Mathematica Slovaca

Ligia-Loretta Cristea; Robert Franz Tichy
Discrepancies of point sequences on the Sierpiński carpet

Mathematica Slovaca, Vol. 53 (2003), No. 4, 351--367
Persistent URL: http://dml.cz/dmlcz/128732

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

DISCREPANCIES OF POINT SEQUENCES ON THE SIERPIŃSKI CARPET

Ligia L. Cristea* - Robert F. Tichy**
(Communicated by Stanislav Jakubec)

Abstract

Several types of discrepancies of finite point sequences on the Sierpiński carpet $C_{s}(s \geq 2)$ are introduced. Various estimates relating these discrepancies are proven.

1. Introduction

The (2-dimensional) Sierpiński carpet is a well-known planar fractal set, which can be constructed as follows. Let A_{0} be the unit square of vertices $P_{0}(0,0), P_{1}(0,1), P_{2}(1,0), P_{3}(1,1)$. Let A_{1} be the set that one gets by dividing A_{0} into 9 congruent squares with side length $1 / 3$ and "deleting" the open "central" square. A_{1} is the union of 8 squares of side length $1 / 3$. By repeating this operation for each of these eight squares successively one gets the sets A_{2}, A_{3}, \ldots The set A_{n} is the union of 8^{n} squares with side length 3^{-n}, called elementary squares of level n. In the following, for simplicity, we will also call them simply n-squares.

DEFINITION 1. The set $C=\bigcap_{n=0}^{\infty} A_{n}$ is called the (planar) Sierpinski carpet. Figure 1 shows the set $\bigcap_{n=0}^{4} A_{n}$.

The definition can be extended in higher dimension.
The s-dimensional Sierpiński carpet $(s \geq 2)$ is a fractal set, embedded in \mathbb{R}^{s} and can be obtained as follows. Let $A_{0}=[0,1]^{s}$ be the unit cube in \mathbb{R}^{s}. We denote by A_{1} the set obtained by dividing A_{0} into 3^{s} congruent cubes with side

[^0]length $1 / 3$ and "deleting" the open "central" cube, i.e $A_{1}=[0,1]^{s} \backslash\left(\frac{1}{3}, \frac{2}{3}\right)^{s}$. A_{1} is the union of $3^{s}-1$ cubes with side length $1 / 3$. By repeating this operation for each of these $3^{s}-1$ cubes successively one gets $A_{2}, A_{3}, \ldots, A_{n}, \ldots$ Thus A_{n} is the union of $\left(3^{s}-1\right)^{n}$ cubes with side length 3^{-n}, called elementary cubes of level n, or, simply, n-cubes.
$$
A_{n}=A_{n-1} \backslash\left(\bigcup_{k=0}^{3^{n-1}-1}\left(\frac{k}{3^{n-1}}+\frac{1}{3^{n}}, \frac{k}{3^{n-1}}+\frac{2}{3^{n}}\right)\right)^{s}
$$

Figure 1. $\bigcap_{n=0}^{4} A_{n}$. The black squares are deleted.
DEFINITION 2. The set $C_{s}=\bigcap_{n=0}^{\infty} A_{n}$ is called the s-dimensional Sierpiński
carpet.

Remarks.

1. Obviously we have $C_{2}=C$.
2. C_{s} is a fractal set with Hausdorff dimension $\alpha_{s}=\frac{\log \left(3^{s}-1\right)}{\log 3}$, as it can be shown e.g. by using techniques of [Fal90] and [Fal97].

If we regard C_{s} as the attractor of an $I F S$ (Iterated F unctions S ystem) and observe that it verifies the open set condition, it can be shown, e.g. using techniques of [Fal97], that $0<\mathcal{H}^{\alpha_{s}}\left(C_{s}\right)<\infty$, where $\mathcal{H}^{\alpha_{s}}\left(C_{s}\right)$ is the α_{s}-dimensional Hausdorff measure μ on C_{s}. Hence we introduce the normalized Hausdorff measure μ on $C_{s}\left(\mu(A)=\frac{\mathcal{H}^{\alpha_{s}}(A)}{\mathcal{H}^{\alpha_{s}}\left(C_{s}\right)}\right.$ for all Borel sets $\left.A \subset C_{s}\right)$. We will use, for simplicity, the notation α instead of α_{s}.

If we denote the set of all vertices of the n-cubes building up A_{n} by V_{n} and the set of all edges of these cubes by E_{n}, we get a finite graph $F_{n}=\left(V_{n}, E_{n}\right)$ for every $n \in \mathbb{N} \backslash\{0\}$. We will refer to this graph later, when we define the geodesic metric on C_{s}.

In the present paper we study different types of discrepancies of point sequences on C_{s}. The notion of discrepancy is closely related to that of uniform distribution.

In a compact metric space X endowed with a normed Borel measure ν a sequence $\left(x_{n}\right)$ is said to be ν-uniformly distributed if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)=\int_{X} f(x) \mathrm{d} \nu(x) \tag{1}
\end{equation*}
$$

holds for all continuous real-valued functions f on X.
It has been proven ([KN74]) that in order that (1) holds, it is necessary and sufficient that the above condition is satisfied for all functions $f=\chi_{A}$, where $A \subset X$ is any Borel set with $\nu(\partial A)=0$.

Let \mathcal{D} be a system of Borel sets $A(\subset X)$ in the mentioned metric space X, such that $\nu(\partial A)=0$ for each $A \in \mathcal{D}$.

DEFINITION 3. The (volume) discrepancy of the sequence $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ $\subset X$ with respect to \mathcal{D} is defined by

$$
D_{N}\left(x_{n}\right)=D_{N}^{\mathcal{D}}\left(x_{n}\right)=\sup _{A \in \mathcal{D}}\left|\frac{1}{N} \sum_{n=1}^{N} \chi_{A}\left(x_{n}\right)-\nu(A)\right|
$$

where χ_{A} is the characteristic function of the set A.
By changing the system \mathcal{D} of Borel sets one gets different types of discrepancies.

Uniform distribution of point sequences occurs and plays a role e.g. when numerical integration has to be done. As it can easily be seen from the definitions, the discrepancy of a point sequence reflects the quantitative measure of "not being uniform distributed". The existence of uniform distributed sequences of points on the fractal C_{s} follows from [KN74; Chap. 3, Theorem 2.2].

Discrepancies of point sequences on fractals have already been studied for the planar Sierpiński gasket [GT98] and also for the Sierpiński gasket in higher dimension [Kli98]. The equivalence of the studied discrepancies on the gasket has been proven in both cases. In [AMT00] a tight bound for the L_{2}-discrepancy with respect to halfspaces is found for point sequences on self-similar fractals that fulfill the open set condition.

2. Discrepancies on C_{s}

In the following we will define and compare different discrepancies on C_{s} for $s \geq 2$. The measure that we are using here is the normalized Hausdorff measure μ already mentioned.

Notations. Given two integers $k \leq l$, we shall write $i=\overline{k, l}$ instead of $i=k, \ldots, l$ (all integers i which satisfy $k \leq i \leq l$).

In some situations when we define certain cuboids we use the notation \leq^{*}. This has to be read as one of the inequality symbols $<$ and \leq, depending on whether we consider the defined cuboid together with its corresponding boundary or not.

The following remarks are useful for the study of C_{s}.

Remarks.

1. The pairwise parallel faces of A_{0} are:

$$
f_{i, c}=\left\{\left(x_{1}, \ldots, x_{s}\right): x_{j} \in[0,1], j \in\{1, \ldots, s\} \backslash\{i\}, x_{i}=c\right\}
$$

where $c \in\{0,1\}$ (see Figure 1 for the case $s=2$).
2. We call elementary face of a given type $\left(i, c_{i}\right)$ of an n-cube its face parallel to the face $f_{i, c_{i}}$ of A_{0} and closer (in the Euclidean sense) to $f_{i, c_{i}}$ than to $f_{i, 1-c_{i}}$.
3. Every n-cube has a vertex of type $h, h \in\left\{0, \ldots, 2^{s}-1\right\}, h=\sum_{i=1}^{s} c_{i} \cdot 2^{s-i}$, namely the intersection of the n-cube's faces of type $\left(i, c_{i}\right), i=\overline{1, s}$.

2.1. Some definitions.

Let \mathcal{D} be a system of Borel sets $A\left(\subset C_{s}\right)$ such that the boundary ∂A satisfies $\mu(\partial A)=0$. By taking $X=C_{s}$ in Definition 3 and by choosing different systems \mathcal{D} of Borel sets we get different discrepancies on C_{s}. In all these considerations we consider C_{s} endowed with the Euclidean metric, unless we explicitly mention an other metric (the geodesic metric).

The elementary discrepancy $D_{N}^{\mathcal{E}}$ is the discrepancy defined by the system \mathcal{E} of all elementary cubes (intersected with C_{s}). We consider each n-cube ($n \geq 1$) together with its faces of type $(i, 0), i=1,2, \ldots, s$ (i.e. with "half" of its boundary). Moreover, if for some $i \in\{1,2, \ldots, s\}$ a face of type $(i, 1)$ of the n-cube lies on the face of type ($i, 1$) of an m-cube (containing the n-cube, $m<n$) which is also a face of a deleted m-cube or if the face of type $(i, 1)$ of the considered n-cube lies on $f_{i, 1}$, then we take the n-cube together with its face of type ($i, 1$) (i.e. with more than "half" of its boundary).

Furthermore we consider \mathcal{D} to be the system \mathcal{S} of all sets which are intersections of C_{s} with cuboids whose faces are parallel to the faces of A_{0} and
whose vertices belong to C_{s} and thus we define the carpet discrepancy $D_{N}^{\mathcal{S}}$. The cuboids mentioned here are sets of the form $R=\prod_{i=1}^{s}\left[a_{i}, b_{i}\right), a_{i}, b_{i} \in[0,1]$ for all $i \in\{1, \ldots, s\}$ and if for some $i \in\{1, \ldots, s\}$ we have $b_{i}=1$, then we take $\left[a_{i}, b_{i}\right]$ instead of $\left[a_{i}, b_{i}\right)$ in the above product.

The last system \mathcal{D} to be considered here is the one denoted by \mathcal{C} which consists of all sets which are intersections of C_{s} with cuboids of \mathcal{S} having as a vertex one of the vertices of A_{0}. For $\mathcal{D}=\mathcal{C}$ we get the corner discrepancy $D_{N}^{\mathcal{C}}$.

If $p \in C_{s}$ is arbitrary, we denote by $\Delta_{h}(p), h \in\left\{0, \ldots, 2^{s}-1\right\}$, the cuboid of \mathcal{S} with p and P_{h} as diagonal opposite vertices. The points $y \in \Delta_{h}(p)$ (for $h=\sum_{i=1}^{s} c_{i}(h) \cdot 2^{s-i}$) are characterized as follows:
$y \in \Delta_{h}(p) \Longleftrightarrow y \in C_{s}$ and $y_{i}=\left(1-q_{i}(y)\right) \cdot m_{i}+q_{i}(y) \cdot M_{i}, \quad 0 \leq q_{i}(y) \leq^{*} 1$,
where

$$
\begin{equation*}
m_{i}=\min \left\{x_{i}(p), x_{i}\left(P_{h}\right)\right\} \quad \text { and } \quad M_{i}=\max \left\{x_{i}(p), x_{i}\left(P_{h}\right)\right\}, \quad i=\overline{1, s} \tag{4}
\end{equation*}
$$

In the above relations $y_{i}, i=\overline{1, s}$, are the Cartesian coordinates of $y, x_{i}\left(P_{h}\right)$, $i=\overline{1, s}$, those of P_{h} and $x_{i}(p), i=\overline{1, s}$, those of p.

Figure 2. The sets defining corner discrepancy for $s=2$.
Remark. We can define for any cuboid $A \in \mathcal{S}$ its face of type $\left(i, c_{i}\right)$ and its vertex of type h, for $h=\sum_{i=1}^{s} c_{i} \cdot 2^{s-i}, h \in\left\{0,1, \ldots, 2^{s}-1\right\}$, which we denote by p_{h}^{\prime}. With these notations it is easy to see that if $h \in\left\{0,1, \ldots, 2^{s}-1\right\}$, then $p_{\bar{h}}^{\prime}$ with $\bar{h}=2^{s}-1-h$ is the vertex diagonally opposite to p_{h} in A. Moreover, for A, as above, p_{h}^{\prime} and $P_{\bar{h}}$ are diagonally opposite vertices in the cuboid $\Delta_{h}\left(p_{\bar{h}}^{\prime}\right)$.

2.2. Comparison of the elementary, carpet and corner discrepancy.

Lemma 1. Let $A \subset C_{s}$ be a Borel set and $\mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\} \subset C_{s}$.
We set

$$
\#(A ; N)=\sum_{n=1}^{N} \chi_{A}\left(x_{n}\right), \quad D_{N}(A, \mathbf{x})=\left|\frac{\#(A ; N)}{N}-\mu(A)\right|
$$

If there are $A_{1}, A_{2} \subset C_{s}$ (Borel sets) such that $A_{1} \subset A \subset A_{2}, D_{N}\left(A_{i}, \mathbf{x}\right) \leq \varepsilon$, $i=1,2$, and $\max _{i=1,2}\left|\mu\left(A_{i}\right)-\mu(A)\right| \leq \delta$, then $D_{N}(A, \mathbf{x}) \leq \varepsilon+\delta$.

Proof. The inequalities

$$
\begin{aligned}
\frac{\#\left(A_{1}, N\right)}{N}-\mu\left(A_{1}\right)+\mu\left(A_{1}\right)-\mu(A) & \leq \frac{\#(A, N)}{N}-\mu(A) \\
& \leq \frac{\#\left(A_{2}, N\right)}{N}-\mu\left(A_{2}\right)+\mu\left(A_{2}\right)-\mu(A)
\end{aligned}
$$

yield

$$
\left|\frac{\#(A ; N)}{N}-\mu(A)\right| \leq \max _{i=1,2}\left|\frac{\#\left(A_{i} ; N\right)}{N}-\mu\left(A_{i}\right)\right|+\max _{i=1,2}\left|\mu\left(A_{i}\right)-\mu(A)\right|
$$

Hence by the inequalities in the hypothesis we get $D_{N}(A, \mathbf{x}) \leq \varepsilon+\delta$.
Proposition 2. For any finite sequence of points $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset C_{s}$,

$$
\begin{equation*}
D_{N}^{\mathcal{E}} \leq D_{N}^{\mathcal{S}} \leq c_{(s)}\left(D_{N}^{\mathcal{E}}\right)^{1-\frac{s-1}{\alpha}} \quad \text { for all } \quad s \geq 2 \tag{5}
\end{equation*}
$$

Proof. The left inequality follows directly from the definitions. Now we will prove the right inequality. Let R be a cuboid of \mathcal{S} and let T_{n} be the union of all n-cubes contained in R. Then the number of n-cubes which intersect the boundary of R is less than $2 s\left(3^{s-1}\right)^{n}$. On the other hand, $T_{n} \backslash T_{n-1}$ includes less than $2 s\left(3^{s-1}\right)^{n-1}\left(3^{s}-1-3^{s-1}\right) n$-cubes.

As $T_{n}=T_{n} \backslash T_{n-1} \cup T_{n-1} \backslash T_{n-2} \cup \cdots \cup T_{1} \backslash T_{0} \cup T_{0}$, the number of elementary cubes of level $\leq n$ contained in T_{n} is less than

$$
\begin{aligned}
2 s\left(3^{s}-1-3^{s-1}\right) \cdot\left(\left(3^{s-1}\right)^{n-1}\right. & \left.+\left(3^{s-1}\right)^{n-2}+\cdots+\left(3^{s-1}\right)+1\right) \\
& =2 s\left(3^{s}-1-3^{s-1}\right) \cdot \frac{\left(3^{s-1}\right)^{n}-1}{3^{s-1}-1}
\end{aligned}
$$

Lemma 1 and the fact that the (normalized Hausdorff) measure of an n-cube is $\left(3^{s}-1\right)^{-n}$ yield:

$$
D_{N}^{\mathcal{S}} \leq\left(2 s\left(3^{s}-1-3^{s-1}\right) \frac{\left(3^{s-1}\right)^{n}-1}{3^{s-1}-1}+2 s\left(3^{s-1}\right)^{n}\right) D_{N}^{\mathcal{E}}+2 s\left(3^{s-1}\right)^{n} \frac{1}{\left(3^{s}-1\right)^{n}}
$$

which implies, for any $m \in \mathbb{N} \backslash\{0\}$,

$$
D_{N}^{\mathcal{S}} \leq 2 s\left(\left(3^{s}-1-3^{s-1}\right) \frac{\left(3^{s-1}\right)^{m}-1}{3^{s-1}-1}+\left(3^{s-1}\right)^{m}\right) D_{N}^{\mathcal{E}}+2 s\left(3^{s-1}\right)^{m} \frac{1}{\left(3^{s}-1\right)^{m}}
$$

Inserting $m=\left[\log _{3^{s}-1} \frac{1}{D_{N}^{\varepsilon}}\right]$ we get:

$$
\begin{aligned}
& \log _{3^{s}-1} \frac{1}{D_{N}^{\mathcal{E}}}-1<m \leq \log _{3^{s}-1} \frac{1}{D_{N}^{\mathcal{E}}} \\
& D_{N}^{\mathcal{S}} \leq\left[2 s\left(\left(3^{s}-1-3^{s-1}\right) \frac{\left(3^{s-1}\right)^{m}-1}{3^{s-1}-1}+\left(3^{s-1}\right)^{m}\right)+2 s\left(3^{s-1}\right)^{m}\left(3^{s}-1\right)\right] D_{N}^{\mathcal{E}} \\
&=2 s\left[\left(3^{s}-1-3^{s-1}\right) \frac{\left(3^{s-1}\right)^{m}-1}{3^{s-1}-1}+\left(3^{s-1}\right)^{m}\left(1+3^{s}-1\right)\right] D_{N}^{\mathcal{E}} \\
&=2 s\left(\frac{3^{s}-1-3^{s-1}+\left(3^{s-1}-1\right) 3^{s}}{3^{s-1}-1} \cdot\left(3^{s-1}\right)^{m}-\frac{2 \cdot 3^{s-1}-1}{3^{s-1}-1}\right) D_{N}^{\mathcal{E}} \\
&=2 s\left(\frac{3^{s}-1-3^{s-1}+3^{2 s-1}-3^{s}}{3^{s-1}-1} \cdot\left(3^{s-1}\right)^{m}-\frac{2 \cdot 3^{s-1}-1}{3^{s-1}-1}\right) D_{N}^{\mathcal{E}} \\
& \leq 2 s \frac{3^{2 s-1}-3^{s-1}-1}{3^{s-1}-1}\left(3^{s-1}\right)^{m} D_{N}^{\mathcal{E}}
\end{aligned}
$$

On the other hand

$$
m \leq \log _{3^{s-1}} \frac{1}{D_{N}^{\mathcal{E}}}=\log _{3^{s-1}} \frac{1}{D_{N}^{\mathcal{E}}} \cdot \log _{3^{s-1}} 3^{s-1}
$$

which implies

$$
\left(3^{s-1}\right)^{m} \leq\left(3^{s-1}\right)^{\log _{3^{s-1}} \frac{1}{D_{N}^{\varepsilon}} \cdot \log _{3^{s}-1} 3^{s-1}}=\left(\frac{1}{D_{N}^{\mathcal{E}}}\right)^{\frac{\log 3^{s-1}}{\log 3} \cdot \frac{\log 3}{\log \left(3^{s}-1\right)}}=\left(D_{N}^{\mathcal{E}}\right)^{-\frac{s-1}{\alpha}}
$$

thus

$$
D_{N}^{\mathcal{E}} \leq \underbrace{2 s \cdot \frac{3^{2 s-1}-3^{s-1}-1}{3^{s-1}-1}}_{c(s)} \cdot\left(D_{N}^{\mathcal{E}}\right)^{1-\frac{s-1}{\alpha}}
$$

Proposition 3. For any finite sequence of points $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset C_{s}$,

$$
\begin{equation*}
D_{N}^{\mathcal{C}} \leq D_{N}^{\mathcal{S}} \leq 2^{s} D_{N}^{\mathcal{C}} \quad \text { for all } \quad s \geq 2 \tag{6}
\end{equation*}
$$

Proof. Let A be a cuboid of \mathcal{S}. With the notations of the above remarks we have $A \subset \Delta_{0}\left(p_{2}^{\prime}{ }^{\prime}-1\right)$.

Figure 3. Relating the sets defining carpet and corner discrepancy.
We denote by $X_{i}^{1}, i \in\{1,2, \ldots, s\}$, the Cartesian coordinates of the vertex $p_{2^{s}-1}^{\prime}$ of A and by $X_{i}^{0}, i \in\{1,2, \ldots, s\}$, the Cartesian coordinates of the vertex p_{0}^{\prime} of A.

For $\left(i_{1}, i_{2}, \ldots, i_{s}\right) \in\{0,1\}^{s}$ we define

$$
S\left(i_{1}, i_{2}, \ldots, i_{s}\right)=\left\{p \in C_{s}: x_{k} \leq^{*} X_{k}^{i_{k}}, k=\overline{1, s}\right\},
$$

where $x_{k}, k=\overline{1, s}$, are the Cartesian coordinates of the point p.
Every set $S\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ belongs to \mathcal{C} (it is easy to see that it coincides with one of the sets $\Delta_{0}\left(p^{\prime}\right)$, where p^{\prime} is one of the vertices of A).

We denote by $\#\left(i_{1}, \ldots, i_{s}\right)$ the number of coordinates of the s-tuple $\left(i_{1}, \ldots, i_{s}\right)$ which are equal 1 .

By the inclusion-exclusion principle we obtain

$$
\chi_{A}=\sum_{\left(i_{1}, \ldots, i_{s}\right) \in\{0,1\}^{s}}(-1)^{s-\#\left(i_{1}, \ldots, i_{s}\right)} \chi_{S\left(i_{1}, i_{2}, \ldots, i_{s}\right)},
$$

where by $-S$ we denote the complement of a set S.
By integration we derive

$$
\mu(A)=\sum_{\substack{\left(i_{1}, \ldots, i_{s}\right) \in\{0,1\}^{s}}}(-1)^{s-\#\left(i_{1}, \ldots, i_{s}\right)} \mu\left(S\left(i_{1}, i_{2}, \ldots, i_{s}\right)\right) .
$$

Thus

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{n=1}^{N} \chi_{A}\left(x_{n}\right)-\mu(A)\right| \\
= & \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} \sum_{\left(i_{1}, \ldots, i_{s}\right) \in\{0,1\}^{s}}(-1)^{s-\#\left(i_{1}, \ldots, i_{s}\right)} \chi_{S\left(i_{1}, i_{2}, \ldots, i_{s}\right)}\right. \\
& \quad-\sum_{\left(i_{1}, \ldots, i_{s}\right) \in\{0,1\}^{s}}(-1)^{s-\#\left(i_{1}, \ldots, i_{s}\right)} \mu\left(S\left(i_{1}, i_{2}, \ldots, i_{s}\right)\right) \mid \\
\leq & \sum_{\left(i_{1}, \ldots, i_{s}\right) \in\{0,1\}^{s}} \left\lvert\, \frac{1}{N} \sum_{n=1}^{N}(-1)^{s-\#\left(i_{1}, \ldots, i_{s}\right)} \chi_{S\left(i_{1}, i_{2}, \ldots, i_{s}\right)}\left(x_{n}\right)\right. \\
= & \quad-(-1)^{s-\#\left(i_{1}, \ldots, i_{s}\right)} \mu\left(S\left(i_{1}, i_{2}, \ldots, i_{s}\right)\right) \mid \\
= & \sum_{\left(i_{1}, \ldots, i_{s}\right) \in\{0,1\}^{s}}\left|\frac{1}{N} \sum_{n=1}^{N} \chi_{S\left(i_{1}, i_{2}, \ldots, i_{s}\right)}\left(x_{n}\right)-\mu\left(S\left(i_{1}, i_{2}, \ldots, i_{s}\right)\right)\right| \leq 2^{s} D_{N}^{\mathcal{C}} .
\end{aligned}
$$

Corollary 4. For any finite sequence of points $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset C_{s}$,

$$
\begin{equation*}
\frac{1}{2^{s}} D_{N}^{\mathcal{E}} \leq D_{N}^{\mathcal{C}} \leq c(s)\left(D_{N}^{\mathcal{E}}\right)^{1-\frac{s-1}{\alpha}} \quad \text { for all } \quad s \geq 2 \tag{7}
\end{equation*}
$$

Proof. It follows immediately from the last two propositions.

2.3. The isotropic discrepancy on C_{s}.

In the following we introduce a new type of discrepancy on C_{s} : by taking \mathcal{D} in Definition 3 to be the (much larger) class of sets
$\mathcal{J}=\left\{C: C=A \cap C_{s}, A\right.$ is a convex set contained in the unit cube $\left.A_{0} \subset \mathbb{R}^{s}\right\}$ we get the isotropic discrepancy $D_{N}^{\mathcal{J}}$ of a sequence $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset C_{s}$.

Remark. By simple arguments one can show that for any $C \in \mathcal{J}, C=A \cap C_{s}$, we have $\mathcal{H}^{\alpha}(\partial A)=0$ and thus $\mu\left(\partial A \cap C_{s}\right)=0$. In particular, the α-dimensional Hausdorff measure of any bounded region of an ($s-1$)-dimensional hyperplane in \mathbb{R}^{s} is zero.

Our next aim is to compare $D_{N}^{\mathcal{J}}$ with $D_{N}^{\mathcal{S}}$. In order to do this we first give some definitions.

A closed convex polytope is defined as the convex hull of a finite number of points in \mathbb{R}^{s}. An open convex polytope is defined as the interior (with respect to the usual topology of \mathbb{R}^{s}) of a closed convex polytope.

Let us define

$$
\begin{aligned}
\mathcal{P}=\left\{C: C=P \cap C_{s},\right. & P
\end{aligned} \begin{aligned}
& \text { is an open or closed convex polytope } \\
& \text { contained in } \left.A_{0} \text { with vertices in } C_{s}\right\} .
\end{aligned}
$$

Remark. It suffices to consider instead of \mathcal{J} the smaller class \mathcal{P} in order to compute the isotropic discrepancy of a finite sequence of points on C_{s}. The proof of this fact is verbally the same as that of [KN74; p. 94, Theorem 1.5], where the analogous result is established for the isotropic discrepancy on the unit cube in \mathbb{R}^{s}.

Proposition 5. For every sequence $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\} \subset C_{s}$ we have, with the above notations,

$$
\begin{equation*}
D_{N}^{\mathcal{S}} \leq D_{N}^{\mathcal{J}} \leq\left(1+4 s\left(3^{s}-1\right)\right)\left(D_{N}^{\mathcal{S}}\right)^{1-\frac{s-1}{\alpha}} \tag{8}
\end{equation*}
$$

Proof. The first inequality follows immediately from the definitions, as $\mathcal{S} \subset \mathcal{J}$.

Now we prove the second inequality. Let C be a set of $\mathcal{J}, C=A \cap C_{s}$. By the previous remark, we may assume for simplicity that $C=P \cap C_{s}$, where P is an open convex polytope or a closed convex polytope contained in A_{0} with vertices in C_{s}.

We show that we can find two sets P_{1} and P_{2}, both of them finite unions of cuboids like those defining \mathcal{S}, such that $P_{1} \subseteq P \subseteq P_{2}$. We construct P_{1} and P_{2} such that we can apply Lemma 1.

Let r be an arbitrary positive integer. For every lattice point $\left(h_{1}, h_{2}, \ldots, h_{s}\right)$ with $0 \leq h_{j}<3^{r}$ for all $1 \leq j \leq s$ we define a cuboid

$$
A_{h_{1} h_{2} \cdots h_{s}}^{(r)}=\left\{\left(x_{1}, x_{2}, \ldots, x_{s}\right) \in \mathbb{R}^{s}: \frac{h_{j}}{3^{r}} \leq x_{j} \leq^{*} \frac{h_{j}+1}{3^{r}} \text { for } 1 \leq j \leq s\right\} .
$$

The collection $\mathcal{A}^{(r)}$ of those cuboids forms a partition of A_{0}. We take $P_{1}:=P_{1}^{(r)}$, where $P_{1}^{(r)}$ is the union of all cuboids of $\mathcal{A}^{(r)}$ that are entirely contained in P. We define $P_{2}:=P_{2}^{(r)}$ to be the union of all cuboids of $\mathcal{A}^{(r)}$ whose intersection with P is nonvoid.

It is easy to see that if we fix $s-1$ integers h_{1}, \ldots, h_{s-1} satisfying the above conditions, then the integers $h, 0 \leq h<3^{r}$, with $A_{h_{1} \cdots h_{s-1} h}^{(r)} \subseteq P$ are consecutive integers (because of the convexity of P). Thus the union of those cuboids $A_{h_{1} \cdots h_{s-1} h}^{(r)}$ is a cuboid like those defining \mathcal{S}. These yield that P_{1} can
be written as the union of at most $3^{r(s-1)}$ such cuboids. One can show in the same way that P_{2} can be written as the union of at most $3^{r(s-1)}$ cuboids like those mentioned before. Thus we have:

$$
\max _{i=1,2}\left|\frac{\#\left(P_{i} \cap C_{s} ; N\right)}{N}-\mu\left(P_{i} \cap C_{s}\right)\right| \leq 3^{r(s-1)} D_{N}^{S} .
$$

Now we estimate $\left|\mu\left(P_{i} \cap C_{s}\right)-\mu\left(P \cap C_{s}\right)\right|$ for $i=1,2$.
It is easy to see that the number of 3^{-r}-grid cubes intersecting the set $P_{2} \backslash P$ is not greater than $2 \cdot 2 s \cdot\left(3^{r}\right)^{s-1}$. Thus

$$
\mu\left(P_{2} \cap C_{s}\right)-\mu\left(P \cap C_{s}\right) \leq 4 \cdot s \cdot \frac{\left(3^{r}\right)^{s-1}}{\left(3^{s}-1\right)^{r}}
$$

since the normalized Hausdorff measure of an r-cube is $\left(3^{s}-1\right)^{-r}$.
Analogously one can show

$$
\mu\left(P \cap C_{s}\right)-\mu\left(P_{1} \cap C_{s}\right) \leq 4 \cdot s \cdot \frac{\left(3^{r}\right)^{s-1}}{\left(3^{s}-1\right)^{r}}
$$

Thus

$$
\left|\frac{\#\left(P \cap C_{s} ; N\right)}{N}-\mu\left(P \cap C_{s}\right)\right| \leq\left(3^{s-1}\right)^{r} D_{N}^{\mathcal{S}}+4 s \cdot\left(\frac{3^{s-1}}{3^{s}-1}\right)^{r}
$$

Since this upper bound does not depend on P, we get

$$
D_{N}^{\mathcal{J}} \leq\left(3^{s-1}\right)^{r} D_{N}^{\mathcal{S}}+4 s \cdot\left(\frac{3^{s-1}}{3^{s}-1}\right)^{r}
$$

This holds for any positive integer r. We take $r:=\left[\log _{3}{ }^{s} \backslash 1 \frac{1}{D_{N}^{S}}\right]$. It is easy to show that

$$
\left(3^{s-1}\right)^{r} \leq\left(D_{N}^{\mathcal{S}}\right)^{-\frac{s-1}{\alpha}} \quad \text { and } \quad\left(\frac{3^{s-1}}{3^{s}-1}\right)^{r} \leq\left(3^{s}-1\right) \cdot\left(D_{N}^{\mathcal{S}}\right)^{1-\frac{s-1}{\alpha}}
$$

Hence

$$
D_{N}^{\mathcal{J}} \leq\left(1+4 s\left(3^{s}-1\right)\right)\left(D_{N}^{\mathcal{S}}\right)^{1-\frac{s-1}{\alpha}}
$$

2.4. Uniform distribution on C_{s}.

Propositions 2, 3, 5 and Corollary 4 show that the discrepancies $D_{N}^{\mathcal{E}}, D_{N}^{\mathcal{C}}$, $D_{N}^{\mathcal{S}}$ and $D_{N}^{\mathcal{J}}$ are equivalent in the following sense:

Proposition. For all sequences $\left(x_{n}\right) \subset C_{s}$,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} D_{N}^{\mathcal{E}}\left(x_{n}\right)=0 & \Longleftrightarrow \lim _{N \rightarrow \infty} D_{N}^{\mathcal{C}}\left(x_{n}\right)=0 \\
& \Longleftrightarrow \lim _{N \rightarrow \infty} D_{N}^{\mathcal{S}}\left(x_{n}\right)=0 \Longleftrightarrow \lim _{N \rightarrow \infty} D_{N}^{\mathcal{J}}\left(x_{n}\right)=0
\end{aligned}
$$

As C_{s} is a compact metric space, we can apply the general theory of uniform distribution.

Since a continuous function f on C_{s} is uniformly continuous, we can approximate f uniformly by characteristic functions of elementary cubes. Therefore, if any of the four discrepancies above tends to zero as $N \rightarrow \infty$ for some sequence $\left(x_{n}\right)$, then $\left(x_{n}\right)$ is uniformly distributed in the sense of Definition 1.

2.5. The geodesic metric on C_{s}.

We introduce a metric on C_{s} as follows: any points $x, y \in C_{s}$ are contained in k-cubes, $k \geq 1$, denoted by $Q_{k}(x)$ and $Q_{k}(y)$. Let x_{k} and y_{k} be vertices of type $h_{0}\left(h_{0} \in\left\{0, \ldots, 2^{s}-1\right\}, P_{h_{0}}\right.$ is the reference vertex - for simplicity we may fix $h_{0}=0$) of $Q_{k}(x)$ and $Q_{k}(y)$, respectively, which are also vertices of the finite graph F_{k}. We define

$$
d(x, y)=\lim _{k \rightarrow \infty} 3^{-k} d_{k}\left(x_{k}, y_{k}\right)
$$

where d_{k} is the length of the shortest chain in F_{k} containing x_{k} and $y_{k} . d$ is a metric on C_{s}, called the geodesic metric, $d(x, y)$ is the length of the shortest continuous curve in C_{s} connecting x and y.
Remark. It can be shown ([Cri02]) that the geodesic metric and the Euclidean metric on C_{s} are equivalent. This implies that both metrics lead to the same notion of (μ-) uniformly distributed sequences.

We will use this metric in order to define a new discrepancy on C_{s} for $s=2$.

3. The planar case. Special ball discrepancy

3.1. Circles and balls on the carpet.

Let us analyse the circles and balls (with respect to the geodesic metric) having the centre $p_{0} \in V_{0}$ and radius $r>0$ or $p_{0} \in V_{k} \backslash V_{k-1}$ and $0<r<$ $3^{-(k-1)}$ for $k \geq 1$.

We call "elementary diagonal" any diagonal of some elementary square.
One can easily see that the circles mentioned above are intersections of C with the boundary of squares having the centre (intersection of their diagonals) in p_{0}, the diagonals parallel to the edges of A_{0} and the length of their diagonals $2 r$. Hence the circles are unions of Cantor sets. If the edges of the squares whose boundaries build the circles are elementary diagonals, then every such edge is in fact the image of the classical Cantor set on $[0,1]$ by an affine transformation having as linear part a contraction of ratio 3^{-k}.

The balls mentioned above are intersections of C with squares having the centre p_{0}, the diagonals parallel to the edges of A_{0} and the length of their diagonals $2 r$.

Remark. It is easy to notice that any point $p \in V_{k}, k \in \mathbb{N}$, is, if we relate it to an elementary square of level $k-1$ which contains it, a point of the type q_{1} (vertex of exactly one of the eight k-squares contained in the ($k-1$)-square and thus necessarily vertex of the ($k-1$)-square), q_{2} (common vertex of exactly two of the eight k-squares contained in the ($k-1$)-square) or q_{3} (common vertex of exactly three of the eight k-squares contained in the ($k-1$)-square).

Figure 4 shows the boundaries of concentric balls (we have to intersect the lines shown with C) having their centre in q_{1}, q_{2}, or q_{3}.

Figure 4. Circles on C.
As a conclusion may write

$$
B\left(p_{0}, r\right)=C \cap \bigcup_{\substack{v_{i}\{\in \pm 1\} \\ i=1,2}} \underbrace{\left|p_{0}, p_{0}+v_{1} r \mathbf{e}_{1}, p_{0}+v_{2} r \mathbf{e}_{2}\right|}_{2 \text {-simplex }}
$$

where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ (unit vectors), $p_{0} \in V_{k}, k \in \mathbb{N}, r>0$.

3.2. Discrepancies on C. The special ball discrepancy.

As we have seen in the previous section, we can define different discrepancies on C with respect to different systems \mathcal{D}. By fixing $s=2$ we get from the previous section the elementary, the carpet, the corner and the isotropic discrepancy on C.

In the following we define and study an other notion of discrepancy on the planar Sierpiński carpet, the special ball discrepancy. We define special balls to be balls (with respect to the geodesic metric) having as their centre a point $p_{0} \in \bigcup_{k \in \mathbb{N}} V_{k}$ and radius $r=3^{-k}$ if $p \in V_{k}$.

We will compare $D_{N}^{\mathcal{B}_{s}}$ with the other four already mentioned discrepancies on C.

In the following we approach the special ball discrepancy $D_{N}^{\mathcal{B}_{s}}$ making use of the structure of the balls having as their centre a vertex of some elementary square of level $n, n \in \mathbb{N}$, and the radius $3^{-n}, n \in \mathbb{N} \backslash\{0\}$.

Proposition 7. We have

$$
\begin{equation*}
\frac{1}{64} D_{N}^{\mathcal{E}} \leq D_{N}^{\mathcal{B}_{s}} \leq 12 D_{N}^{\mathcal{E}}+64\left(D_{N}^{\mathcal{E}}\right)^{\frac{2}{3}} \tag{10}
\end{equation*}
$$

Proof. It is easy to notice that in a given k-square there are exactly four $(k+2)$-squares which do not have any common edge with any "deleted" elementary square, but necessarily have two common vertices with two "deleted" squares (see Figure 5).

Figure 5. Particular ($k+2$)-squares inside a k-square, $k \geq 0$.
First we take an ($n-1$)-square of the same type (with respect to the $(n-3)$-square that contains it) as the four $(k+2)$-squares mentioned above.

It is easy to see that it can be approximated by eight balls of \mathcal{B}_{s} with radius 3^{-n} and an error not greater than $7 \cdot 8^{-n}$ (see Figure 6).

Figure 6. Covering an elementary square with special balls on C.

Figure 7. Covering a special ball with elementary squares on C.

These imply (as any other elementary square of level $(n-1)$ needs at most that many balls from \mathcal{B}_{s} to be covered with)

$$
D_{N}^{\mathcal{E}} \leq 8 D_{N}^{\mathcal{B}_{s}}+7 \cdot 8^{-m} \quad \text { for all } \quad m \in \mathbb{N} \backslash\{0\}
$$

The deriving of this inequality can be done by using Lemma 1 (e.g. by letting A be the elementary square to be covered, A_{1} the union of the two special balls included in A and A_{2} the union of the mentioned special balls covering A).

For $m=\left[\log _{8} \frac{1}{D_{N}^{\mathcal{B}_{s}}}\right]$ we get $D_{N}^{\mathcal{E}} \leq 64 D_{N}^{\mathcal{B}_{s}}$.
For the second inequality in (10) we choose a ball of \mathcal{B}_{s} with the radius 3^{-k} and with the centre the common vertex of four "undeleted" k-squares, $k \geq 2$ (see Figure 5 and Figure 7).

It is easy to see that the ball is the union of twelve $(k+1)$-squares and eight rectangular triangles (each of them is a "half-square" of level $(k+1)$). Every such triangle is a union of three $(k+2)$-squares and two "half-squares" of level $k+2$.

Going on with this procedure we can conclude, after $L+1$ steps, that the given ball may be covered by not more than $12+8 \cdot 3 \cdot\left(1+2+2^{2}+\cdots+2^{L}\right)$ elementary squares of level $\leq k+L+1$ with an error of $8 \cdot 2^{L+1} \cdot 8^{-(k+L+1)}$.

By applying Lemma 1 , we get, for $L \in \mathbb{N}$,

$$
D_{N}^{\mathcal{B}_{s}} \leq\left(12+8 \cdot 3 \cdot\left(2^{L}-1\right)\right) D_{N}^{\mathcal{E}}+8 \cdot 2^{L+1} \cdot 8^{-(L+1)}
$$

and for $L=\left[\log _{8} \frac{1}{D_{N}^{\varepsilon}}\right]$ we have

$$
D_{N}^{\mathcal{B}_{s}} \leq\left(12+8 \cdot 3 \cdot 2 \cdot\left(D_{N}^{\mathcal{E}}\right)^{-\frac{1}{3}}\right) D_{N}^{\mathcal{E}}+8 \cdot 2 \cdot\left(D_{N}^{\mathcal{E}}\right)^{\frac{2}{3}}=12 D_{N}^{\mathcal{E}}+64\left(D_{N}^{\mathcal{E}}\right)^{\frac{2}{3}}
$$

Remark. (The case $s=1$.) It is easy to see that the analogon of C_{s} in \mathbb{R} is the well-known two-thirds-Cantor set, let us denote it here by C_{1}. Lemma 1 holds also for $s=1$. The assertion of Proposition 2 becomes $D_{N}^{\mathcal{C}} \leq D_{N}^{\mathcal{S}} \leq 2 D_{N}^{\mathcal{C}}$, which is true ([KN74; Chap. 2, Theorem 1.3] states the analogous result on the unit interval). The assertion of Proposition 5 becomes $D_{N}^{\mathcal{S}} \leq D_{N}^{\mathcal{J}} \leq 5 D_{N}^{\mathcal{S}}$ and can be proven analogously. Problems occur when one tries to reconstruct the proof of Proposition 2 on C_{1} in the same way.

Acknowledgement

The authors thank Reinhold Kainhofer for his help with producing the graphics. The authors are grateful to the referee for the detailed comments and suggestions.

REFERENCES

[AMT00] ALBRECHER, H.-MATOUSEK, J.-TICHY, R. F.: Discrepancy of point sequences on fractal sets, Publ. Math. Debrecen 56 (2000), 233-249.
[Cri02] CRISTEA, L.-L.: Geometric Properties of Fractals. Ph.D. Thesis, TU Graz, 2002.
[Fal90] FALCONER, K. J.: Fractal Geometry. Mathematical Foundations and Applications, John Wiley \& Sons, Chichester, 1990.
[Fal97] FALCONER, K. J.: Techniques in Fractal Geometry, John Wiley \& Sons, Chichester, 1997.
[GT98] GRABNER, P. J.-TICHY, R. F.: Equidistribution and Brownian motion on the Sierpiñski gasket, Monatsh. Math. 125 (1998), 147-164.
[Hla84] HLAWKA, E.: The Theory of Uniform Distribution (Translated from the German by Henry Orde with a foreword by S. K. Zaremba). Topics and Texts in Math. Vol. 1, A B Academic Publishers (Eastern Press), Reading, 1984.
[Kli98] KLINGER, B.: Discrepancy of Point Sequences and Numerical Integration. Ph.D. Thesis, TU Graz, 1998.
[KN74] KUIPERS, L.-NIEDERREITER, H.: Uniform Distribution of Sequences, Wiley, New York, 1974.

Received February 3, 2003
Revised June 27, 2003

* Department of Mathematics Graz University of Technology Steyrergasse 30 A-8010 Graz AUSTRIA

Department of Mathematics "Politehnica" University of Timisoara P-ta Regina Maria 1
RO-1900 Timisoara ROMANIA

E-mail: cristea@finanz.math.tu-graz.ac.at
** Department of Mathematics
Graz University of Technology
Steyrergasse 30
A-8010 Graz
AUSTRIA
E-mail: tichy@weyl.math.tu-graz.ac.at

[^0]: 2000 Mathematics Subject Classification: Primary 11K38, 28A80.
 Keywords: discrepancy, fractal.
 Research of the first author was supported by the Austrian Science Found Project S-8308-MAT and the OeNB Anniversary Fund Project 9002.

