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MINIMUM MAXIMAL GRAPHS 
WITH FORBIDDEN SUBGRAPHS 

FRANK HARARY—MICHAEL PLANTHOLT 

0. Abstract 

Extremal graph theory was begun by Paul T u r a n when he determined the 
maximum size of an extremal graph G not containing a prescribed complete graph 
Kn. Paul E r d o s and colleagues later found the minimum size of a maximal G not 
containing Kn. The corresponding questions are studied here when the forbidden 
subgraph F is a path or a star or a matching. 

1. Introduction 

Given graphs F and G, we say that G is F-maximal if Fct G but Fez G -I- e for 
each line e of G. The original extremal result of T u r a n [11] gave for each n 1^3 an 
exact formula for the maximum size (number of lines) t(Kn, p) in a Kn-maximal 
graph G of given order (number of points) p. E r d o s , H a j n a l and Moon [3] 
developed a corresponding formula for the size b(Kn, p) of a minimum Kn-maxi­
mal graph G. The most celebrated problem area of extremal graph theory has been 
to extend Turan's formula to other forbidden subgraphs F, by determining the 
value of t(F, p). The author of the definitive treatise [1] on extremal graph theory, 
Bela Bo lob as (verbal communication) asserted to one of us that even for the 
simple (in appearance only) case when F = C4, the quadrilateral, the problem is 
utterly intractable. 

Since the general problem is so difficult, we consider for the forbidden subgraph 
F three simple families of forests: the stars Ki,„, the matchings nK2 and the paths 
Pn. For each of these families we investigate not only the Turan problem of 
determining the maximum size t(F, p) of a maximal graph not containing F, but 
also the corresponding minimum size b(F, p) as introduced in [5]. Values of 
b(Ki,n, p), b(nK2, p) and b(Pn, p) are obtained when p is sufficiently large with 
respect to n. In general, determining b(F, p) seems to be a much more tractable 
problem than finding t(F, p). 
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The notation of [4] is followed, in particular A(G) is the maximum degree and 
(U) is the subgraph induced by Ucz V(G). Also p(G) is the order and q(G) the 
size of the graph. 

2. Extremal numbers for forbidden stars 

Determining t(KUn, p) and b(KUn, p) are the two easiest extremal problems of 
this type. Note that if G is a Ki,„-maximal graph, then A ( G ) ^ n - l but 
A(G + e) = n for any line e in G. For the remainder of this section, we assume that 
p^n + 1 ; if not, then obviously l(Ki,„, p) = b(Ku„, p) = p(p — \)/2 and the 
unique extremal graph is Kp. 

Theorem 1. Lei t be 1 if both p and n - \ are odd, and 0 otherwise, so 
t,=p(n - 1) mod 2). Then 

t(KLn,p) = ((n-l)p-l;)/2. 

Proof. Let G be a graph of order p and size q >((n - \)p - £)/2. Then the 
average degree of the points of G is at least ((n - \)p - £ + 2)1 p > n - 1, so that 
A(G)^n, i.e., KUnczG. Therefore, t(KUn,p) ^((n - \)p - £)/2. 

To see that t(K,, „, p) ^ ((n -\)p- £)/2, we merely note [4, p. 89] that Kp is the 
sum of (p — \)/2 spanning cycles for p odd and the sum of a 1-factor and (p — 2)12 
spanning cycles for p even. Using these facts, it is trivial to construct a graph G of 
order p and size ((n - \)p - £)/2 such that A(G) = n-\. 

Given n and p, let M(n, p) be the family of Ki, „-maximal graphs of order p and 
size l(Ki,„, p). Obviously all points of any graph in M(n, p) have degree n — \ 
unless both p and n — \ are odd, in which case there is a unique point w with degree 
n —2. Somewhat surprisingly, we shall use these graphs to obtain the minimum 
K],„-maximal graphs. 

Theorem 2. Let o equal one if both n — \ and p - nil are odd integers, and zero 
otherwise, so that o = (n- \)(p - n/2) (mod 2). Then if p ^[3n/2\, 

• b(Kun, p) = (p(n - 1) - [n/2\ + ltz/2]2 + o)/2. 

Proof. Let G be a minimum Ki,„-maximal graph of order p and as usual let 
V(G)= {vi, ..., vp). Let r be the number of points of G with degree less than 
n - 1, and assume without loss of generality that these points are V\, ..., vr (we may 
regard r>0, for otherwise G has size t(KUn, p), the maximum size among all 
maximal graphs). Because G is maximal, its induced subgraph (vu ..., vr) is Kr. 
Also, deg (v) = n — 1 for r + 1 ^ / ^p, and since G is a minimum maximal graph, 
this implies that (vr+i, ..., vp) e M(n, p - r). If both n — \ and p - r are odd, then 
(vr+i, ..., vp) contains just one point, say vr+1, with degree n -2, so that G has 
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a line joining vr+\ and vt for some i^r. If they are not both odd, then G has no 
lines between point sets {v\, ..., vr} and {vr+i, • •> vp}. 

Consequently, G has size 

q = (r(r-l) + (p-r)(n-l) + a)/2. (1) 

If the o term is disregarded, equation (1) is a quadratic in the variable r, and then 
it follows that its minimum among integers r is attained at both r = [n/2\ and [rz/2]. 
However, o=\ only if n is even, in which case r = n/2 still gives a minimum for (1), 
since it previously was the unique minimum. Therefore, r = [ri/2] always yields 
a minimum for q (in (1), giving the value in the statement of the theorem. 

3. Extremal values for forbidden matchings 

The evaluation of t(nK2, p) is not very difficult. In fact, S imonov i t s [10] 
determined the maximum nKs -maximal graphs for any positive integer s, after 
E r d 6 s [2] and M o o n [8] obtained partial solutions. We state the result only for the 
case s = 2. 

Theorem A [10]. If 2n^p, then the unique maximum nK2-maximal graph of 
order p is Kn-i + Kp-n+\. 

The value of t(nK2, p) now follows immediately. 

Corollary. If 2n^p, then t(nK2, p) = (n- \)(2p - n)/2. 
The value of b(nK2, p) is also easy to find when p is large enough relative to n. 

Theorem 3. If p ^ 3(n - 1) then b(nK2, p) = 3(n-\). 
Proof. Obviously (n-\)K3u(p-3n + 3)Ki is rcK2-maximal, so b(nK2, p)^ 

3(n-\). 
Now let G be an nK2-maximal graph of order p, and let S = {uivt, ..., un-wn-\} 

be a set of n - 1 independent lines in G. Let Gt = G-[V(S)-Ui-Vi] for 
i = \, ..., n — 1. Because G is nK2-maximal, the lines of G, must form either 
a triangle or a star, so that q(Gt) = 3 or p — 2n + 3 for each/ . Since 
E(Gj)nE(Gi) = 0 tor \+i, it follows that q(G)^3(n-\). 

In fact, the nK2-maximal graphs have been characterized by Mader . 

Theorem B [7]. The nK2-maximal graphs are the join graphs K^ + (KklvKk2v 
... uKkt) where k0^0, t^k0 + 2, every kj is odd for 1 = 1, and n — \ = 

= ko + g(fc-l)/2. 

Note that fc0 = 0 gives the "null graph" K0 which was intensively investigated in 
[6]. 

If p<3(n - 1 ) , then the formula given in Theorem 3 for b(nK2tP) is not valid. 
However, the method of the proof of Theorem 3 can be used to show that the 
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unique minimum tzK2-maximal graph G has the form of Theorem B with k0 = 0 
and |fc —fcy|^2 for 1 ^ / , / ^ t , so that G is a union of complete graphs. 

4. Extremal numbers for forbidden paths 

We turn now to the problem of computing extremal values with a path as the 
forbidden subgraph. By way of comparison, b(C4, p) has been determined by 
Oi lman [9], but b(Cn, p) is unknown for n^5. Also, as mentioned in the 
introduction, determining t(Cn, p) is an extremely difficult problem even for n = 4. 

As might be expected, evaluating l(Pn, p) also appears to be quite hard and no 
major results are known. However, it is possible to compute b(Pn, p) for values of 
p that are 'large enough' with respect to n. First we require some preliminary 
results on maximal trees, which are developed in four lemmas. 

Lemma 4.1. / / T is a Pn-maximal tree of order p > 3 , then T has no points of 
degree 2 (is homeomorphically irreducible). 

Proof. Suppose v is a point of T of degree 2 with neighbors u, w. Then the line 
uw is not in T, so T + uw contains a path P* of order n and uw is in P*. Now P* 
must also contain either vu or vw, for otherwise removing uw from P* and adding 
vu and vw to it will yield a path on n + 1 points in T. So, suppose without loss of 
generality that line uv is in P*. Since v has degree 2 in T, it is an endpoint of P*, 
which must now have the form v, u, w, JC4, ..., xn. But then P' — u, v, w, JC4, ..., xn 

is an n-point path in T, a contradiction. 

Lemma 4.2. If T is a Pn-maximal tree of order p^3, then TID On i. 
Proof. Let uv, vw be adjacent lines in T. Then T-\-uw contains Pn by the 

maximality of T. But it is easily verified that the maximum length of a path in 
T + uw is at most one more than its length in T, so that T=>Pn lm 

For n^4, let f(n) be the minimum order of a Pn-maximal tree T other than the 
trivial cases K\ and K2. Also, we define /(3) = 2 and f(2) = 1. It will soon be shown 
that f(n) is finite. 

Lemma 4.3. If n^4, then f(n)^2f(n - 2 ) + 2. 
Proof. Let T be a Pn-maximal tree of order f(n), n^4. Let T' be the graph 

obtained from T by deleting all its endpoints. Since T has at least three points, 
diam (T') = diam (T) — 2, so that Pn_2 <fc T'. Obviously any line e in f ' is also in T. 
Since the unicyclic graph T + e contains Pn by the maximality of T, it follows that 
Pn_2c T' + e because by Lemma 4.1, a longest path in T + e begins and ends at 
endpoints of T. Hence T' is a Pn_2-maximal tree. 

By Lemma 4.2, T' can be Ki or K2 only if n is 4 or 5, so 

p(T')7*f(n-2). (4.1) 

On the other hand, recall that p(T) = / ( " ) • By Lemma 4.1, no points of T have 
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degree 2 and since q(T) = f(n)-l, it follows that T has at least l + / ( n ) / 2 
endpoints. Therefore by the construction of T', 

p ( Г ) - £ / ( n ) - ( l + / ( л ) / 2 ) . (4.2) 

Combining inequalities (4.1) and (4.2) then yields the desired result. • 
Now define recursively a family of trees T„ by setting T2 = Ku T3 = K2, T4 = Ku 3 

and for n > 4 , let T„ be the tree obtained from T„-2 by adding to each endpoint v of 
T„_2, two new endpoints adjacent only to t>, as illustrated in Figure 1. 

Tз: 

T4І 

.:AГ7^ 

T7: 

Т8: 

Fig. 1. The maximal graphs T3, ..., T8 

It is straightforward to verify that T„ is P„-maximal. Moreover, p(Tn) = 
2p(Tn-2) + 2 for n ^ 4 , so that by Lemma 4.3, T„ is a minimum order P„-maximal 
graph and f(n) = p(Tn) for ni_2. A simple counting argument then shows that 

f 3 . 2 ( " - 2 ) / 2 _ 2 f o r n e v e n 

2(n+i)/2_2 for n o d d . f(n) = {2 
(4.3) 

It can also be shown that T„ is the unique P„-maximal tree of order f(n) although 
the tedious proof will not be included here. 

Lemma 4.4. Let u, w be endpoints of T„, n ^ 4 , which are both adjacent to the 
point v. Let Tn be the graph obtained from T„ by adding r ^ 1 new endpoints, each 
adjacent to v. Then Tn is also Pn-maximal. 
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Proof. Since p(Tn)^3, diam (Tr
n) = diam (Tn) and so Pn<t Tr

n. Given a line e in 

Tn, let {xi, ...,xn} be r endpoints in Tn + e, which are adjacent to v but not 
incident with e. Then Tn - {xu ..., xn} = Tn and it follows that PnaTn + e. 

We are finally ready to return to the problem of determining b(Pn, p). 
Obviously, b(P2, p) = 0 and b(P3, p) = [p/2]. Also b(P4, p) = p/2 for p even and 
(p + 3)12 for p odd, p ^ 3. When p is 'large enough', we have the following result. 

Theorem 4. If p^f(n), then 

h(P n,tP-l-[(p-2)/f(n)] for n = 5 
l " ' P J \p~[p/f(n)\ for n^6, 

where f(n) is as in (4.3). 
Proof. Obviously b(Pn, p)^p -1 since by Lemma 4.4 the tree Tp

n
 f(n) is 

Pn-maximal. In general, if b(Pn, p) = p — k, then at least k of the components of 
any minimum size Pn-maximal graph G must be trees. If T-7-K1 is any tree such 
that Pnc£ T, then obviously TuK i is not Pn-maximal, so Ki cannot be a component 
of G when k^2. 

If n = 5, it is easy to see that K2uTn is Pn-maximal but 2K2 is not. It follows that 
k is equal to 1 + [(p -2)1 f(n)]. 

If n^6 and T is any Pn-maximal tree, then K2uT is not Pn-maximal since 
adding a line e between a point of K2 and a central point of T would still leave 
diam (K2uT+ e) = n-2. Thus in this case k = [plf(n)], that is, k is the maximum 
integer r such that r-f(n)^p. 
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МАКСИМАЛЬНЫЕ ГРАФЫ С ЗАПРЕЩЕННЫМИ ПОДГРАФАМИ 

ОБЛАДАЮЩИЕ МИНИМАЛЬНЫМ ЧИСЛОМ РЕБЕР 

Ргапк Нагагу—Мкпае1 Р1ап1ЬоЙ 

Р е з ю м е 

П. Туран установил максимальное число ребер графа несодержающего заданный полный 

граф К„. П. Эрдёш и его сотрудники нашли минимальное число ребер максимального графа 

несодержающего К„. В работе изучаются соответсвующие вопросы для случаев, когда зап­

рещенным графом является путь, или звезда, или паросочетание. 
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