Romulus Cristescu

Representation of linear operators on spaces of vector valued functions

Mathematica Slovaca, Vol. 34 (1984), No. 4, 405–409

Persistent URL: http://dml.cz/dmlcz/128726

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz
This paper is concerned with an integral representation of some linear operators defined on an ordered space of vector valued functions. The terminology used is that of [1].

1. Preliminaries

Let \(X \) be a locally convex vector lattice with the topology \(\tau \) and \(P \) the set of all solid and \((\tau)\)-continuous semi-norms defined on \(X \). Let \(Y \) be a complete vector lattice. For any \(p \in P \) we denote by \(\mathcal{L}_p \) the set of all linear operators \(U: X \to Y \) for which the set \(\{U(x); p(x) \leq 1\} \) is order bounded. If \(U \in \mathcal{L}_p \), we put

\[
\|U\|_p = \sup \{|U(x)|; p(x) \leq 1\}.
\]

We set also

\[
\mathcal{L} = \bigcup_{p \in P} \mathcal{L}_p,
\]

If \(U \in \mathcal{L} \), then \(U \) is called a \((po)\)-bounded operator. If \(U \in \mathcal{L}_p \), we say that \(U \) is \((po)\)-bounded with respect to \(p \).

The set \(\mathcal{L} \) is a normal subspace of the space \(\mathcal{R}(X, Y) \) of all regular operators which map \(X \) into \(Y \).

2. The space \(M(T, X) \)

Let \(T \) be a locally compact space and \(\mathcal{K} \) the set of all compact subsets of \(T \). For any \(E \in \mathcal{K} \) we denote by \(\mathcal{B}_E \) the set of all borelian subsets of \(E \) and we put

\[
\mathcal{B} = \bigcup_{E \in \mathcal{K}} \mathcal{B}_E.
\]
A \mathcal{B}-simple function f: $T \to X$ is, by definition, of the form

$$f(t) = \sum_{i=1}^{k} \gamma_{A_i}(t) x_i, \quad (t \in T)$$ \hspace{1cm} (1)$$

where $A_i \in \mathcal{B}$, $x_i \in X$, and γ_{A} being the characteristic function of A.

We denote by $M(T, X)$ the set of the functions f: $T \to X$ having the following properties: there exists $E \in \mathcal{K}$ and a generalized sequence $\{f_\delta\}_{\delta \in \Delta}$ of \mathcal{B}-simple functions (mapping T into X) such that $\text{spt } f_\delta \subset E$ (where spt means "the support") and $\{f_\delta\}_{\delta \in \Delta}$ is uniformly convergent to f. We shall say that $\{f_\delta\}_{\delta \in \Delta}$ is an approximating sequence for f.

For any $p \in \mathcal{P}$ we define a semi-norm \tilde{p} on the vector space $M(T, X)$ putting

$$\tilde{p}(f) = \sup \{p(f(t)); \, t \in T\}$$

if $f \in M(T, X)$.

The set $M(T, X)$ is a locally convex vector lattice with respect to the pointwise order and the topology defined by the set $\{\tilde{p}: p \in \mathcal{P}\}$ of semi-norms.

The set $C_0(T, X)$ of continuous functions with compact support (mapping T into X) is a vector sublattice of the space $M(T, X)$.

For any $E \in \mathcal{K}$ we denote

$$M_E(T, X) = \{f \in M(T, X); \, \text{spt } f \subset E\}.$$

The set $M_E(T, X)$ is a vector sublattice of the vector lattice $M(T, X)$.

We shall consider on the vector subspaces $C_0(T, X)$ and $M_E(T, X)$ of $M(T, X)$ the induced topology.

3. The integral

Let m: $\mathcal{B} \to \mathcal{L}$ be an additive function which satisfies the condition: for any $E \in \mathcal{K}$ there exists $p \in \mathcal{P}$ such that $m(\mathcal{B}_E) \subset \mathcal{L}_p$ and the set

$$G(E; p) = \left\{ \sum_{i=1}^{k} ||m(A_i)||_p; \, (A_1, \ldots, A_k) \text{ a } \mathcal{B}-\text{partition of } E \right\}$$

is (σ)-bounded. We shall say that m is of the (bv)-type and we shall denote

$$v_m(E, p) = \sup G(E, p).$$

If $f \in M(T, X)$ is a \mathcal{B}-simple function (see formula (1)), we define

$$\int_T f \, dm = \sum_{i=1}^{k} m(A_i)(x_i).$$

406
It is easily verified that the operator \(f \to \int_T f \, dm \) (defined on the set of \(\mathcal{B} \)-simple functions) is linear and for any \(E \in \mathcal{H} \) there exists \(p \in \mathcal{P} \) such that
\[
\left| \int_T f \, dm \right| \leq \bar{p}(f) v_m(E, p) \tag{2}
\]
if \(\text{spt } f \subset E \).

Let now \(f \) be arbitrary in \(M(T, X) \) and let \(\{f_\delta\}_{\delta \in \Delta} \) be an approximating sequence for \(f \), with \(\text{spt } f_\delta \subset \text{spt } f = E \).

There exists (see also (2)) \(p \in \mathcal{P} \) such that
\[
\left| \int_T f_\delta \cdot dm - \int_T f_\delta' \cdot dm \right| \leq \bar{p}(f_\delta' - f_\delta) v_m(E, p).
\]

Since \(Y \) is a complete vector lattice, the generalized sequence \(\left\{ \int_T f_\delta \, dm \right\}_{\delta \in \Delta} \) is \((p)\)-convergent (convergent with regulator \([1]\)). We shall define
\[
\int_T f \, dm = (p) - \lim_{\delta \to \Delta} \int_T f_\delta \, dm
\]
the limit being independent of the approximating sequence.

The integral is a linear operator (mapping \(M(T, X) \) into \(Y \)) and the inequality (2) holds for any \(f \in M_E(T, X) \).

4. Representation of some operators

If \(U: M(T, X) \to Y \) is a linear operator and \(E \in \mathcal{H} \), we shall denote by \(U_E \) the restriction of \(U \) to the subspace \(M_E(T, X) \). If \(U_E \) is \((po)\)-bounded with respect to \(\bar{p} \), we shall denote
\[
\|U\|_{E, p} = \|U_E\| \bar{p}.
\]

Theorem. A linear operator \(U: M(T, X) \to Y \) satisfies the condition

(i) \(U_E \) is \((po)\)-bounded, \(\forall E \in \mathcal{H} \),

if and only if

(ii) \(U(f) = \int_T f \, dm, \quad (f \in M(T, X)) \)

where \(m: \mathcal{B} \to \mathcal{I} \) is an additive function of the \((bv)\)-type. If (i) holds, then \(m \) can be chosen in (ii) such that the equality

(iii) \(\|U\|_{E, p} = v_m(E, p) \)

holds, as soon as the left-hand member exists.
Proof. As we saw in §3, the operator defined by (ii) satisfies the condition (i). From (2), which holds for any \(f \in M_E(T, X) \), it follows that
\[
\| U_E \| \hat{p} \leq v_m(E, p). \tag{3}
\]

Conversely, let \(U: M(T, X) \to Y \) be a linear operator satisfying (i). Hence, for any \(E \in \mathcal{K} \) there exist \(p \in \mathcal{P} \) and \(y_0 \in Y \) such that
\[
|U(f)| \leq \hat{p}(f) y_0, \quad (\forall f \in M_E(T, X)) \tag{4}
\]
Define \(m: \mathcal{B} \to \mathcal{L} \) by setting
\[
(m(A))(x) = U(\gamma_A \cdot x), \quad (\forall x \in X)
\]
(where \((\gamma_A \cdot x)(t) = \gamma_A(t) \cdot x; \quad \forall t \in T \)).

The operator \(m(A): X \to Y \) is obviously linear. With (4), there exists \(p \in \mathcal{P} \), such that \(m(A) \in \mathcal{L}_p \) (and the function \(m: \mathcal{B} \to \mathcal{L} \) is obviously additive). By considering a \(\mathcal{B} \)-partition \((A_1, \ldots, A_k) \) of a set \(E \in \mathcal{K} \), one has
\[
\sum_{i=1}^{k} \| m(A_i) \|_p = \sum_{i=1}^{k} \sup \{ |m(A_i)(x_i)|; \quad p(x_i) \leq 1 \} =
\]
\[
= \sup \left\{ \sum_{i=1}^{k} |m(A_i)(x_i)|; \quad p(x_i) \leq 1; \quad i = 1, \ldots, k \right\} \leq
\]
\[
\leq \sup \left\{ \sum_{i=1}^{k} |U| (|\gamma_A| x_i)|; \quad p(x_i) \leq 1; \quad i = 1, \ldots, k \right\} \leq
\]
\[
\leq \sup \{ |U|(|f|); \quad f \in M_E(T, X); \quad \hat{p}(f) \leq 1 \}
\]
by taking into account that (4) implies
\[
|U|(|f|) \leq \hat{p}(f) y_0, \quad (\forall f \in M_E(T, X)).
\]

It follows that
\[
\sum_{i=1}^{k} \| m(A_i) \|_p \leq y_0 \tag{5}
\]

The equality in (ii) obviously holds if \(f \) is a \(\mathcal{B} \)-simple function. Let now \(f \) be arbitrary in \(M(T, X) \) and \(\{f_\delta\}_{\delta \in \Delta} \) an approximating sequence for \(f \) such that \(\text{spt } f_\delta \subset \text{spt } f = E \). With (4) it follows that
\[
|U(f_\delta) - U(f)| \leq \hat{p}(f_\delta - f) y_0
\]
(where \(p \) and \(y_0 \) are suitably taken for \(E \)). Hence \(U(f) = (\mathcal{Q})_{\delta \in \Delta} U(f_\delta) \) and consequently (ii) hold.
If U_E is (po)-bounded with respect to ρ, then we can take $y_0 = \|U_E\|_\rho$ in (4) and from (5) we get

$$w_m(E, p) \leq \|U_E\|_\rho;$$

with (3) it follows that (iii) holds.

Corollary. Any (po)-bounded linear operator $U: C_0(T, X) \rightarrow Y$ can be expressed in the form

$$U(f) = \int_T f \, dm$$

where $m: B \rightarrow X$ is an additive function of the (bv)-type.

Indeed, U can be extended as a (po)-bounded linear operator on the space $M(T, X)$.

REFERENCES

Received June 29, 1982

*University of Bucharest
Faculty of Mathematics
Roumania*

ПРЕДСТАВЛЕНИЕ ЛИНЕЙНЫХ ОПЕРАТОРОВ НА ПРОСТРАНСТВАХ ВЕКТОРНЫХ ФУНКЦИЙ

Romulus Cristescu

Резюме

В данной работе устанавливается интегральное представление некоторых линейных операторов, заданных на упорядоченных пространствах, состоящих из векторных функций.