Pramila Srivastava; Mona Khare
Examples of classical and fuzzy Riesz proximities

Persistent URL: http://dml.cz/dmlcz/128718

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
EXAMPLES OF CLASSICAL AND FUZZY RIESZ PROXIMITIES

PRAMILA SRIVASTAVA — MONA KHARE

(Communicated by Anatolij Dvurečenskij)

ABSTRACT. Examples of proximities which are Riesz (respectively fuzzy Riesz) but not Lodato (respectively fuzzy Lodato) have been constructed.

1. Introduction

In the classical theory of proximities, the notion of f-proximities and, in particular, of Riesz (or RI) proximity is due to Thron [6], and that of a symmetric generalized proximity (now known as Lodato or LO-proximity) is due to Lodato [2]. A relationship between these two, that “every LO-proximity on a nonempty set is an RI-proximity”, is given by Thron [6]. In [5], we have continued the study of fuzzy f-proximities introduced in [3] and generalized the notion of classical RI-proximity to fuzzy Riesz (or RI) proximity. Fuzzy RI-proximity turns out to be a particular case of fuzzy f-proximities. In the fuzzy subset, setting also the result that “every fuzzy LO-proximity [4] on a set is a fuzzy RI-proximity” holds good [5].

In the present paper, we have constructed

(i) an example (Example 3.1) of an RI-proximity which is not an LO-proximity,

(ii) two examples of fuzzy RI-proximities both of which are not fuzzy LO-proximities.

Example 3.2 has been obtained with the help of Example 3.1, while Example 3.3 uses purely fuzzy behaviour in the sense that one cannot derive this example from a classical proximity using the technique of Example 3.2 (cf. Remark 3.4).

AMS Subject Classification (1991): Primary 54A40, 54A05. Secondary 54D35.

Key words: fuzzy set, fuzzy f-proximity, Riesz proximity, Lodato proximity.
2. Preliminaries

Let X be a nonempty set, $P(X)$ be the power set of X, and $I = [0, 1]$ be the closed unit interval of the real line \mathbb{R}. A fuzzy set λ in X is an element of the family I^X of all functions from X to I. A fuzzy point x_p, $x \in X$, $0 < p \leq 1$, is a fuzzy set in X defined by

$$x_p(y) = \begin{cases} p & \text{if } y = x, \\ 0 & \text{otherwise}. \end{cases}$$

For $A \in P(X)$, $\chi_A \in I^X$ is defined by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise}; \end{cases}$$

and $|A|$ denotes the cardinality of A. For $\lambda \in I^X$, we write $\text{supp} \lambda = \{x \in X : \lambda(x) \neq 0\}$. A fuzzy set which assigns the value t, $t \in I$, to each x in X is denoted by t. For $\lambda \in I^X$ and a binary relation Π on I^X define $c_{\Pi}(\lambda) = \bigvee \{x_p : (x_p, \lambda) \in \Pi\}$.

A binary relation Π on I^X is called a fuzzy Lodato (or LO) proximity on X if, for $\lambda, \mu, \nu \in I^X$, the following hold:

F1. $(\lambda, \mu) \in \Pi \implies (\mu, \lambda) \in \Pi$,
F2. $(0, 1) \notin \Pi$,
F3. $(\lambda \lor \mu, \nu) \in \Pi \iff (\lambda, \nu) \in \Pi$ or $(\mu, \nu) \in \Pi$,
F4. $\lambda \land \mu \neq 0 \implies (\lambda, \mu) \in \Pi$,
F5. $(\lambda, \mu) \in \Pi$ and $(x_p, \nu) \in \Pi$ for all $x_p \leq \mu \implies (\lambda, \nu) \in \Pi$ ([4]).

A binary relation Π on I^X is called a fuzzy Riesz (or RI) proximity on X if it satisfies F1, F2, F3, F4, and

F5'. $c_{\Pi}(\lambda) \land c_{\Pi}(\mu) \neq 0 \implies (\lambda, \mu) \in \Pi$ ([5]).

3. Examples

Example 3.1. Let $X = \mathbb{R} \times \mathbb{R}$, d be the Euclidean metric on X, and $d(A, B) = \inf\{d(\xi, \eta) : \xi \in A, \ \eta \in B\}$ for subsets A, B of X. Denote by ω_0 the first infinite cardinal. Define

$$\delta = \{(A, B) : d(A, B) = 0\}$$

$$\cup \{(A, B) : |A \cap \{(0, y) : -1 \leq y \leq 1\}| \geq \omega_0$$

$$\text{and } |B \cap \{(x, 0) : x < -1\}| \geq \omega_0\}$$

$$\cup \{(A, B) : |A \cap \{(x, 0) : x < -1\}| \geq \omega_0$$

$$\text{and } |B \cap \{(0, y) : -1 \leq y \leq 1\}| \geq \omega_0\}.$$
Then δ is a Čech proximity ([1]) on X and $c_\delta(A) \equiv \{x : (x,A) \in \delta\} = \{x : d(x,A) = 0\}$. If $c_\delta(A) \cap c_\delta(B) \neq \emptyset$, then there exists x in X such that $d(x,A) = 0 = d(x,B)$. Consequently, $d(A,B) = 0$, and hence $(A,B) \in \delta$. Thus δ is an RI-proximity on X.

Next, put $A = \{(x,0) : x < -1/2\}$, $B = \{(0,y) : -1 < y < 1\}$ and $C = \{(x,\sin 1/x) : x > 0\}$. Then $(A,B) \in \delta$, $(b,C) \in \delta$ for all $b \in B$. But $(A,C) \notin \delta$. This proves that δ is not an LO-proximity.

Example 3.2. Consider the metric space (X,d) of Example 3.1. Define

$$\Pi = \{(\lambda,\mu) : (\text{supp}\lambda, \text{supp}\mu) \in \delta\}.$$

Then Π satisfies F1 to F4, and, for A, B, C, as taken in Example 3.1, $(\chi_A,\chi_B) \in \Pi$, $(x_p,\chi_C) \in \Pi$ for all $x_p \leq \chi_B$; but $(\chi_A,\chi_C) \notin \Pi$. Thus Π is not a fuzzy LO-proximity on X.

Since $c_\Pi(\lambda) = \chi_{c_\delta(\text{supp}\lambda)}$, if $c_\Pi(\lambda) \cap c_\Pi(\mu) \neq \emptyset$, then $c_\delta(\text{supp}\lambda) \cap c_\delta(\text{supp}\mu) \neq \emptyset$. Hence $(\text{supp}\lambda, \text{supp}\mu) \in \delta$, i.e., $(\lambda,\mu) \in \Pi$. Thus Π is a fuzzy RI-proximity on X.

Example 3.3. Let X be an infinite set. For $0 < t < 1$, define

$$\Pi = \{(\lambda,\mu) : \lambda \land \mu \neq 0\}$$

$$\cup \{(\lambda,\mu) : \lambda \neq 0, \mu \neq 0 \text{ and } (\lambda \lor \mu)(x) > t \text{ for infinitely many elements } x \text{ of } X\}.$$

The relation Π satisfies F1 to F4. Let $c_\Pi(\lambda) \cap c_\Pi(\mu) \neq \emptyset$. Then $\lambda \neq 0$ and $\mu \neq 0$. If at least one of λ and μ takes values greater than t for infinitely many elements of X, then $(\lambda,\mu) \in \Pi$. Otherwise, $\text{supp}\lambda \cap \text{supp}\mu \neq \emptyset$, which implies that $\lambda \land \mu \neq 0$, and again $(\lambda,\mu) \in \Pi$. It may be noted that, for $\lambda \in I^X$,

$$c_\Pi(\lambda) = \begin{cases} 1 & \text{if } (\lambda(x) > t \text{ for infinitely many elements of } X,} \\ \chi_{\text{supp}\lambda} & \text{otherwise.} \end{cases}$$

That Π is not a fuzzy LO-proximity, follows from the following arguments:

Let $\lambda(\neq 0)$, $\nu(\neq 0) \in I^X$ be such that $\lambda \land \nu \neq 0$ and $\lambda(x) \leq t$, $\nu(x) \leq t$, for all x in X. Choose $\mu \in I^X$ such that supp $\mu = \text{supp}\nu$ and $\mu(x) \geq t$ for infinitely many points x of X. Then $(\lambda,\mu) \in \Pi$. Also, for $x_p \leq \mu$, $\mu(x) \neq 0$, and, consequently, $\nu(x) \neq 0$. Hence $(x_p,\nu) \in \Pi$. But $(\lambda,\nu) \notin \Pi$. Thus Π is not a fuzzy Lodato proximity on X.

Remark 3.4. Let δ be a relation on $P(X)$. Define $\hat{\delta} = \{(\lambda,\mu) : (\text{supp}\lambda, \text{supp}\mu) \in \delta\}$. It may be verified that δ is an LO-proximity if and only if $\hat{\delta}$ is a fuzzy LO-proximity. Suppose that the fuzzy proximity Π of Example 3.3 can be derived from a classical proximity δ as in Example 3.2, i.e.,
Π = ʰ. Since Π is not a fuzzy LO-proximity, ʰ is not an LO-proximity. But

\[\tilde{\Pi} \equiv \{(A, B) : (x_A, x_B) \in \Pi\} \]
\[= \{(A, B) : (x_A, x_B) \in ʰ\} \]
\[= ʰ. \]

and \(\tilde{\Pi}\) is an LO-proximity, i.e., ʰ is an LO-proximity. This provides a contradiction.

Thus Example 3.3 cannot be derived from a classical proximity using the technique of Example 3.2.

REFERENCES