DOL-system and let aeW. An occurrence 
function oG,a and a growth function fGa are of the same type. 

Proof. Following Propositions 2.2 and 2.4 it is sufficient to prove that 
i) [b] is a-mortal in G iff [b] is mortal in Ga; 

ii) G contains a recursive letter which is not a-monorecursive iff Ga contains 
a recursive letter which is not monorecursive; 

iii) G contains an expanding letter b and b>* a iff Ga contains an expanding 
letter b. 

Using Remark 4.2 the property i) follows immediately from Lemma 3.3 and 
Lemma 3.6; the property ii) follows from Lemma 3.5 and Lemma 3.7 and the 
property iii) is trivial. 

Theorem 4.3. Let G = (W, h,w) be a reduced DOL-system, aeW and Ga = 
(W, ha, w) be a DOL-system associated with G and a. 

Then oG,a is of the type 0 iff KLevGa =0; 
oG,a is of the type 1 iff KLevGa =MKLevGa>0 and ELevGa=0; 
oG,a is of the type 2 iff RLevGa >MRLevGa and ELevG, = 0 ; 
oG, a is of the type 3 iff ELev Ga > 0. 
Proof. Follows immediately from Lemma 4.1 and Theorem 4.2. 
E x a m p l e : Let G = ({a, b, c, d, e, / } , h, a) be a DOL -system and 

h(a) = bc h(d) = df 
h(b) = bc h(e) = eed 
h(c) = ecdf h(f) = d. 
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We shall describe the graph GL(G) of levels of G and for every x in {a, b, c, d, 
e, /} the graph GL(GX) of levels of Gx. 

Ga: The levels {a}, {b}, {c} are mortal. LevG, =3, RLevGfl =0. oG,a is of 
the type 0 (fig. 1). 

Gb: The level {a} is nonrecursive, {b} is monorecursive, {c} is mortal. 
RLev Gb = MRLev Gb = 1, ELev G* = 0. oG, b is of the type 1 (fig. 2). 

{"} 

[4 

Rg.l:C7L(ã) Fig.2: GЦG.) 

Gc: The level {a} is nonrecursive, {b} is recursive and not monorecursive, 
{c} is jnonorecursive, {d},{e}, {/} are mortal. ELev Gc = 0, RLev Gc = 2, 
MRLevGc = 1. oG,c is of the type 2 (fig. 3). 

Ge: The level {a} is nonrecursive, {&}, {c} are recursive and not monorecur­
sive, {d}, {/} are mortal, {e} is expanding. ELevG, = 1. oG,e is of the 
type 3 (fig. 4). 

Gi: The level {a} is nonrecursive, {b}, {c} are recursive and not monorecur­
sive, {J} is monorecursive, {(?} is expanding and {/} is mortal. ELev Gd = 
loG,d is of the type 3 (fig. 5). 

Gf = G: The level {a} is not recursive, {b} and {c} are recursive, {e}, {d, /} are 
expanding. ELevG/ = ELevC? = 2.oG,/ is of the type 3 and fG is of the 
type 3 (fig. 6). 

Fig. 4 :GL(G.) 
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« • 

Fig.6:GL(Gf) = GL(G) 
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УРОВНИ В ^-СИСТЕМАX 

АНса Ке1етепоуа 

Резюме 

Для ^0^-систем (т.е. детерминистических систем Линденмаиера без взаимодействий) в статье 
1° определены погибающие, рекурсивные, монорекурсивные, расширяющиеся, г-погибающие 

и г-монорекурсивные уровни; 
2° даны простые необходимые и достаточные условия для того, чтобы уровень имел 

некоторое из свойств, перечисленных в Г; 
3° характеризован тип функции роста в ^0^-системе О при помощи числа рекурсивных, 

монорекурсывных и расширяющихся уровней системы О и тип функции появления буквы 
а в ^0^-системе С при помощи числа рекурсивных, монорекурсивных и расширяющихся 
уровней ЭОЬ-системы Оа, присоединеной к системе О и букве а. 
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