0. Abstract

Extremal graph theory was begun by Paul Turán when he determined the maximum size of an extremal graph G not containing a prescribed complete graph K_n. Paul Erdős and colleagues later found the minimum size of a maximal G not containing K_n. The corresponding questions are studied here when the forbidden subgraph F is a path or a star or a matching.

1. Introduction

Given graphs F and G, we say that G is F-maximal if $F \not\subseteq G$ but $F \subseteq G + e$ for each line e of G. The original extremal result of Turán [11] gave for each $n \geq 3$ an exact formula for the maximum size (number of lines) $t(K_n, p)$ in a K_n-maximal graph G of given order (number of points) p. Erdős, Hajnal and Moon [3] developed a corresponding formula for the size $b(K_n, p)$ of a minimum K_n-maximal graph G. The most celebrated problem area of extremal graph theory has been to extend Turán's formula to other forbidden subgraphs F, by determining the value of $t(F, p)$. The author of the definitive treatise [1] on extremal graph theory, Béla Bollobás (verbal communication) asserted to one of us that even for the simple (in appearance only) case when $F = C_4$, the quadrilateral, the problem is utterly intractable.

Since the general problem is so difficult, we consider for the forbidden subgraph F three simple families of forests: the stars $K_{1,n}$, the matchings nK_2 and the paths P_n. For each of these families we investigate not only the Turán problem of determining the maximum size $t(F, p)$ of a maximal graph not containing F, but also the corresponding minimum size $b(F, p)$ as introduced in [5]. Values of $b(K_{1,n}, p)$, $b(nK_2, p)$ and $b(P_n, p)$ are obtained when p is sufficiently large with respect to n. In general, determining $b(F, p)$ seems to be a much more tractable problem than finding $t(F, p)$.
The notation of [4] is followed, in particular \(\Delta(G) \) is the maximum degree and \(\langle U \rangle \) is the subgraph induced by \(U \subset V(G) \). Also \(p(G) \) is the order and \(q(G) \) the size of the graph.

2. Extremal numbers for forbidden stars

Determining \(t(K_{1,n}, p) \) and \(b(K_{1,n}, p) \) are the two easiest extremal problems of this type. Note that if \(G \) is a \(K_{1,n} \)-maximal graph, then \(\Delta(G) \leq n - 1 \) but \(\Delta(G + e) = n \) for any line e in \(G \). For the remainder of this section, we assume that \(p \geq n + 1 \); if not, then obviously \(t(K_{1,n}, p) = b(K_{1,n}, p) = p(p - 1)/2 \) and the unique extremal graph is \(K_p \).

Theorem 1. Let \(\zeta \) be 1 if both \(p \) and \(n - 1 \) are odd, and 0 otherwise, so \(\zeta = p(n - 1) \mod 2 \). Then

\[
t(K_{1,n}, p) = ((n - 1)p - \zeta)/2.
\]

Proof. Let \(G \) be a graph of order \(p \) and size \(q > ((n - 1)p - \zeta)/2 \). Then the average degree of the points of \(G \) is at least \(((n - 1)p - \zeta + 2)/p > n - 1 \), so that \(\Delta(G) \geq n \), i.e., \(K_{1,n} \subset G \). Therefore, \(t(K_{1,n}, p) \leq ((n - 1)p - \zeta)/2 \).

To see that \(t(K_{1,n}, p) \geq ((n - 1)p - \zeta)/2 \), we merely note [4, p. 89] that \(K_p \) is the sum of \((p - 1)/2\) spanning cycles for \(p \) odd and the sum of a 1-factor and \((p - 2)/2\) spanning cycles for \(p \) even. Using these facts, it is trivial to construct a graph \(G \) of order \(p \) and size \(((n - 1)p - \zeta)/2 \) such that \(\Delta(G) = n - 1 \).

Given \(n \) and \(p \), let \(\mathcal{M}(n, p) \) be the family of \(K_{1,n} \)-maximal graphs of order \(p \) and size \(t(K_{1,n}, p) \). Obviously all points of any graph in \(\mathcal{M}(n, p) \) have degree \(n - 1 \) unless both \(p \) and \(n - 1 \) are odd, in which case there is a unique point \(w \) with degree \(n - 2 \). Somewhat surprisingly, we shall use these graphs to obtain the minimum \(K_{1,n} \)-maximal graphs.

Theorem 2. Let \(\sigma \) equal one if both \(n - 1 \) and \(p - n/2 \) are odd integers, and zero otherwise, so that \(\sigma = (n - 1)(p - n/2) \mod 2 \). Then if \(p \geq [3n/2] \),

\[
b(K_{1,n}, p) = (p(n - 1) - [n/2] + [n/2]^2 + \sigma)/2.
\]

Proof. Let \(G \) be a minimum \(K_{1,n} \)-maximal graph of order \(p \) and as usual let \(V(G) = \{v_1, \ldots, v_p\} \). Let \(r \) be the number of points of \(G \) with degree less than \(n - 1 \), and assume without loss of generality that these points are \(v_1, \ldots, v_r \) (we may regard \(r > 0 \), for otherwise \(G \) has size \(t(K_{1,n}, p) \), the maximum size among all maximal graphs). Because \(G \) is maximal, its induced subgraph \(\langle v_1, \ldots, v_r \rangle \) is \(K_r \).

Also, \(\deg(v_i) = n - 1 \) for \(r + 1 \leq i \leq p \), and since \(G \) is a minimum maximal graph, this implies that \(\langle v_{r+1}, \ldots, v_p \rangle \in \mathcal{M}(n, p - r) \). If both \(n - 1 \) and \(p - r \) are odd, then \(\langle v_{r+1}, \ldots, v_p \rangle \) contains just one point, say \(v_{r+1} \), with degree \(n - 2 \), so that \(G \) has
If a line joining \(v_{r+1} \) and \(v_i \) for some \(i \leq r \). If they are not both odd, then \(G \) has no lines between point sets \(\{v_1, \ldots, v_r\} \) and \(\{v_{r+1}, \ldots, v_p\} \).

Consequently, \(G \) has size

\[
q = (r(r-1) + (p-r)(n-1) + \sigma)/2. \tag{1}
\]

If the \(\sigma \) term is disregarded, equation (1) is a quadratic in the variable \(r \), and then it follows that its minimum among integers \(r \) is attained at both \(r = [n/2] \) and \([p/n] \). However, \(\sigma = 1 \) only if \(n \) is even, in which case \(r = n/2 \) still gives a minimum for (1), since it previously was the unique minimum. Therefore, \(r = [n/2] \) always yields a minimum for \(q \) (in (1), giving the value in the statement of the theorem.

3. Extremal values for forbidden matchings

The evaluation of \(t(nK_2, p) \) is not very difficult. In fact, Simonovits [10] determined the maximum \(nK_2 \)-maximal graphs for any positive integer \(s \), after Erdős [2] and Moon [8] obtained partial solutions. We state the result only for the case \(s = 2 \).

Theorem A [10]. If \(2n \leq p \), then the unique maximum \(nK_2 \)-maximal graph of order \(p \) is \(K_{n-1} + K_{p-n+1} \).

The value of \(t(nK_2, p) \) now follows immediately.

Corollary. If \(2n \leq p \), then \(t(nK_2, p) = (n-1)(2p-n)/2 \).

The value of \(b(nK_2, p) \) is also easy to find when \(p \) is large enough relative to \(n \).

Theorem 3. If \(p \geq 3(n-1) \) then \(b(nK_2, p) \geq 3(n-1) \).

Proof. Obviously \((n-1)K_3 \cup (p-3n+3)K_1 \) is \(nK_2 \)-maximal, so \(b(nK_2, p) \leq 3(n-1) \).

Now let \(G \) be an \(nK_2 \)-maximal graph of order \(p \), and let \(S = \{u_1v_1, \ldots, u_{n-1}v_{n-1}\} \) be a set of \(n-1 \) independent lines in \(G \). Let \(G_i = G - [V(S) - u_i - v_i] \) for \(i = 1, \ldots, n-1 \). Because \(G \) is \(nK_2 \)-maximal, the lines of \(G_i \) must form either a triangle or a star, so that \(q(G_i) = 3 \) or \(p - 2n + 3 \) for each \(i \). Since \(E(G_j) \cap E(G_i) = \emptyset \) for \(j \neq i \), it follows that \(q(G) \geq 3(n-1) \).

In fact, the \(nK_2 \)-maximal graphs have been characterized by Mader.

Theorem B [7]. The \(nK_2 \)-maximal graphs are the join graphs \(K_{k_0} + (K_{k_1} \cup K_{k_2} \cup \ldots \cup K_{k_t}) \) where \(k_0 \geq 0 \), \(t \geq k_0 + 2 \), every \(k_j \) is odd for \(j \geq 1 \), and \(n-1 = k_0 + \sum_{j=1}^{t} (k_j - 1)/2 \).

Note that \(k_0 = 0 \) gives the “null graph” \(K_0 \) which was intensively investigated in [6].

If \(p < 3(n-1) \), then the formula given in Theorem 3 for \(b(nK_2, p) \) is not valid. However, the method of the proof of Theorem 3 can be used to show that the
unique minimum nK_2-maximal graph G has the form of Theorem B with $k_0 = 0$ and $|k_i - k_j| \leq 2$ for $1 \leq i, j \leq t$, so that G is a union of complete graphs.

4. Extremal numbers for forbidden paths

We turn now to the problem of computing extremal values with a path as the forbidden subgraph. By way of comparison, $b(C_4, p)$ has been determined by Oilman [9], but $b(C_n, p)$ is unknown for $n \geq 5$. Also, as mentioned in the introduction, determining $t(C_n, p)$ is an extremely difficult problem even for $n = 4$.

As might be expected, evaluating $t(P_n, p)$ also appears to be quite hard and no major results are known. However, it is possible to compute $b(P_n, p)$ for values of p that are 'large enough' with respect to n. First we require some preliminary results on maximal trees, which are developed in four lemmas.

Lemma 4.1. If T is a P_n-maximal tree of order $p \geq 3$, then T has no points of degree 2 (is homeomorphically irreducible).

Proof. Suppose v is a point of T of degree 2 with neighbors u, w. Then the line uw is not in T, so $T + uw$ contains a path P^* of order n and uw is in P^*. Now P^* must also contain either vu or vw, for otherwise removing uw from P^* and adding vu and vw to it will yield a path on $n + 1$ points in T. So, suppose without loss of generality that line uv is in P^*. Since v has degree 2 in T, it is an endpoint of P^*, which must now have the form $v, u, w, x_4, \ldots, x_n$. But then $P^* - u, v, w, x_4, \ldots, x_n$ is an n-point path in T, a contradiction.

Lemma 4.2. If T is a P_n-maximal tree of order $p \geq 3$, then $T \Rightarrow O_{n-1}$.

Proof. Let uv, vw be adjacent lines in T. Then $T + uw$ contains P_n by the maximality of T. But it is easily verified that the maximum length of a path in $T + uw$ is at most one more than its length in T, so that $T \Rightarrow P_{n-1}$.

For $n \geq 4$, let $f(n)$ be the minimum order of a P_n-maximal tree T other than the trivial cases K_1 and K_2. Also, we define $f(3) = 2$ and $f(2) = 1$. It will soon be shown that $f(n)$ is finite.

Lemma 4.3. If $n \geq 4$, then $f(n) \geq 2f(n-2) + 2$.

Proof. Let T be a P_n-maximal tree of order $f(n), n \geq 4$. Let T' be the graph obtained from T by deleting all its endpoints. Since T has at least three points, $diam(T') = diam(T) - 2$, so that $P_{n-2} \not\subseteq T'$. Obviously any line e in T' is also in T. Since the unicyclic graph $T + e$ contains P_n by the maximality of T, it follows that $P_{n-2} \subseteq T' + e$ because by Lemma 4.1, a longest path in $T + e$ begins and ends at endpoints of T. Hence T' is a P_{n-2}-maximal tree.

By Lemma 4.2, T' can be K_1 or K_2 only if n is 4 or 5, so

$$p(T') \geq f(n - 2). \quad (4.1)$$

On the other hand, recall that $p(T) = f(n)$. By Lemma 4.1, no points of T have
degree 2 and since $q(T) = f(n) - 1$, it follows that T has at least $1 + f(n)/2$ endpoints. Therefore by the construction of T',

$$p(T') \leq f(n) - (1 + f(n)/2). \quad (4.2)$$

Combining inequalities (4.1) and (4.2) then yields the desired result. □

Now define recursively a family of trees T_n by setting $T_2 = K_1$, $T_3 = K_2$, $T_4 = K_{1,3}$ and for $n > 4$, let T_n be the tree obtained from T_{n-2} by adding to each endpoint v of T_{n-2}, two new endpoints adjacent only to v, as illustrated in Figure 1.

It is straightforward to verify that T_n is P_n-maximal. Moreover, $p(T_n) = 2p(T_{n-2}) + 2$ for $n \geq 4$, so that by Lemma 4.3, T_n is a minimum order P_n-maximal graph and $f(n) = p(T_n)$ for $n \geq 2$. A simple counting argument then shows that

$$f(n) = \begin{cases}
3 \cdot 2^{(n-2)/2} - 2 & \text{for } n \text{ even} \\
2^{(n+1)/2} - 2 & \text{for } n \text{ odd}.
\end{cases} \quad (4.3)$$

It can also be shown that T_n is the unique P_n-maximal tree of order $f(n)$ although the tedious proof will not be included here.

Lemma 4.4. Let u, w be endpoints of T_n, $n \geq 4$, which are both adjacent to the point v. Let T_n' be the graph obtained from T_n by adding $r \geq 1$ new endpoints, each adjacent to v. Then T_n' is also P_n-maximal.
Proof. Since \(p(T_n) \geq 3 \), \(\text{diam } (T_n^*) = \text{diam } (T_n) \) and so \(P_n \not\subseteq T_n^* \). Given a line \(e \) in \(T_n^* \), let \(\{x_1, \ldots, x_\ell\} \) be \(r \) endpoints in \(T_n^* + e \), which are adjacent to \(v \) but not incident with \(e \). Then \(T_n^* - \{x_1, \ldots, x_\ell\} = T_n \) and it follows that \(P_n \not\subseteq T_n^* + e \).

We are finally ready to return to the problem of determining \(b(P_n, p) \). Obviously, \(b(P_2, p) = 0 \) and \(b(P_3, p) = \lceil p/2 \rceil \). Also \(b(P_4, p) = p/2 \) for \(p \) even and \((p + 3)/2 \) for \(p \) odd, \(p \geq 3 \). When \(p \) is \textquoteleft large enough\textquoteright, we have the following result.

Theorem 4. If \(p \geq f(n) \), then

\[
b(P_n, p) = \begin{cases} p - 1 - \lfloor (p - 2)/f(n) \rfloor & \text{for } n = 5, \\ p - \lceil p/f(n) \rceil & \text{for } n \geq 6, \end{cases}
\]

where \(f(n) \) is as in (4.3).

Proof. Obviously \(b(P_n, p) \leq p - 1 \) since by Lemma 4.4 the tree \(T_n^{f(n)} \) is \(P_n \)-maximal. In general, if \(b(P_n, p) = p - k \), then at least \(k \) of the components of any minimum size \(P_n \)-maximal graph \(G \) must be trees. If \(T \not= K_1 \) is any tree such that \(P_n \not\subseteq T \), then obviously \(T \cup K_1 \) is not \(P_n \)-maximal, so \(K_1 \) cannot be a component of \(G \) when \(k \geq 2 \).

If \(n = 5 \), it is easy to see that \(K_2 \cup T_n \) is \(P_n \)-maximal but \(2K_2 \) is not. It follows that \(k \) is equal to \(1 + \lfloor (p - 2)/f(n) \rfloor \).

If \(n \geq 6 \) and \(T \) is any \(P_n \)-maximal tree, then \(K_2 \cup T \) is not \(P_n \)-maximal since adding a line \(e \) between a point of \(K_2 \) and a central point of \(T \) would still leave \(\text{diam } (K_2 \cup T + e) = n - 2 \). Thus in this case \(k = \lceil p/f(n) \rceil \), that is, \(k \) is the maximum integer \(r \) such that \(r \cdot f(n) \leq p \).

Acknowledgement. We would like to thank the referee for his careful suggestions.

REFERENCES

Received September 6, 1982

University of Michigan and
University of Colorado (F. Harary)
University of Michigan and
Illinois State University (M. Plantholt)

МАКСИМАЛЬНЫЕ ГРАФЫ С ЗАПРЕЩЕННЫМИ ПОДГРАФАМИ
ОБЛАДАЮЩИЕ МИНИМАЛЬНЫМ ЧИСЛОМ РЕБЕР

Frank Harary—Michael Plantholt

Резюме

П. Туран установил максимальное число ребер графа несодержащего заданный полный
граф K_n. П. Эрдёш и его сотрудники нашли минимальное число ребер максимального графа
несодержащего K_n. В работе изучаются соответствующие вопросы для случаев, когда запре-
щенным графом является путь, или звезда, или паросочетание.