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ON THE PROBLEM OF PRESERVING
THE CLASS OF CONTINUOUS REAL
FUNCTIONS

LADISLAV MISIK Jr.

Let (X, J) be a topological space, where X is a set and J is a system of open
sets. Let C(X, 9) or shortly C(J) be the set of all continuous real functions on
(X, 79), B(X, J) or shortly B(J) be the set of all bounded continuous real
functions on (X, 7). Let C(X), resp. B(X), be the set of all real, resp. of all
bounded real functions on the set X and D(9)= C(X)— C(J). For A = X let us
denote by clsA the closure of A with respect to the topology 9 and (A, J/A) will
mean the subspace A of X with the topology induced by J.

In [3] the author proved that if (X, 9) is a compact metric space, then the
following holds:

if 7' 7, then C(X, 7) = C(X, T')iff C(X, I') = B(X) (D

In [5] the author analyses the conditions on the space (X, ) under which the
condition (I) holds. She found the sufficient condition which in general is not
necessary although in the class of linearly ordered topological spaces it is also
necessary. On the other hand, she found the necessary condition which is not
sufficient. She proved the following:

Theorem (Nonas): Let (X, J) be a pseudocompact space in which any
one-point set is of the type Gé, then (X, J) fulfils (I). Let (X, J) fulfil (1), then
there are no subsets A, B of X, such that AuB=X, AnB=@, A¢J and
(A, T|4a), (B, T|s) are star-compact spaces. (See the definition below).

In [4] the authors raised the question to find a necessary and sufficient condition
for the compact space (X, 9) to fulfil (I).

In the present paper we shall give some characterizations of comletely regular
spaces fulfilling (I). We give the necessary and sufficient conditions in terms of
lattices and functions and some sufficient conditions (Theorem 5) which are really
stronger than the above sufficient condition of Nonas because they include also the
Example 3 of her paper.

First, let us recall some definitions.
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Definition: Let (X, 9) be a topological space. A = X is called a zero-set if there
is some fe C(J) such that f'(0)=A. (X, J) is a Ts} space if the system of all its
zero-sets forms a base for J-closed sets. The topology is T, if any one-point set is
closed. It is completely regular if it is both T, and Tsi. The topology is star-compact
if C(9)=B(9). It is pseudocompact if it is both completely regular and
star-compact.

The following characterization of pseudocompact spaces is well known [1] and
we shall use it in the following.

Theorem: Let (X, 9) be completely regular. Then it is pseudocompact iff for
any sequence U;o U;>... of non-empty J-open sets there is ﬂcl U #0.

Notation: Let < C(X). Let us denote by J; the smallest topology on X
such that all the functions in % are Js-continuous. This topology is necessarily Ts:.
We shall write J; instead of J;, for fe C(X). The position of Tsi topologies is
given by:

Proposition: To any topology T on X there is a Tst topology J' such that
C(9)=C(9"), I'= J. This topology is exactly the T c(s). Any two different T
topologies have different classes of continuous real functions.

The lattice of topologies. The set of all topologies on the set X forms the lattice
which is denoted by 2(X). The lattice operations are given by: ,A 9, =9,nJ>,
J1v T, is the topology with the base consisting of sets of the form U,;n U, where
Uie 71, U, e J2. Let P be a topological property. We say that the topology J is
P-maximal if  has the property P and if 7' 2 7, then ' has not the property P.

Now we may characterize the T3 topologies fulfilling (I) by their position in
3(X).

Theorem 1: Let (X, 9) be a Ts topology. Then it fulfils (I) iff it is a maximal
pseudocompact topology.

Proof: The sufficiency: Let (X, ) be maximal pseudocompact and J' be
a topology on X (not necessarily Ts3) such that ' > J. Now if C(J') = C(9), then
C(E‘T’)cB(g) since J is pseudocompact. On the other hand if C(J')2 C(9),
then J ¢y is T3 topology and there holds J¢ry2 9, and so J ¢y is not
pseudocompact. Since J ¢y is T: and Ts3 it may not be star-compact and so
C(J")= C(T cgy) € B(X). Then (X, ) tulfils (I). The necessity: Let 7 be Ts:0n
X fulfilling (I). Then J is star-compact. Further J is maximal T}, star-compact,
for if 7' is Ts4, star-compact and 7' 2 7, then C(J')2 C(J) but C(ﬁ")cB(X),
which would be a contradiction to (I). Now it suffices to show that J is a T,
topology to end the proof. This shows the following lemma.

Lemma 1: Let I be maximal Ts3, star-compact topology. Then it is T, and so
maximal pseudocompact.
Proof: Let J be Ts3, star-compact but not T;. Let x € X be such that {x} is

92



not J-closed, and so the set A =cls{x} — {x} is non-empty. Since 7 is Ts4, {x}
is not open because in T4 spaces any open set is the union of cozero-sets
(i.e. complements of zero-sets) and assuming {x} to be a cozero-set we
get its closedness. Now put Y=X-—{x}. Let a, be A and U,, U, be their
J -open neighbourhoods in X. Then U.nU, is a non-empty J-open set and so
U.nU,nY#@ and a and b have no disjoint neighbourhoods in (Y, Tv).
Therefore any fe C(Y, J,y) is constant on A and it may be extended to
fe C(X, ) by putting f(x)=f(a) for ae A. Thus (Y, J,v) is star-compact.
Now put 7'=9JvJ, where g e C(X) and g(x)=0, g(Y)={1}. Then 7' is T4,
further 7',y =9y, hence the space (X, ') is the sum of two star-compact
spaces (Y, 9'/v) and ({x}, 9'/) and is star-compact too. Finitely we have
J'23J and so J is not maximal T34, star-compact.

Remark. Theorem 1 gives no internal characterization (only by topological
concepts) of spaces fulfilling (I). It should be noted that the internal characteriza-
tion of maximal star-compact spaces (called pseudocompact although they need
not fulfil any separation axiom) is an unsolved problem [2].

Theorem 1 has an interesting consequence. Combining Theorem 1 with the
results in [6] we get:

Theorem 2: Any T} space (X, ) fulfilling (I) (especially any pseudocompact
space with any one-point set of the type Gs) has the following property: If
h: (X, 9)—> (X, T) is a continuous bijection, then h is a homeomorphism.

Now let (X, ) be a completely regular space. Let us consider the following
partial quasi-order on the set D(J) of all J-discontinuous functions: For

f, 9e D(J) define f<g iff TvT;c Tv T,. Call the subset A of the partially
Ea

quasi-ordered set (P, =) down-cofinal if for any p € P there is some a € A such
that a=p.

It may be easily seen that if fe C(9), ge D(J), then f+g=g,if f- ge D(9),
T
then f-g=g and if h is a continuous real function of a real variable and
k2

hoge D(J), then hog = g. This implies that if % is any open covering of X, then
g

the set F()={feD(9), f(X)=(0,1)} and there is some Ue % such that
f(X = U)={0} is an example of a down-cofinal subset of the partially ordered set

(D(9), 5).

The following theorem is an immediate consequence of the fact that a smaller
topology than a star-compact topology is star-compact too.
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Theorem 3: Let (X, J) be pseudocompact. Then (X, J) is maximal
pseudocompact iff there is some down-cofinal subset ¥ of (D(), <) such that for
any fe F I v J; is not pseudocompact. 7

The following lemma restrict the set of spaces which may be maximal
pseudocompact.

Lemma 2: Let (X, 9) be maximal pseudocompact. Then it fulfils the following
condition (C): For any x € X there is some sequence U;> U,> ... of non-empty

J-open sets with ﬂclg c={x}.

Proof: Let (X, U') be maximal pseudocompact and x € X. There is some
unbounded fe C(X — {x}/X —{x}) for otherwise X would be the union of two
disjoint pseudocompact subsets, which is impossible by the necessary condition of
Nonas [5]. Put U, =(X—{x})—f '(—n, n). Then for each n € U, is a non-empty

J -open set in X, so we have () cl;U, # 0. But this intersection 1s empty in X — {x},
and so {x}—[)clsU..
n 1

Now let us consider what it means that v J; is not pseudocompact for
a pseudocompact 7 which fulfils (C) and fe D(J)nB(X). Let us denote by A the
closure of the subset A of the set of real numbers with the usual topology.

n=1

Lemma 3: Let (X, J) be a pseudocompact space in which (C) holds and
feD(T)nB(X). Then Jv J; is not pseudocompact iff there is a decreasing

o

sequence U;o U,> ... of non-empty J-open sets with ﬂf(U)d:f(ﬂ clva,).

Proof: = We shall distinguish two cases.
a) Let f be quasicontinuous, i.e. for any xeX and any ¢>0
x eclg(intsf'(f(x) — &, f(x) +¢)). Let Ai>A,;>... be a sequence of non-empty

T v J;-open sets with [ cly.7,A; =@. We may suppose that A,-s are of the form
i=1

A, =V,nf'(a, b) where VioV,>... are T-open and a;=a,=...=bh,=b, are
real numbers. Now we wish to make the sets A, smaller. Choose some sequence
xi€ A, such that the sequence f(x:), f(x2),... converges to some real number

re(){a,b,). Let n,<n,<... be some sequence of natural numbers such that for

any i there is -

(F(0) = f(x) +) < @, b)
and put
U, = Vinint,f ‘(f(x.)—nl', f(x:)+nl,)-
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Since f is quasicontinuous for any i € U is a non-empty J-open set and U; c A;. This

implies that ﬂ clsUi#0 and ﬁClgvg,[]i =f. Now suppose that there is some

pE ﬂclgU with f(p)=r. Let N,nf~'(r —¢, r + £) be an arbitrary I v J;-neighb-
ourhood of p where N, is some 9 -neighbourhood of p and £>0. Then
N,nf'(r—¢, r+€)nU,#@ for any i and this implies that p € ﬁclgvg',[],, which is
impossible. Thus -

(ry= ﬂf(U)ctf(ﬂclgU)

i=1

b) Let f be not quasicontinuous and xe€X and €>0 are such that
xécl(intsf'(f(x)—¢, f(x)+€)). Let Uio U,>... be the sequence of J-open sets

with ﬂclg ;= {x}. Then there is some sequence x,, x, ... of points with x; € U;

and f(x.) ¢ (f(x)—c¢, f(x)+e) Let r be some accumulation point of the sequence

f(x1), f(x2), .... Then reﬂ (U, and ré f(ncl U) = {(f(x)}.

& Choose  some real re ﬂf( U)- ﬂ cl, U) and put V.=

i=1

U.-mf“(r—%, r+l.>. Then for any ie V; is a non-empty J v J;-open set and
ﬂclgvg,V @, so that v J; is not pseudocompact.

Theorem 4: Let (X, ) be pseudocompact and ¥ some downcofinal subset of
(D(9), ) Then (X, ) fulfils (I) iff it fulfils (C) and if for any fe F there is

some sequence U,o U,>... of non-empty J-open sets with ﬂf(U) &

f(ﬁl clgUi).

Proof: Itisimmediate consequence of Theorem 1, Theorem 3 and Lemma 3.

Although this theorem has not much practical application in general, it implies
some sufficient conditions. We present here two of them. Recall that the regular
closed set is the closure of some open set.

Theorem 5: The pseudocompact space (X, 7) fulfils (1) if any of the following
two conditions holds:
a) Let A be an open subset of X and aeclsA. Then there is a sequence

A>U;oU:>o... of non-empty J-open sets with iﬁ clsU ={a}.
i=1
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b) Any point in X has some regular closed neighbourhood which is maximal

pseudocompact.
Proof: a) Let fe D(J)nB(X) and A c X, ae X are such that aecl,A and

f(a) ¢ f(A). Then there is some g € D(7)nB(X) with g=fand g(a)=2, y(A)=
7

10} and g(X)< (0, 2). It suffices to show that 7v 7, is not pseudocompact. If
there is some ¢ e (0,2) for which aecl;(int;g7'(0, q)), then there is some

sequence int;g~'(0, q)> U; o U,> ... of T-open sets with ()cl,U, = {a}, which
1

implies q g(U,) ¢ y(f]cl,U,») = {g(a)}=1{2} and T v .7, is not pseudocompact

by Theorem 4. On the other hand, let there be for any g € (0, 2) some neighbour-
hood N, of a such that (int,g (0, q))nN, =@. Choose some x € AnN, with
{x}¢.7. Then therc is some sequence N;—{x}>VioV,o... of .J-open sets

with ﬁcl_v,—V.-=.‘x}. Since for any i there is ¢g(Vi)n(1,2)+#@, we have
i=1

%o

ﬂg(V,-)d:y(ﬂcl;V;) = [g(x)} =10} so that 7v.7, is not pseudocompact by
i=1

i—1

Theorem 4.

b) Let fe D(9)nB(X), x be some point of discontinuity of f, cl;U be the
regular closed neighbourhood of x which is maximal pseudocompact. Let V be
some open neighbourhood of x with cl;V < U and g € C(J) be such that g(x)=1
and g(X — V)= {0}. Now let us consider the space clyU with the topology induced
by v J;.,. Since it is not pseudocompact there is some sequence Vo A; > A;>

.. of sets open in this space and the intersection of their closures in this space is
empty. But these sets are open also in (X, v J;.,) and the intersection of their
closures is empty in the last space too. Thus (X, v J,.,) is not pseudocompact

and since f - g =f, applying Theorem 4, we get the maximal pseudocompactness of
T

(X, 9).

Question: Are the conditions of Theorem 5 also necessary for maximal
pseudocompactness ? Notice that the necessity of a) is equivalent to the necessity
of b).

The following theorem gives the partial answer to this question.

Theorem 6: Let (X, ) be maximal pseudocompact space, A = X be open and
aeclyA. Let further (X —-{a}, /X —{a}) be a normal space and there exists
some B c A with clsB = Bu{a}. Then there is some sequence A> U;> U, > ... of

non-empty J-open sets with ﬁclgU,« ={a}.
. =1
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Proof: If aeA, then apply Lemma 2. Let a eclsA — A, then the normality of
(X—{a}, /X —{a}) implies the existence of some fe C(X—{a}, T/X—{a})
with f(B)=1 and f((X —{a})— A)={0}. Extend f to g:X— R defining g(a)=0.
Then a is the only point of discontinuity of g. Since v 7, is not pseudocompact,

there is some sequence V;> V.5 ... of non-empty 7 -open sets with (| cly,s,Vi=0

i=1

and for any n V,nA#@, since g is continuous on X — A. Put U, = V,nA. Then
NelsUi = {a).
=1
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O MPOBJIEME COXPAHEHMUS KJIACCA HEINPEPBLIBHBIX
BEUECTBEHHBIX ®YHKLIUM

Ladislav Misik Jr.
Pe3iome

B 3roii paGoTe aBTOp 3aHWMaeTCs BIOJIHE perynsipHbIMU npoctpancTBamu (X, J) UMeOIMMH
cnenytouee cpoictBo: Ecnu I < J'-tononornu Ha mMuHoxectBe X, to C(X, 7)=C(X, J') Torna
W TONBLKO TOTAa, Koraa Bce dyukuuu n3 C(X, J') orpanndensl. 3pecs C(X, T) 03HauyaeT MHOXECTBO
BCEX HempepbIBHbIX PyHKUMI Ha npocTpancTBe X, 7).

B padoTe noka3aHo, YTO 3TO CBOMCTBO 3KBMBAJIEHTHO MaKCHMAJIbHON MCEBAOKOMIMAKTHOCTH 3TOrO
npoctpaHcTsa. [IpuBofHTCS HEOGXONUMOE M JOCTATOYHOE YC/IOBHE B TepMUHax ¢yHkuumii. Bonee Toro,.
NPUBORUTCA HECKONBLKO HOBBIX HOCTaTOYHBIX YCJIOBHH.
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