Pavol Marušiak
On the oscillation of nonlinear differential systems with retarded arguments

Persistent URL: http://dml.cz/dmlcz/128714

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
ON THE OSCILLATION OF NONLINEAR DIFFERENTIAL SYSTEMS WITH RETARDED ARGUMENTS

PAVOL MARUŠIÁK

1. Introduction

We consider systems of nonlinear differential inequalities with retarded arguments of the form

\[y'_i(t) - f_i(t, y_{i+1}(t), y_{i+1}(h_i(t))) = 0, \quad i = 1, 2, ..., n-1, \]
\[\{y'_i(t) + f_i(t, y_i(t), y_i(h_i(t)))\} \text{ sgn } y_i(h_i(t)) \leq 0. \]

where the following conditions are always assumed:

(a) \(h_i : [a, \infty) \rightarrow \mathbb{R} \) (\(i = 1, 2, ..., n \)) are continuous and \(h_i(t) \leq t \text{ for } t \geq a, \lim_{t \to \infty} h_i(t) = \infty, \) (\(i = 1, 2, ..., n \));

(b) \(f_i : [a, \infty) \times \mathbb{R}^2 \rightarrow \mathbb{R} \) (\(i = 1, 2, ..., n \)) are continuous, \(v f_i(t, u, v) \geq 0 \) (\(i = 1, 2, ..., n \)) for \(uv > 0 \)

and not identically zero on any subinterval of \([a, \infty); f(t, u, v) \) (\(i = 1, 2, ..., n-1 \)) are nondecreasing in \(u \) and \(v \) for each fixed \(t \in [a, \infty) \).

Denote by \(W \) the set of all solutions \(y(t) = (y_1(t), ..., y_n(t)) \) of the system (S) which exist on some ray \([T, \infty) \subset [a, \infty)\) and satisfy \(\sup_{t \geq T} \left\{ \sum_{i=1}^{n} |y_i(t)| : t \geq T \right\} > 0 \) for any \(T \geq T_y \).

Definition 1. A solution \(y \in W \) is called oscillatory (resp. weakly oscillatory) if each component (resp. at least one component) has arbitrarily large zeros. A solution \(y \in W \) is called nonoscillatory (resp. weakly nonoscillatory) if each component (resp. at least one component) is eventually of a constant sign.

Definition 2. We shall say that the system (S) has the property A, if every solution \(y \in W \) is oscillatory for \(n \), even, while for \(n \) odd it is either oscillatory or \(y_i \) (\(i = 1, 2, ..., n \)) tend monotonically to zero as \(t \to \infty \).
The oscillatory properties of solutions of two-dimensional differential systems with deviating arguments are studied in the following papers: Kitamura and Kusano [2, 3], Varech, Gritsai and Ševalo [4], Ševalo and Varech [5, 6]. The oscillation results for the system \(x'_k(t) = f_k(t, x(q_1(t)), \ldots, x(q_n(t))) \), \(k = 1, 2, \ldots, n \) were studied, followed by Foltynska and Werbowski [1].

In the present paper we proceed further in this direction to extend the theory developed in [4—6] to the systems of the form (S). Our results in lude some of the results in [1, 5, 6] and they do not follow from Theorem 1 in [1].

2. Oscillation Theorems

We introduce the notation:

\[
\gamma_i(t) = \sup \{ s > 0; h_i(s) < t \} \quad \text{for} \quad t \geq a, i - 1, 2 \ldots n,
\]

\[
\gamma(t) - \max \{ \gamma_i(t), \ldots, \gamma_n(t) \}.
\]

Lemma 1. Let \(\mathbf{y} = (y_1, \ldots, y_n) \in W \) be a weakly nonoscillatory solution of (S), then \(\mathbf{y} \) is nonoscillatory.

Proof. Suppose that \(y_k \) is a nonoscillatory component of solution \(\mathbf{y} = (y_1, \ldots, y_k, \ldots, y_n) \in W \) and \(y_k(t) \neq 0 \) for \(t \geq t_i, a \).

i) Let \(1 < k \leq n \). With the help of (a), (b), the system (S) implies that either

\[
y'_k(t) \geq 0 \quad \text{or} \quad y'_k(t) \leq 0 \quad \text{for} \quad t \geq \gamma(t_i) - t_i,
\]

and not identically zero on any infinite subinterval of \([t_i, \infty)\). We remark that \(y_k(t) \neq 0 \) for all \(t \geq t_2 \geq t_i \). If \(y_k(t) \equiv 0 \) for \(t \geq t_2 \), then \(y'_k(t) \equiv 0 \) for \(t \geq t_2 \) and the \((k-1)\)-st equation of (S) gives that \(f_k(t, y_k(t), y_k(h_k))) = 0 \) for all \(t \geq t \), which contradicts assumption (b). From (S) we get that \(y_k(t) \) is the monotone function and thus there exists a \(t_i \geq t_i \) such that \(y_k(t) \neq 0 \) for \(t \geq t_i \). We have proved that \(y_k \) is the nonoscillatory component of \(\mathbf{y} \). Analogously we can prove that \(y_{k-1}(t), \ldots, y_1(t) \) are also nonoscillatory components of \(\mathbf{y} \).

ii) Let \(k = 1 \). From the \(n \)-th inequality of (S) we obtain \(y'_i(t) \text{ sgn } y_i(h_i(t)) \leq 0 \) for \(t > t_i \) and not identically zero on any subinterval of \([t_i, \infty)\). Thus there exists \(a t_i \geq t_i \) such that \(y_n(t) \neq 0 \) for \(t \geq t_i \). If we consider now the case i) for \(k = n \), we get that all components of \(\mathbf{y} \) are nonoscillatory.

The proof of Lemma 1 is complete.

Lemma 2. Suppose that

\[
y - (y_1, \ldots, y_n) \in W
\]

is a nonoscillatory solution of (S) in the interval \([a, \infty)\). If

\[
\int_{T}^{*} |f_k(t, c, c)| \, dt = \infty \quad \text{for all} \quad c \neq 0, k = 1, 2, \ldots, n
\]

then

\[
\text{Lemma 2.} \quad \int_{T}^{*} |f_k(t, c, c)| \, dt = \infty \quad \text{for all} \quad c \neq 0, k = 1, 2, \ldots, n
\]
then there exist an integer \(l \in \{1, 2, ..., n\} \), \(n + l \) even, and a \(t_0 \geq a \) such that
\[
y_i(t)y_i(t) > 0 \text{ on } [t_0, \infty) \text{ for } i = 1, 2, ..., l, \quad (4)
\]
\[
(-1)^{n+l}y_i(t)y_i(t) > 0 \text{ on } [t_0, \infty) \text{ for } i = l + 1, ..., n \quad (5)
\]
hold.

Proof. Without loss of generality we may suppose that \(y_i(t) > 0 \) for \(t \geq a \). Similar arguments hold if \(y_i(t) < 0 \). According to (a) there exists a \(T_1 \geq \gamma(a) \) such that \(y_i(h_1(t)) > 0 \) for \(t \geq T_1 \). Then the \(n \)-th inequality of (S) implies that \(y_n(t') \) is nonincreasing on \([T_1, \infty)\) and not identically zero on any infinite subinterval of \([T_1, \infty)\). We shall show that \(y_n(t) \geq 0 \) for \(t \geq T_1 \). If \(y_n(t) < 0 \) for some \(t_1 \geq T_2 \), then \(y_n(t) \leq y_n(t_1) = c_n < 0 \) for \(t \geq t_1 \). Taking this into account and then integrating the \((n-1)\)st equation of (S) from \(t_2 = \gamma(t_1) \) to \(t \), we have
\[
y_{n-1}(t) = y_{n-1}(t_2) + \int_{t_2}^{t} f_{n-1}(s, y_n(s), y_n(h_n(s))) \, ds \leq \]
\[
\leq y_{n-1}(t_2) + \int_{t_2}^{t} f_{n-1}(s, c_n, c_n) \, ds \to -\infty \text{ as } t \to \infty.
\]

Then there exists a \(t_3 \geq \gamma(t_2) \) such that \(y_{n-1}(t) \leq c_{n-1} < 0 \), \(y_{n-1}(h_{n-1}(t)) \leq c_{n-1} \) for \(t \geq t_3 \). Integrating again the \((n-2)\)nd equation of (S) we prove that \(y_{n-2}(t) \to -\infty \) as \(t \to \infty \). Similarly we shall prove that \(y_i(t) \to -\infty \) as \(t \to \infty \) (\(i = n-3, ..., 2, 1 \)), which contradicts \(y_i(t) > 0 \) for \(t \geq a \). Therefore \(y_n(t) > 0 \) on \([T_2, \infty)\). Thus with the help of the \((n-1)\)st equation we obtain that \(y_{n-1}(t) \) is a nondecreasing function for \(t \geq T_3 = \gamma(T_2) \) and that it is eventually of one sign. a) Let \(y_{n-1}(t) \geq c_{n-1} > 0 \) for \(t \geq T_4 \). Taking this into account and integrating the \((n-2)\)nd equation of (S) from \(T_4 \) to \(t \), we obtain
\[
y_{n-2}(t) \geq y_{n-2}(T_4) + \int_{T_4}^{t} f_{n-2}(s, c_{n-1}, c_{n-1}) \, ds \to -\infty
\]
as \(t \to \infty \). Repeating this method, we prove that \(y_i(t) > 0 \) (\(i = 1, 2, ..., n-1 \)) for \(t \geq T_5 \). Therefore (4) is true for \(l = n \).

b) Let \(y_{n-1}(t) < 0 \) on \([T_3, \infty)\). Then the \((n-2)\)nd equation of (S) implies that \(y_{n-2}(t) \) is nonincreasing for \(t \geq T_6 = \gamma(T_3) \) and that it is eventually of one sign. We show that \(y_{n-2}(t) > 0 \) for \(t \geq T_7 \). If \(y_{n-2}(t) < 0 \) for some \(t_4 \geq T_7 \); then \(y_{n-2}(t) \geq y_{n-2}(t_4) = c_{n-1} < 0 \). Similarly as in the assumption \(y_n(t_1) < 0 \) we can prove that \(y_i(t) \to -\infty \) as \(t \to \infty \), which contradicts the assumption \(y_i(t) > 0 \) on \([a, \infty)\). Therefore \(y_{n-2}(t) > 0 \) on \([T_7, \infty)\). According to the \((n-3)\)rd equation of (S) we obtain that \(y_{n-3}(t) \) is nondecreasing for \(t \geq T_8 = \gamma(T_7) \) and \(y_{n-3}(t) \) is either positive for \(t \geq T_9 \) or \(y_{n-3}(t) < 0 \) for \(t \geq T_8 \). a2) If \(y_{n-3}(t) > 0 \) for \(t \geq T_9 \), we can prove that \(y_i(t) > 0 \) (\(i = 1, 2, ..., n-3 \)) for \(t \geq T_{10} \). Then (4) is true for \(l = n-2 \). b2) If \(y_{n-3}(t) < 0 \) for \(t \geq T_8 \), we can proceed as in the case of b1),
only instead of \(n - 1 \) we have \(n - 3 \). So we get that either \(y_i(t) > 0 \) (\(i = 1, 2, \ldots, n - 4 = l \)) or \(y_{n-4}(t) > 0 \) and \(y_{n-5}(t) < 0 \) for sufficiently large \(t \). Proceeding further similarly to the case of \(b_1 \), \(b_2 \) we prove (4) and (5) for \(l = n - 4, \ldots, 4, 2 \) (\(l = n - 4, \ldots, 3, 1 \)) if \(n \) is even (odd). This completes the proof.

Lemma 3. Suppose that the assumptions of Lemma 2 hold. If a component \(y_k \) (\(k \in \{1, 2, \ldots, n\} \)) of a solution \(y = (y_1, \ldots, y_n) \in W \) has the property

\[
\liminf_{t \to \infty} |y_k(t)| = L_k,
\]

then

a) \(\lim_{t \to \infty} y_i(t) = +\infty (-\infty), \ (i = 1, 2, \ldots, k - 1) \) when \(L_k > 0, k > 1 \);

b) \(\liminf_{t \to \infty} |y_i(t)| = 0, \ (i = k + 1, \ldots, n) \) when \(L_k < \infty, k < n \).

Proof. Lemma 3 may be proved in the same way as Lemma 2 [1] and therefore we omit here the proof.

Theorem 1. Suppose that

\[
f_k(t, x, y) \text{ is nondecreasing in } x \text{ and } y \text{ for each fixed } t \geq a.
\]

If, in addition,

\[
\int_{t}^{\infty} |f_k(t, c, c)| \ dt = \infty \ \text{for} \ k = 1, 2, \ldots, n
\]

for every \(c \neq 0 \), then the system \(S \) has the property A.

Proof. Suppose that the system \(S \) has a nonoscillatory solution \(y = (y_1, \ldots, y_n) \in W \). Without loss of generality we may suppose that \(y_i(t) > 0 \) for \(t \geq t_0 \geq a \). According to (a), \(y_i(h_i(t)) > 0 \) for \(t \geq t_1 = \gamma(t_0) \). Then the \(n \)-th inequality of \(S \) implies \(y_i(t) \geq 0 \) for \(t \geq t_1 \) and it is not identically zero on any subinterval of \([t_1, \infty) \). As \(y_i(t) > 0 \), \(y_i(t) \leq 0 \) for \(t \geq t_1 \), by Lemma 2 there exists an integer \(l \in \{1, \ldots, n\} \), \(n + l \) is even and a \(T_0 \geq t_1 \) such that

\[
y_i(t) > 0 \ \text{or} \ [T_0, \infty) \ \text{for} \ i = 1, 2, \ldots, l,
\]

\[
(-1)^{n-l} y_i(t) > 0 \ \text{on} \ [T_0, \infty) \ \text{for} \ i = l + 1, \ldots, n
\]

hold.

1. Let \(l \geq 2 \). In view of (8) and (a) we have \(y_1(t) > 0, y_2(t) > 0 \) for \(t \geq T \). Then by the 1st equation of \(S \), in view of (b) we get \(y_1(t) \geq 0 \) for \(t \geq t_2 = \gamma(T_0) \) and not identically zero on any subinterval of \([t_2, \infty) \). The function \(y_i(t) \) is nondecreasing and therefore \(y_i(t) \geq d_i > 0 \) for \(t \geq t_2 \). From the \(n \)-th inequality of \(S \), we have, with the help of (b) and (6),

76
\[y_i'(t) \leq -f_n(t, y_i(t), y_i(h_i(t))) \leq -f_n(t, d_1, d_1) \text{ for } t \geq t_1 = \gamma(t_2). \]

Integrating the last inequality from \(t_1 \) to \(t \), we obtain

\[\int_{t_1}^{t} f_n(s, d_1, d_1) \, ds \leq y_n(t) - y_n(t_1) \leq y_n(t_1), \]

which contradicts (7) for \(k = n \), as \(t \to \infty \).

II. Let \(l = 1 \) (\(n \) is odd). According to (8) and (b) we have \(y_1(t) < 0, y_2(h_1(t)) < 0 \) for \(t \geq t_1 = \gamma(t_0) \). Then the 1st equation of (S) gives that \(y_1(t) \) is nonincreasing and therefore \(\lim_{t \to \infty} y_1(t) = \delta \geq 0 \). We suppose that \(\delta > 0 \). Proceeding analogously as in the proof of I, we obtain a contradiction to (7). Therefore \(\delta = 0 \). Then applying Lemma 3 we get \(\lim y_i(t) = 0 \) for \(i = 1, 2, ..., n \).

The proof of Theorem 1 is complete.

Theorem 1 generalizes the results in [5, Theorem 1] and in [1, Remark 1].

Theorem 2. Suppose that (3) holds and in addition

\[f_n (t, x, y) = p_n(t)g_n(x, y), \quad (9) \]

where \(p_n : [a, \infty) \to [0, \infty) \), \(g_n : \mathbb{R}^2 \to \mathbb{R} \) are continuous functions with \(p_n \) not identically zero on any subinterval of \([a, \infty) \), \(yg_n(x, y) > 0 \) for \(xy > 0 \) and \(\lim \inf_{y \to \infty} |g_n(x, y)| > 0 \) for all \(x \neq 0 \).

If

\[\int_{a}^{\infty} p_n(t) \, dt = \infty, \quad (10) \]

then the system (S) has the property A.

Proof. Arguing as in the proof of Theorem 1 we can show that (8) holds. a) In case I \((i \geq 2) \) we have proved that \(y_i(t) \) is a nondecreasing function for which \(y_i(t) \geq d > 0 \) for \(t \geq t_2 \) and \(\lim_{t \to \infty} y_i(t) = d_2 \geq 0 \), where either \(d_2 < \infty \) or \(d_2 = \infty \). Then in view of (9) there exists a \(K > 0 \) such that

\[g_n(y_i(t), y_i(h_i(t))) \geq K \text{ for } t \geq t_3 = \gamma(t_2). \]

From the \(n \)-th inequality of (S) with the help of the last inequality we have

\[y_i'(t) \leq -f_n(t, y_i(t), y_i(h_i(t))) = -p_n(t)g_n(y_i(t), y_i(h_i(t))) \leq -Kp_n(t), \quad \text{for } t \geq t_3. \]

Integrating the last inequality from \(t_3 \) to \(t \), we obtain
which gives a contradiction to (10) as $t \to \infty$.

b) Let $l = 1$. Analogously as in case II of the proof of Theorem 1 we can show that $\lim_{t \to \infty} y_i(t) = 0$. Then by Lemma 3 we get $\lim_{t \to \infty} y_i(t) = 0$ for $i = 1, 2, \ldots, n$.

The proof of Theorem 2 is complete. This Theorem generalizes Theorem 2 [6].

We turn now to the system (S), where

$$f_i(t, x, y) = p_i(t)x, \quad i = 1, 2, \ldots, n-2$$

(11)

$$f_k(t, x, y) \text{sgn } y = p_k(t)|y|^\alpha, \quad \alpha_k > 0, \quad k = n-1, n,$$

where

$$p_i : [a, \infty) \to [0, \infty), \quad i = 1, 2, \ldots, n$$

(12)

are continuous functions and not identically zero on any subinterval of $[a, \infty)$,$$
\int_{p_i}^\infty(t) \, dt = \infty, \quad i = 1, 2, \ldots, n-1.$$

The system (S), in the particular case where (11), (12) hold and $p_i(t) > 0$, $i = 1, 2, \ldots, n-1$, $\alpha_{n-1} = 1$, $h_n(t) = t$ on $[a, \infty)$, is equivalent to the n-th order scalar differential inequality

$$\{ \left(\frac{1}{p_{n-1}(t)} \left(\frac{1}{p_2(t)} \left(\frac{1}{p_1(t)} y'(t) \right)' \right)' \right)' \}'' + p_n(t)|y(h_1(t))|^\alpha \cdot \text{sgn } y(h_1(t)) \leq 0.$$

We introduce the notation. $\alpha_{n-1} = \alpha$, $\alpha_n = \beta$;

$$\tilde{p}_i(t) = \min \{ p_i(s); \, t/4 \leq s \leq t \}, \quad t \geq a, \quad i = 1, \ldots, n-1$$

$$P_i(t) = \tilde{p}_i(t)\tilde{p}_{i-1}(t) \ldots \tilde{p}_1(t) \quad \text{for} \quad i \leq j,$$

$$P_i(t) = 1 \quad \text{for} \quad i > j, \quad P_1(t) = P_1(t).$$

Let $i_k \in \{ 1, 2, \ldots, n \} 1 \leq k \leq n-1$ and $t, s \in [a, \infty)$. We define $I_0 = 1 = J_0$, and

$$I_k(t, s; p_{i_k}, \ldots, p_i) = \int_s^t p_{i_k}(x)I_{k-1}(x, s; p_{i_{k-1}}, \ldots, p_i) \, dx,$$

$$J_k(t, s; p_{i_k}, \ldots, p_i) = \int_s^t p_{i}(x)J_{k-1}(t, x; p_{i_{k-1}}, \ldots, p_i) \, dx.$$

Lemma 4. Suppose that (11), (12) hold. Let y be a solution of (S) on the interval $[a, \infty)$. Then the following relations hold:
\[y_i(s) = \sum_{i=0}^{n-i-1} (-1)^i y_i(t) I_i(t, s; p_{i+p-1}, \ldots, p_i) + \]
\[+ (-1)^n \int^{t}_{s} p_n(x) |y_n(h_n(x))|^{\alpha} \text{sgn} y_n(h_n(x)) I_n(x, s; p_{n-2}, \ldots, p_i) \, dx, \]

\[\text{for } a \leq s \leq t, \quad i = 1, 2, \ldots, n-1; \]

\[y_i(t) = \sum_{j=0}^{m} y_{i+j}(s) J_i(r, s; p_i, \ldots, p_{i+j-1}) + \]
\[+ \int^{t}_{s} y_{i+m+1}(x) p_{i+m}(x) J_m(r, x; p_i, \ldots, p_{i+m-1}) \, dx, \]

\[\text{for } r \geq s \geq a, \quad i < n-1, \quad 0 \leq m < n-i-1. \]

Proof. a) Let \(a \leq s \leq t \). It is evident that

\[y_i(s) = y_i(t) - \int^{t}_{s} y_i'(x) \, dx = y_i(t) - \int^{t}_{s} p_i(x) y_{i+1}(x) \, dx, \]

\[\text{for } i \leq n-2, \]

\[y_n(t) = y_{n-1}(t) - \int^{t}_{s} p_{n-1}(x) |y_n(h_n(x))|^{\alpha} \text{sgn} y_n(h_n(x)) \, dx. \]

We calculate the second integral in (15) by parts. Denote:

\[v(x) = \int^{t}_{s} p_i(\tau) \, d\tau = I_i(x, s; p_i), \quad u(x) = y_{i+1}(x). \]

Then we obtain

\[y_i(s) = y_i(t) - y_{i+1}(t) I_i(t, s; p_i) + \int^{t}_{s} y_{i+1}'(x) I_i(x, s; p_i) \, dx = \]
\[= y_i(t) - y_{i+1}(t) I_i(t, s; p_i) + \int^{t}_{s} y_{i+2}(x) p_{i+1}(x) I_i(x, s; p_i) \, dx \]

\[\text{for } i < n-2. \]

If \(i = n-2 \), we get (13).

Using further the method by parts \((n-2-i)\) times \((i < n-2)\) on the last integral, we obtain (13).

b) Let \(a \leq s \leq t \) and let \(i < n-1 \). It is clear that

\[y_i(t) = y_i(s) + \int^{t}_{s} y_i'(x) \, dx = y_i(s) + \int^{t}_{s} y_{i+1}(x) p_i(x) \, dx. \]
For \(i = n - 2 \) (14) is true. Let \(i < n - 2 \). We calculate the last integral in (16) by parts. Denote \(v(x) = -\int_{x}^{t} p_i(\tau) \, d\tau \), \(u(x) = y_{i+1}(x) \). Then we have

\[
y_i(t) = y_i(s) + y_{i+1}(s) \int_{x}^{t} p_i(x) \, dx + \int_{x}^{t} y'_{i+1}(x) J_i(t, x; p_i) \, dx =
\]

\[
y_i(s) + y_{i+1}(s) J_i(t, s; p_i) + \int_{x}^{t} y'_{i+2}(x) p_{i+1}(x) J_i(t, x; p_i) \, dx.
\]

Using further the method by parts \(m - 1 \) times on the last integral, we get (14).

Lemma 5. Suppose that (11), (12) and the assumption (i) of Lemma 2 hold. Then there exist \(l \in \{1, 2, \ldots, n\} \), \(n + l \) is even and a \(T \geq a \) such that (4), (5) hold and

\[
|y_i(t/2)| \geq C_l t^{n-i} P_{n-i-1}(t) |y_{n}(t)|^a \quad \text{for} \quad t \geq T,
\]

where

\[
C_l = \frac{2^{-2(n-i)}}{(n-1)! (n-i)!}, \quad i = 1, 2, \ldots, n - 1.
\]

Proof. The inequality (4), (5) follows from Lemma 2. Without loss of generality we suppose that \(y_i(t) > 0 \) for \(t \geq t_0 \). Then from (13) we obtain for \(s = t/2, \) in view of (5) and the monotonicity of \(y_n(t) \)

\[
(-1)^i y_i(t/2) \geq \int_{t/2}^{t} (y_n(x))^a p_{n-i-1}(x) I_{n-i-1}(x, t/2; p_{n-2}, \ldots, p_i) \, dx
\]

\[
\geq (y_n(t))^a \tilde{p}_{n-i-1}(t) \int_{t/2}^{t} (t - x) p_{n-2}(x) I_{n-i-2}(x, t/2; p_{n-3}, \ldots, p_i) \, dx \geq \ldots \geq
\]

\[
\geq (y_n(t))^a \tilde{p}_{n-i-1}(t) \ldots \tilde{p}_i(t) \int_{t/2}^{t} \frac{(t-x)^{n-i-1}}{(n-i-1)!} \, dx.
\]

Calculating the last integral we get

\[
(-1)^i y_i(t/2) \geq \left(\frac{t}{2} \right)^{n-i} \frac{P_i(t)}{(n-i)!} (y_n(t))^a \quad \text{for} \quad t \geq 2t_0,
\]

and \(i = l, l + 1, \ldots, n - 1 \).

According to (4) and the monotonicity of \(y_n(t) \) we have from (14) for \(m = l - i - 1, r = 1/2, s = t/4 \)

\[
y_i(t/2) \geq y_i(t/2) \int_{t/4}^{t/2} p_{l-i}(x) J_{l-i-1}(t/2, x; p_i, \ldots, p_{i-2}) \, dx \geq
\]

80
\(\geq y_i(t/2) \hat{p}_i, i(t) \int_{t/4}^{t^2} (x - t/4) p_{i+1} z(x) J_{\alpha} J_{\beta}(x) p_{i+1} \, dx \geq \cdots \geq \)

\(\geq y_i(t/2) \hat{p}_i, i(t) \cdots \hat{p}_i(t) \int_{t/4}^{t^2} (x - t/4)^{i-1} (l-i-1)! \, dx . \)

If we calculate the last integral we obtain

\[
y_i(t/2) \geq \left(\frac{t}{4} \right)^i \frac{p_i, i(t)}{(l-i)!} y_i(t/2) \quad \text{for} \quad t \geq 4t_0 = T_i, i = 1, 2, \ldots, l - 1.
\]

Combining (18) for \(i = l \) and (19) we get (17).

Remark 1. a) The inequality (4) implies \(|y_i(t)| \geq |y_i(t/2)| \) for \(i = 1, 2, \ldots, l - 1 \). Then (17) can be written in the form

\[
|y_i(t)| \geq C_i t^a P_n, i(t) |y_n(t)|^a \quad \text{for} \quad t \geq T, i = 1, \ldots, l - 1.
\]

b) If \(0 < \alpha \leq 1 \), then it is evident that (17) holds also for \(i = n \).

Theorem 3. Suppose that (11), (12) hold. If \(0 < \alpha \beta < 1 \) and

\[
\int_T^\infty (h_i(t))^{\alpha} p_{i+1}(t)(P_n, i(h_i(t)))^\beta dt = \infty,
\]

then the system (S) has the property A.

Proof. Suppose that the system (S) has a nonoscillatory solution \(y = (y_1, \ldots, y_n) \in W \). Without loss of generality we may suppose that \(y_1(t) > 0 \) for \(t \geq t_0 \geq a \). According to (a) we have \(y_i(h_i(t)) > 0 \) for \(t \geq t_i = \gamma(t_0) \). Then the \(n \)-th inequality of (S) implies that \(y_n(t) \leq 0 \) for \(t \geq t_1 \) and it is not identically zero on any subinterval of \([t_1, \infty) \). As \(y_1(t) > 0 \) and \(y_n(t) \leq 0 \) for \(t \geq t_1 \), then by Lemma 5 we get (4), (5) and (17), resp. (17').

I. Let \(l \geq 2 \). From (17') we have for \(i = 1 \)

\[
y_i(t) \geq C_i t^a P_n, i(t) |y_n(t)|^a, \quad t \geq t_2 > t_1.
\]

Then the \(n \)-th inequality of (S) implies

\[
y_n'(t) \leq -C_i^a p_n(t)(h_i(t))^{\alpha_1} (P_n, i(h_i(t)))^\beta (y_n(h_i(t)))^{\alpha_2} \leq \quad (21)
\]

\[
\leq -C_i^a p_n(t)(h_i(t))^{\alpha_1} (P_n, i(h_i(t)))^\beta (y_n(t))^{\alpha_2}
\]

for \(t \geq t_3 = \gamma(t_2) \).

In (21) we have used the fact that \(y_n(t) \) is nonincreasing.

Dividing (21) by \((y_n(t))^{\alpha_2} \) and then integrating from \(t_3 \) to \(t \), we obtain

\[
\frac{(y_n(t))^{\alpha_2} - (y_n(t_3))^{\alpha_2}}{1 - \alpha_2 \beta} \leq -C_i^a \int_{t_3}^{t} p_n(s)(P_n, i(h_i(s)))^\beta (h_i(s))^{\alpha_1} h_i(s) ds.
\]

81
From the last inequality we get
\[C^\alpha \int_{t_0}^\infty p_n(s)(h_1(s))^{(\alpha-1)|\beta|}(P_{n-1}(h_1(s)))^\alpha \, ds \leq \frac{(y_n(t))^{1-\alpha|\beta|}}{1-\alpha\beta} < \infty, \]
which contradicts (20).

II. Let \(l = 1 \) (\(m \) is odd). Then by (5) the function \(y_1(t) \) is nonincreasing and with regard to \(y_1(t) > 0 \) it follows that \(\lim_{t \to \infty} y_1(t) = \delta \geq 0 \). We suppose that \(\delta > 0 \). Therefore there exists a \(K > 0 \) such that
\[\inf_{t_2 \geq t_1} \frac{y_1(t)}{y_1(t/2)} = K. \] (22)

From (17) we get for \(i = 1 \) with the help of (22)
\[y_1(t) = \frac{y_1(t)}{y_1(t/2)} y_1(t/2) \geq K C_i t^{n-1} P_{n-i}(t)(y_n(t))^{\alpha} \]
for \(t \geq t_1, t \geq 2t_1 \).

Proceeding further in the same way as in case I, we get a contradiction to (20).

Then \(\lim_{t \to \infty} y_1(t) = 0 \) and by Lemma 3 we have \(\lim_{t \to \infty} y_k(t) = 0 \) for \(k = 1, 2, \ldots, n \).

Theorem 3 extends the results of Ševelo and Varech [5, Theorem 2].

Theorem 4. Suppose that (11) and (12) hold. In addition there exists a differentiable function \(g: [a, \infty) \to R \) such that
\[g'(t) \geq 0, \quad 0 \leq g(t) \leq h_i(t) \quad \text{for} \quad t \geq T \geq a. \] (23)

If \(\alpha = 1, \beta > 1 \) and
\[\int_T^\infty p_n(t) \int_T^t (g(s))^{n-2} P_{n-i}(g(s))g'(s) \, ds \, dt = \infty, \] (24)
then the system (S) has the property A.

Proof. Suppose that the system (S) has a nonoscillatory solution \(y = (y_1, \ldots, y_n) \in W \). We suppose that \(y_1(t) > 0 \) for \(t \geq t_0 \). Proceeding in the same way as in the proof of Theorem 2 we get (4), (5) and (17). With regard to \(y_1(t) > 0 \), (4) and (5) we have either

\[y_2(t) > 0 \quad \text{or} \quad y_2(t) < 0 \quad \text{for} \quad t \geq t_1 > t_0. \]

I. Let \(y_2(t) > 0 \) for \(t \geq t_1 \). Then the 1st equation of (S) implies that \(y_1'(t) \geq 0 \) for \(t \geq \tilde{\gamma}(t) \), where \(\tilde{\gamma}(t) = \max (y_1(t), \sup \\{s ; g(t) < t\}) \) for \(t \geq a \).
We define the function z as follows

$$z(t) = -v(t)\int_{t_2}^t (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds$$

for $t \geq t_2 = \max \{ T, \bar{y}(t) \}$.

It is evident that

$$z(t) < 0 \quad \text{for} \quad t > t_2. \quad (26)$$

In view of the n-th inequality of (S), (23) and the monotonicity of y_i we get from (25) the following

$$z'(t) \geq p_n(t)(y_i(h_i(t)))^\beta \int_{t_2}^t (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds -$$

$$- y_n(t) (g(t))^{n-2} g'(t) P_{n-1}(g(t)) \geq$$

$$\geq p_n(t) \int_{t_2}^t (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds -$$

$$- \frac{y_n(g(t))}{(y_i(g(t)/2))^{n-2}} (g(t))^{n-2} g'(t) P_{n-1}(g(t)) p_i(g(t)/2).$$

If we use (17) for $i = 2, \alpha = 1$ and we substitute $g(t)$ for t, then from the last inequality we obtain

$$z'(t) \geq p_n(t) \int_{t_2}^t (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds -$$

$$- \frac{y_2(g(t)/2)g'(t)p_i(g(t)/2)}{C_2(y_i(g(t)/2))^{n-1}}. \quad (27)$$

Using the 1st equation of (S) and then integrating (27) from t_2 to t, we obtain

$$z(t) \geq z(t_2) + \int_{t_2}^t p_n(x) \int_{t_2}^x (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds \, dx -$$

$$- \frac{2y_1(g(t_2/2))^{n-1}}{C_2(\beta - 1)}. \quad (28)$$

In view of (24) the last inequality implies $\lim_{t \to \infty} z(t) = \infty$, which contradicts (26).

II. Let $y_2(t) < 0$ for $t \geq t_1$. The first equation of (S) implies that $y_1(t)$ is a nonincreasing function. Then in view of $y_1(t) > 0$ it follows that $\lim_{t \to \infty} y_1(t) = \delta \geq 0$. We suppose that $\delta > 0$. 83
We now define the function w as follows:

$$w(t) = -y_n(t) \int_{t_2}^{t} (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds, \quad t \geq t_2. \tag{28}$$

It is clear that $w(t) < 0$ for $t \geq t_2$.

Using the n-th inequality of (S), the monotonicity of y_1 and (17) for $i = 2$, we obtain from (28):

$$w'(t) \geq p_n(t)(y_1(h_1(t)))^n \int_{t_2}^{t} (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds -$$

$$- y_n(t)(g(t))^{n-2} g'(t) P_{n-1}(g(t)) \geq$$

$$\geq \delta^n p_n(t) \int_{t_2}^{t} (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds +$$

$$+ \frac{1}{C_2} y_2(g(t)/2) g'(t) p_1(g(t)/2). \tag{29}$$

Integrating (29) from t_2 to t, we get

$$w(t) \geq w(t_2) + \delta \int_{t_2}^{t} p_n(x) \int_{t_2}^{x} (g(s))^{n-2} g'(s) P_{n-1}(g(s)) \, ds \, dx -$$

$$- \frac{2}{C_2} y_1(g(t_2)/2).$$

In view of (24) the last inequality implies $\lim_{t \to \infty} w(t) = \infty$, which contradicts $w(t) < 0$ for $t \geq t_2$. Therefore $\delta = 0$, i.e. $\lim_{t \to \infty} y_1(t) = 0$. Then by Lemma 3 we have

$$\lim_{t \to \infty} y_k(t) = 0 \quad \text{for} \quad k = 1, 2, \ldots, n.$$

Remark 2. Consider now the scalar equation

$$y^{(n)}(t) + p_n(t) |y(h_1(t))|^\beta \text{ sgn } y(h_1(t)) = 0, \quad n \geq 2, \beta > 1, \tag{E}$$

which is a special case of the system (S).

It is easy to prove that

$$\int_{t}^{\infty} p_n(t) \int_{t}^{t} (g(s))^{n-2} g'(s) \, ds \, dt = \infty$$

eff

$$\int_{t}^{\infty} p_n(t) (g(t))^{n-1} \, dt = \infty.$$

Then from Theorem 3 we get the following very well-known
Corollary. Suppose that (12), (23) hold. If

\[
\int_{1}^{\infty} p_n(t) g(t)^{n-1} \, dt = \infty,
\]

then every solution of (E) is oscillatory if \(n \) is even while for \(n \) odd it is either oscillatory or tends monotonically to zero as \(t \to \infty \).

Theorem 5. Suppose that (11), (12) and (23) hold. In addition we assume that \(\alpha\beta > 1 \). If

\[
\int_{1}^{\infty} p_n(t) \, dt < \infty
\]

and

\[
\int_{1}^{\infty} (g(t))^{n-2} g'(t) P_{n-1}(g(t)) \left(\int_{t}^{\infty} p_n(s) \, ds \right)^{\alpha} \, dt = \infty,
\]

(30)

then the system (S) has the property A.

Proof. Let \(y = (y_1, \ldots, y_n) \in \mathbb{W} \) be a nonoscillatory solution of (S). Proceeding in the same way as in the proof of Theorem 4 we get (4), (5) and (17). We may suppose that \(y_i(t) > 0 \) for \(t \geq t_1 \). Integrating the \(n \)-th inequality of (S) from \(t(\equiv t_2 = \gamma(t_1)) \) to \(\tau \), we get

\[
y_n(\tau) - y_n(t) \leq - \int_{t}^{\tau} p_n(s)(y_i(h_i(s)))^{\alpha} \, ds,
\]

and then we have for \(\tau \to \infty \)

\[
y_n(t) \geq \int_{t}^{\infty} p_n(s)(y_i(h_i(s)))^{\alpha} \, ds, \quad t \geq t_2. \tag{31}
\]

1. Let \(t \geq 2 \). Since \(y_1 \) is nondecreasing and \(y_n \) is nonincreasing, (31) implies

\[
y_n(g(t))^{\alpha} \geq (y_1(g(t)))^{\alpha} \left(\int_{t}^{\infty} p_n(s) \, ds \right)^{\alpha}, \quad t \geq t_1 = \tilde{\gamma}(t_2).
\]

From the last inequality we obtain in view of (17) for \(i = 2 \) and the monotonicity of \(y_1 \)

\[
y_2(g(t)/2) \geq C_2(g(t))^{n-2} P_{n-1}(g(t))(y_1(g(t)/2))^{\alpha} \left(\int_{t}^{\infty} p_n(s) \, ds \right)^{\alpha}. \tag{32}
\]

Multiplying (32) by \(g'(t)p_1(g(t)/2)(y_1(g(t)/2))^{-\alpha} \) and using the 1st equation of (S), we get

\[
\frac{y'_i(g(t)/2)g'(t)}{(y_1(g(t)/2))^{\alpha i}} \geq C_2(g(t))^{n-2} g'(t) P_{n-1}(g(t)) \left(\int_{t}^{\infty} p_n(s) \, ds \right)^{\alpha}.
\]
Integrating the last inequality from \(t_3 \) to \(u \), we obtain

\[
\frac{2}{\alpha \beta - 1} (y_1(g(t)/2))^{\alpha_{q_1} - 1} \geq 0
\]

\[
\geq C_2 \int_{t_3}^{u} (g(t))^{n-2} g'(t) P_{n-1}(g(t)) \left(\int_t^\infty p_n(s) \, ds \right)^\alpha \, dt,
\]

which contradicts (30) as \(u \to \infty \).

II. Let \(l = 1 \). According to Lemma 5, \(y_1(t) > 0 \) for \(t \geq t_1 \), we get from the 1st equation of (S) \(y_2(t) < 0, \ y'_1(t) \leq 0 \) for \(t \geq t_1 \). Therefore \(\lim_{t \to \infty} y_1(t) = \delta \geq 0 \). We suppose that \(\delta > 0 \). Then, in view of the monotonicity of \(y_n, y_1 \) we obtain from (31):

\[
(y_n(g(t)))' \geq \delta q(n) \left(\int_t^\infty p_n(s) \, ds \right)^\alpha, \quad t \geq t_4 = \max \{ T, t_3 \}.
\]

If we use (17) for \(i = 2 \), we get from the last inequality

\[
-y_2(g(t)/2) \geq C_2 \delta q(n) (g(t))^{n-2} P_{n-1}(g(t)) \left(\int_t^\infty p_n(s) \, ds \right)^\alpha,
\]

for \(t \geq t_4 \).

Multiplying (33) by \(p_1(g(t)/2) g'(t) \) and using the 1st equation of (S), we obtain

\[
-y_1'(g(t)/2) g'(t) \geq C_2 \delta q(n) (g(t))^{n-2} g'(t) P_{n-1}(g(t)) \left(\int_t^\infty p_n(s) \, ds \right)^\alpha. \tag{34}
\]

Integrating (34) from \(t_4 \) to \(u \), we obtain

\[
2 y_1(g(t)/2) \geq
\]

\[
\geq C_2 \delta q(n) \int_{t_4}^{u} (g(t))^{n-2} g'(t) P_{n-1}(g(t)) \left(\int_t^\infty p_n(s) \, ds \right)^\alpha \, dt,
\]

which contradicts (30) as \(u \to \infty \).

Therefore \(\delta = 0 \), i.e. \(\lim_{t \to \infty} y_1(t) = 0 \). Then in view of Lemma 3 we have \(\lim_{t \to \infty} y_k(t) = 0 \) for \(k = 1, 2, ..., n \).

The proof of Theorem 5 is complete.

This Theorem generalizes Theorem 5 [5].
REFERENCES

[1] FOLTYNŠKA I.—WERBOWSKI J.: On the oscillatory behaviour of solutions of system of
differential equations with deviating arguments. Colloquia Math. Soc. J. B. 30, Qualitative theory
systems of differential equations with retarded argument. Metody količestvennogo kačestvennogo
[5] VARECH N. V.—ŠEVELO V. N.: On the conditions of the oscillation of the solutions of
differential system with retarded arguments. Kačestvennye metody teorii differenciálnych uravnenij
s otkloniajuščimsia argumentom, Kiev 1977, 26—44 (in Russian).
differential equations. Kačestvennoe issledovanie differenciálno-funkcionalných uravnenij, Kiev,

Received December 4, 1981

Katedra matematiky
Vysokej školy dopravy a spojov
Marxa—Engelsa 25
010 88 Zilina

87
О КОЛЕБЛЕМОСТИ РЕШЕНИЙ НЕЛИНЕЙНЫХ СИСТЕМ С ЗАПАЗДЫВАНИЕМ

Pavol Marušiak

Резюме

В статье приведены достаточные условия колеблемости решений системы (S) и системы

\[y_i'(t) = p_i(t)y_{i+1}(t), \quad i = 1, 2, ..., n-2, \]

\[y_n'(t) = P_n(t)|y_n(h_n(t))|^\alpha \text{ sgn } y_n(h_n(t)). \]

\[y_n'(t) \text{ sgn } y_n(h_n(t)) \leq -p_n(t)|y_n(h_n(t))|^{\beta}, \quad 0 < \alpha, 0 < \beta. \]